Planning an Experiment into Solubility

1. Background Information:

Words to use: solution, saturated, solute, solvent.
When a substance is dissolved into a liquid, we call the substance dissolving a s, the
liquid a s, and the mixture formed is called a s
We are going to plan an experiment to see how much solute dissolves at different temperatures, this is
known as solubility . If we keep adding the solute and no more dissolves, then the solution is fully
S
2. Method:
a. Clear a suitable working area, long hair up and put on safety goggles.
b. Fill a glass beaker with 25ml of (solvent) at room temperature.
c. Add 10g of (solute) at a time, noting down how much you have added.
d. Stir gently with a, applying the same amount of force each time.
e. Keep adding the solute until no more dissolves and the solution is fully s and record the total amount of grams of solute added.
f. Repeat steps b to d with hotter water. The temperatures we will use are 50°C and 100°C.
3. How the Particles Look Inside: Draw two beakers showing the particles inside of them.

Beaker A (water only)

Beaker B (water and sugar)

4. Risk Assessment:

Complete the table to consider any safety issues in this practical. The first one has been given as an example.

Hazard	Harm	How You Will Prevent Injuries
glass beaker	Could break and cut skin.	Keep floor clear and hold beaker securely; place in middle of table; wear goggles.
5. Variables: a. What are you changing (the independent variable)?		

5. Variables:		
a. What are you changing (th	e independent variable)?	
What are the units?		
b. What are you measuring (t	he dependent variable)?	
What are the units?		
c. What will you keep the san	ne (the control variables)?	
6. Prediction:		
My prediction is (Hint: Whi	ch temperature do you think th	e most amount of sugar will dissolve in?)
I think this because (What i	s the science behind this idea?)	

