Big Idea Tuakana-teina: The concept of older siblings teaching and working alongside younger siblings.

Do now on writing expressions

WALT Dividing algebraic terms

Success Criteria

When dividing algebraic terms containing pronumerals and numbers, follow these steps.

- Step 1: Write the division as a fraction.
- Step 2: Cancel the numbers, if possible.
- Step 3: Cancel the pronumerals, if possible. Step 4: Write your answer as a fraction.

(Remember: Cancel means divide the numerator and denominator by the same number or pronumeral.)

Step 4: Write your answer as a fraction.

Meet link

https://meet.google.com/lookup/e6orxt4snv

Complete the following to simplify. **a** $10y \div 15 = \frac{10y}{\Box}$ **b** $8m \div 12m = \frac{\Box}{12m}$ **c** $6x \div 8xy = \frac{\Box}{8xy}$ $= \frac{2y}{\Box}$ $= \frac{\Box}{4y}$

2 Simplify the following.

a $9x \div 18$ **b** $3m \div 12$ **c** $5p \div 25$ **d** $16d \div 4$ **e** $\frac{10c}{2}$ **f** $\frac{8a}{4}$ **g** $\frac{6a}{12a}$ **h** $\frac{44m}{22m}$ **i** $\frac{12a}{15a}$ **j** $\frac{20d}{10d}$ 3f 4t 18p 6xy 24ai

Challenge

3 Complete the following to simplify.

a
$$\frac{15ab}{-20ac} = \frac{15ab}{\Box}$$

$$= \frac{3b}{\Box}$$

$$= -\frac{3b}{\Box}$$

$$\mathbf{b} \quad \frac{-x}{xy} = \frac{\square}{xy}$$
$$= \frac{\square}{y}$$
$$= -\frac{\square}{y}$$

Simplify the following.

$$\frac{-50d}{10d}$$

$$\frac{-12fg}{-18g}$$

$$\frac{-6kl}{9l}$$

$$\frac{12fg}{-3gh}$$

$$e \frac{-36lm}{9m}$$

$$f = \frac{-90y}{99x}$$

$$\frac{-45c}{-15ac}$$

$$\frac{-a^2bc}{b^2c}$$

$$\frac{-mn}{n^2}$$

$$\mathbf{j} \quad \frac{x^2 y z^2}{-y^2 x}$$

k
$$-64p \div -16q$$
 l $-6ac \div -9c$

$$1 -6ac \div -9c$$

$$m - 2mn \div - 8mn$$

$$n - 10 \div 5mn$$

$$0 -3q \div q$$

o
$$-3q \div q$$
 p $21pq \div -3p^2$

Extension

Simplify the following divisions by cancelling any common factors.

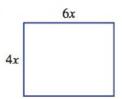
$$b \frac{7x}{14y}$$

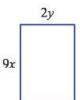
$$c = \frac{10xy}{12y}$$

d
$$\frac{ab}{4b}$$

Cancel numbers and pronumerals where possible

$$f = \frac{2}{12x}$$


$$\frac{4xy}{7x}$$


h
$$\frac{3abc}{6b}$$

Problem-solving and Reasoning

Write a simplified expression for the area of the following shapes. Recall that rectangle area = width \times length.

Simplify the following completely.

- a $2a \times 3b + 5ab$
- **b** $6q \times 2r + 4q \times 3r$
- $c \quad 10x \times 2y 3y \times 6x$

You can combine any like terms.

Fill in the missing terms to make the following equivalences true.

a
$$3x \times \boxed{\times z = 6xyz}$$
 b $4a \times \boxed{= 12ab}$

b
$$4a \times \square = 12ab$$

$$\frac{\Box}{4r} = 7s$$

$$\frac{d}{2ab} = 4b$$

Joanne claims that the following three expressions are equivalent: $\frac{2a}{5}$, $\frac{2}{5} \times a$, $\frac{2}{5a}$.

- a Is she right? Try different values of a.
- b Which two expressions are equivalent?
- There are two values of a that make all three expressions are equal. State one of them.

Check if you can work on it

- a Simplify $2a \times 3b + 5b \times 2a$ to a single term.
- b State another way to fill in the blanks to make the simplification correct:

$$a \times b + b \times a = 16aa$$

Give an example of an even longer expression that is equivalent to 16ab.

Check your answers

1 a
$$\frac{^{2}10y}{^{3}15} = \frac{2y}{3}$$
 c $\frac{^{2}8^{1}m}{^{3}12^{1}m} = \frac{2}{3}$ c $\frac{^{3}6^{1}x}{^{4}8^{1}xy} = \frac{3}{4y}$

2 a $\frac{x}{2}$ b $\frac{m}{4}$ c $\frac{p}{5}$ d $4d$ e $5c$

f $2a$ g $\frac{1}{2}$ h 2 i $\frac{4}{5}$ j 2

k $\frac{1}{3}$ l $\frac{1}{5}$ m $\frac{9p}{10d}$ n $\frac{2y}{5}$ o $\frac{2a}{3c}$

p $\frac{4}{5q}$ q $\frac{1}{5x}$ r $\frac{7d}{m}$ s $\frac{5pr}{4}$ t $\frac{2n}{5p}$

3 a $\frac{^{3}15^{1}ab}{^{-4}20^{1}ac} = \frac{-3b}{4c}$ b $\frac{-1x}{^{1}xy} = -\frac{1}{y}$

4 a -5 b $\frac{2f}{3}$ c $-\frac{2k}{3}$ d $-\frac{4f}{h}$ e $-4l$ f $-\frac{10y}{11x}$ g $\frac{3}{a}$ h $-\frac{a^{2}}{b}$ i $-\frac{m}{n}$ j $-\frac{xz^{2}}{y}$ k $\frac{4p}{q}$ l $\frac{2a}{3}$ m $\frac{1}{4}$ n $-\frac{2}{mn}$ o -3 p $-\frac{7q}{p}$

Extension answers

a	$\frac{1}{2}$	b	$\frac{x}{2y}$	C	$\frac{5x}{6}$		$\frac{a}{4}$	
e	$\frac{x}{3}$	f	$\frac{1}{6x}$	g	$\frac{4y}{7}$		$h = \frac{ac}{2}$	
a	8ab 11ab 2y	b	$24x^{2}$	C	18 <i>xy</i>			
8	11 <i>ab</i>	b	24qr	C	2xy			
a	2y		36	C	28rs		d 8ab2	
	no	b	$\frac{2a}{5}$ and	$\frac{2}{5} \times a$		C	a = 1 or $a = -1$	
а	16 <i>ab</i>	b	2, 5, 6,	1 othe	ers pos	sible	e	
C	$2a \times 3b +$	$2a \times 3b + 3a \times 2b + 4a \times b$. Others possible.						