Linear and non-linear relationships

Topic 3: Using the intercept method to graph lines

QUESTION $\mathbf{1}$ Find the *x*-intercept for each equation.

a
$$x + y = 2$$

$$c 2x + y = 6$$

$$e x - 3y = 6$$

b
$$x - y = 4$$

d
$$2x - y = 8$$

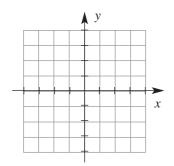
f
$$2x - 3y = 12$$

QUESTION **2** Find the *y*-intercept for each equation.

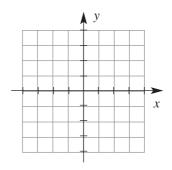
a
$$x - 2y = 4$$

c
$$2x + y = 6$$

e
$$3x - 4y = 12$$

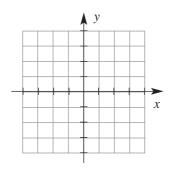

b
$$x - y = 8$$

d
$$2x - y = 3$$

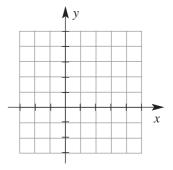

f
$$3x - y = 3$$

QUESTION **3** Draw the graph of each equation, given the *x*-intercept and the *y*-intercept:

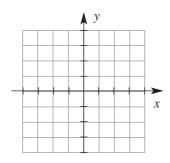
a
$$x$$
-intercept = 3, y -intercept = 2


b
$$x$$
-intercept = -1 , y -intercept = 3

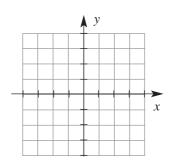
QUESTION **4** For each equation, find the *x*-intercept and the *y*-intercept and then draw its graph.


a
$$y = -2x + 3$$

х	0	
у		0


b
$$x + y - 5 = 0$$

х	0	
у		0


$$v = 2x - 3$$

х	0	
У		0

d
$$y = \frac{4}{3}x - 1$$

X	0	
У		0

