Science and Maths assessments

Due date: 28th June, 2024 at 3.30pm

Task:

As part of your 'Forces and Motion' context we have conducted some experiments, identifying and calculating forces, using the distance, time and speed formula. You have also looked at Newton's 3 laws. We will be doing a collaborative assessment for Science and Maths. You will be conducting the experiment during science lessons in the first week and the following week you will doing your write-up as well as your graph (in Maths)

Instructions:

Science: Done in 2 parts. Highlighted in red is group work you will do to conduct the experiment and obtain results. In blue, you will need to do this individually.

Maths: The straight line graph and its analysis will be assessed under Maths.

Rubric:

$\left.\left.\begin{array}{|l|l|l|l|l|}\hline \text { Criteria } & \begin{array}{l}\text { WORKING TOWARDS } \\ \text { Curriculum expectation }\end{array} & \begin{array}{l}\text { Working AT curriculum } \\ \text { expectation }\end{array} & \begin{array}{l}\text { Working ABOVE } \\ \text { curriculum expectations }\end{array} & \begin{array}{l}\text { Working BEYOND } \\ \text { curriculum expectation }\end{array} \\ \hline \text { Investigation } & \begin{array}{l}\text { You have gathered and } \\ \text { processed data. }\end{array} & \begin{array}{l}\text { You have gathered } \\ \text { appropriate data. You have } \\ \text { interpreted the data, drawing } \\ \text { simple conclusions. }\end{array} & \begin{array}{l}\text { You have interpreted the } \\ \text { data and drawn science } \\ \text { based conclusions based on } \\ \text { the data. }\end{array} & \begin{array}{l}\text { You have interpreted the } \\ \text { data and drawn science } \\ \text { based conclusions linked to } \\ \text { the data. }\end{array} \\ \hline \text { Speed (velocity) } & \begin{array}{l}\text { You have described } \\ \text { speed in terms of distance } \\ \text { and time }\end{array} & \begin{array}{l}\text { You have described and } \\ \text { calculated overall speed of } \\ \text { various objects }\end{array} & \begin{array}{l}\text { You have described, } \\ \text { accurately calculated and } \\ \text { illustrated the speed using } \\ \text { graphs }\end{array} & \begin{array}{l}\text { You have investigated, } \\ \text { coherently explained the } \\ \text { speed of an object, and } \\ \text { accurately calculated and }\end{array} \\ \text { illustrated speed using } \\ \text { graphs }\end{array}\right] \begin{array}{l}\text { You have posed a correct } \\ \text { question and presented your } \\ \text { data using appropriate } \\ \text { graphs and clearly shown the } \\ \text { tables and calculations } \\ \text { where applicable }\end{array}\right]$

	punctuation and these are intrusive at times, consequently the reader has to infer meaning	inference is needed as meaning is mostly clear	have few intrusive errors and meaning is consistently clear	have no intrusive errors and meaning is consistently clear
Time Management	You have not handed in any work	You have handed your work in late	You have handed your work in on time	You have handed your work in on time

Maths Part

For the Math part of the assessment you will be graded on the following.
Part A

1. Plotting a graph with appropriate labels, scale, title etc
2. Analysing the correlation between the variables.

Part B

1. Solve some contextual physics problems that involve algebra.

Science Assessment Task

	Fill in the boxes below as you carry out your investigation. Sections highlighted in red are to be completed AS A GROUP. Sections highlighted in blue are to be completed BY YOURSELF.
Aim: (Group)	
Hypothesis: (Group)	Independent variable - What are we changing? - Dependent variable - What are we measuring? - Control variables: What factors do we need to keep the same as we carry out the experiment? List them (Group) below •
Equipment and Method: (This is done for you already)	Equipment: • Ramp - Toy car - Meter ruler

Analysis (Individual)	
Conclusion (Individual)	Use the following prompts to guide you: What does the line show As the height of the ramp increases, the average distance travelled by the car also increases. This tells us there is a relationship between the two variables. Give an example You can see that at ramp height of 69.8 cm the car went 69.8 cm in distance compared to when the ramp was 82.3 cm high and the car travelled 82.3 cm . Use the equation If the ramp height is 81 cm high --> sub that number into your equation for " x " ... $y=1.01^{*} x+0.846$--> $y=$ $1.01 * 81+0.846=76.596 \mathrm{~cm}$ Explain the equation If the ramp was 81 cm high then the car should travel 76.596 cm from it.
Discussion (Individual)	Describe the toy car ramp experiment in physics terms. What are the forces acting on the car at rest and when moving? Identify Newton's 1st and 2nd laws and which portion of the experiment this is observed in. KEYWORDS: forces, balanced and unbalanced forces, contact and non-contact forces, distance, time, speed, aerodynamics, friction, Newton's 1st, 2nd and 3rd Laws.

