
Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

1

1

www.picaxe.com

Contents
Introduction. ................................................................................................... 4
PICAXE Software............................................................................................... 4
Labels ............................................................................................................ 5
Comments ....................................................................................................... 5
Constants........................................................................................................ 6
Symbols .......................................................................................................... 6
Directives ....................................................................................................... 7
Variables - General ......................................................................................... 10
Variables - Storage ......................................................................................... 11
Variables - Scratchpad .................................................................................... 12
Variables - System.......................................................................................... 13
Variables - Special function ............................................................................. 14
Variables - Mathematics .................................................................................. 22
Variables - Unary Mathematics ......................................................................... 25
Input /  Output Pin Naming Conventions ........................................................... 27
adcconfig...................................................................................................... 28
adcsetup ....................................................................................................... 29
backward ...................................................................................................... 34
bcdtoascii ..................................................................................................... 35
bintoascii ..................................................................................................... 36
booti2c ........................................................................................................ 37
branch .......................................................................................................... 39
button.......................................................................................................... 40
calibadc (calibadc10) ..................................................................................... 42
calibfreq ....................................................................................................... 43
clearbit ......................................................................................................... 44
compsetup .................................................................................................... 45
count ........................................................................................................... 50
daclevel ........................................................................................................ 51
dacsetup ....................................................................................................... 52
debug........................................................................................................... 54
dec ............................................................................................................. 55
disablebod .................................................................................................... 56
disabletime ................................................................................................... 57
disconnect .................................................................................................... 58
do...loop ...................................................................................................... 59
doze............................................................................................................. 60
eeprom (data) ............................................................................................... 61
enablebod ..................................................................................................... 62
enabletime .................................................................................................... 63
end ............................................................................................................. 64
exit ............................................................................................................. 65
for...next ...................................................................................................... 66
forward ......................................................................................................... 67
fvrsetup ........................................................................................................ 68
get ............................................................................................................. 69
gosub (call) .................................................................................................. 70
goto ............................................................................................................. 71
hi2cin .......................................................................................................... 72
hi2cout ........................................................................................................ 74
hi2csetup ..................................................................................................... 76
hi2csetup - slave mode (X2 parts only) ............................................................. 76
hi2csetup - master mode................................................................................. 78
halt ............................................................................................................. 80
hibernate ...................................................................................................... 81
high ............................................................................................................. 83
high portc..................................................................................................... 84
hintsetup ...................................................................................................... 85
hpwm ........................................................................................................... 86



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

2

2

www.picaxe.com

hpwmduty ..................................................................................................... 90
hserin ........................................................................................................... 91
hserout ......................................................................................................... 93
hsersetup ...................................................................................................... 94
hspiin (hshin) ............................................................................................... 96
hspiout (hshout) ............................................................................................ 97
hspisetup ...................................................................................................... 98
i2cslave ...................................................................................................... 102
if...then \  elseif...then \  else \  endif .............................................................. 104
if...then {goto} ........................................................................................... 106
if...and/ or..then {goto} ................................................................................ 106
if porta...then {goto} ................................................................................... 107
if portc...then {goto} ................................................................................... 107
if...then exit ............................................................................................... 108
if...and/ or...then exit ................................................................................... 108
if...then gosub ............................................................................................ 109
if...and/ or...then gosub ................................................................................ 109
inc ........................................................................................................... 111
infrain ........................................................................................................ 112
infrain2 ...................................................................................................... 114
infraout ...................................................................................................... 115
input .......................................................................................................... 120
inputtype ................................................................................................... 121
irin ........................................................................................................... 125
irout .......................................................................................................... 127
kbin ........................................................................................................... 129
keyin .......................................................................................................... 131
kbled (keyled) ............................................................................................. 133
let ........................................................................................................... 134
let dirs /  dirsc = .......................................................................................... 136
let dirsA /  dirsB /  dirsC /  dirsD = ................................................................... 137
let pins /  pinsc = ......................................................................................... 138
let pinsA /  pinsB /  pinsC /  pinsD =................................................................. 139
lookdown .................................................................................................... 140
lookup ........................................................................................................ 141
low ........................................................................................................... 142
low portc .................................................................................................... 143
nap ........................................................................................................... 144
on...goto .................................................................................................... 145
on...gosub .................................................................................................. 146
output ........................................................................................................ 147
owin .......................................................................................................... 148
owout ........................................................................................................ 149
pause ......................................................................................................... 150
pauseus ...................................................................................................... 151
peek ........................................................................................................... 152
peeksfr ....................................................................................................... 154
play ........................................................................................................... 155
poke........................................................................................................... 156
pokesfr ....................................................................................................... 158
pullup ........................................................................................................ 159
pulsin ......................................................................................................... 160
pulsout ....................................................................................................... 161
put ........................................................................................................... 162
pwm........................................................................................................... 163
pwmduty..................................................................................................... 164
pwmout ...................................................................................................... 165
random....................................................................................................... 168
read ........................................................................................................... 169
readadc ...................................................................................................... 170
readadc10 ................................................................................................... 171
readdac ...................................................................................................... 172
readdac10 ................................................................................................... 173
readi2c ....................................................................................................... 174
readinternaltemp ......................................................................................... 175



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

3

3

www.picaxe.com

readfirmware ............................................................................................... 177
readmem..................................................................................................... 178
readtable .................................................................................................... 179
readoutputs ................................................................................................ 180
readportc .................................................................................................... 181
readrevision ................................................................................................ 182
readsilicon .................................................................................................. 183
readtemp .................................................................................................... 184
readtemp12 ................................................................................................. 185
readowclk ................................................................................................... 186
resetowclk................................................................................................... 187
readowsn .................................................................................................... 188
reconnect ................................................................................................... 190
reset .......................................................................................................... 191
restart ........................................................................................................ 192
resume ....................................................................................................... 193
return ......................................................................................................... 194
reverse ....................................................................................................... 195
rfin ........................................................................................................... 196
rfout .......................................................................................................... 198
run ........................................................................................................... 200
select case \  case \  else \  endselect ............................................................... 203
serin .......................................................................................................... 204
serrxd ......................................................................................................... 207
serout ........................................................................................................ 208
sertxd......................................................................................................... 210
servo .......................................................................................................... 211
servopos ..................................................................................................... 213
setbit ......................................................................................................... 214
setint ......................................................................................................... 215
setintflags .................................................................................................. 219
setfreq........................................................................................................ 221
settimer ...................................................................................................... 223
shiftin (spiin) .............................................................................................. 225
shiftout (spiout) .......................................................................................... 228
sleep .......................................................................................................... 230
sound ......................................................................................................... 231
srlatch ........................................................................................................ 232
srset /  srreset .............................................................................................. 234
stop ........................................................................................................... 235
suspend ...................................................................................................... 236
swap .......................................................................................................... 237
switch on/ off .............................................................................................. 238
symbol ....................................................................................................... 239
table .......................................................................................................... 240
tablecopy.................................................................................................... 241
tmr3setup ................................................................................................... 242
toggle ........................................................................................................ 244
togglebit .................................................................................................... 245
touch ......................................................................................................... 246
touch16...................................................................................................... 247
tune........................................................................................................... 250
uniin .......................................................................................................... 257
uniout ........................................................................................................ 258
wait ........................................................................................................... 260
write .......................................................................................................... 261
writemem.................................................................................................... 262
writei2c ...................................................................................................... 263
Appendix 1 - Commands................................................................................ 264
Appendix 2 - Additional (non-command) reserved words ................................... 265
Appendix 3 - Reserved Labels ........................................................................ 266
Appendix 4 - Possible Conflicting Commands ................................................... 267
Appendix 5 - X2 Variations ............................................................................ 268
Appendix 6 - M2 Variations ........................................................................... 269
Manufacturer Website: .................................................................................. 270
Trademark: .................................................................................................. 270
Acknowledgements: ...................................................................................... 270



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

4

4

www.picaxe.com

BASIC COMMANDS

Introduction.
The PICAXE manual is divided into three sections:

Section 1 - Getting Started
Section 2 - BASIC Commands
Section 3 - Microcontroller interfacing circuits

This second section provides the syntax (with detailed examples) for all the BASIC
commands supported by the PICAXE system. It is intended as a lookup reference guide
for each BASIC command supported by the PICAXE system. As some commands only
apply to certain size PICAXE chips, a diagram beside each command indicates the sizes
of PICAXE that the command applies to.

When using the flowchart method of programming, only a small subset of the available
commands are supported by the on-screen simulation. These commands are indicated
by the corresponding flowchart icon by the description.

For more general information about how to use the PICAXE system, please see section 1
‘Getting Started’.

PICAXE Software
The main Windows application used for programming the PICAXE chips is called the
‘PICAXE Programming Editor’. This software is free of charge to PICAXE users.

Please see section 1 of the manual (‘Getting Started’) for installation details and
tutorials.  Please ensure that you are using the latest version, the software is a free
download from www.picaxe.com

AXEpad is a simpler free version of the Programming Editor software for use on the
Linux and Mac operating systems. It also supports all the BASIC commands in this
manual.

Logicator for PIC micros is a flowcharting application designed for educational use.
Programs are developed as graphical flowcharts on screen. These flowcharts are then
automatically converted into BASIC files for download into the PICAXE chips.

PICAXE VSM is a Berkeley SPICE circuit simulator, which will simulate complete
electronic circuits using PICAXE chips. The BASIC program can be stepped through line
by line whilst watching the input/output peripheral react to the program.

The latest version of the software is available on the PICAXE website at
www.picaxe.com

If you have a question about any command please post a question on the very active
support forum at this website

www.picaxeforum.co.uk



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

5

5

www.picaxe.com

Labels
Labels are used as markers throughout the program. Labels are used to mark a
position in the program to ‘jump to’ from another position using a goto, gosub
or other  command. Labels can be any word (that is not already a reserved
keyword) and may contain digits and the underscore character. Labels must start
with a letter or underscore (not digit), and are followed directly by a colon (:) at
the marker position. The colon is not required within the actual commands.

The compiler is not case sensitive (lower and/or upper case may be used at any
time).

Example:

main:
high B.1 ; switch on output 1
pause 5000 ; wait 5 seconds
low B.1 ; switch off output 1
pause 5000 ; wait 5 seconds
goto main ; loop back to start

W hitespace
Whitespace is the term used by programmers to define the white area on a
printout of the program. This involves spaces, tabs and empty lines. Any of these
features can be used to space the program to make it clearer and easier to read.

It is convention to only place labels on the left hand side of the screen. All other
commands should be indented by using the ‘tab key’. This convention makes the
program much easier to read and follow.

Newline
Commands are normally placed on separate lines. However if desired the colon
(:) character can be use to separate multiple commands on a single line e.g.

if pin1 = 1 then : high 1 : else : low 1 : endif

Line continuation
Long lines can be continued onto a second line by using an underscore  e.g.

if pin1 = 1 then gosub _
label1 ; continued on second line

Code Collapsing
On long programs in Programming Editor the { and } brackets can be used to
collapse (“hide”) sections of code to make programs clearer e.g.

{
 high 1
}

Comments
Comments are used to add information into the program for future reference.
They are completely ignored by the computer during a download. Comments
begin with an apostrophe (‘) or semicolon (;) and continue until the end of the
line.  The keyword REM may also be used for a comment.

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

6

6

www.picaxe.com

Multiple lines can be commented by use of the #REM and #ENDREM directives.
Examples:

high 0 ; make output 0 high
low 0 REM make output 0 low

#rem ; #rem out a number of lines
high 0
pause 2000
#endrem

Constants
Constants are ‘fixed’ numbers that are used within the program. The software
supports word integers (any whole number between 0 and 65535).
Constants can be declared in four ways: decimal, hex, binary and ASCII.

Decimal numbers are typed directly without any prefix.
Hexadecimal (hex) numbers are preceded with a dollar-sign ($) or (0x).
Binary numbers are preceded by a percent-sign (%).
ASCII text strings are enclosed in quotes (“).

Examples:
100 ; 100 decimal
$64 ; 64 hex
0x64 ; 64 hex
%01100100 ; 01100100 binary
“A” ; “A” ascii (65)
“Hello” ; “Hello” - equivalent to “H”,”e”,”l”,”l”,”o”
B1 = B0 ^ $AA ; xor variable B0 with AA hex

Symbols
Symbols can be assigned to constant values, and can also be used as alias names
for variables (see  Variables overleaf for more details).  Constant values and
variable names are assigned by following the symbol name with an equal-sign
(=), followed by the variable or constant.  Symbols can use any word that is not a
reserved keyword (e.g. switch, step, output, input, etc. cannot be used)

Symbols can contain numeric characters and underscores (flash1, flash_2 etc.)
but the first character cannot be numeric (e.g. 1flash). Simple constant maths is
also available. See the symbol command entry later in this manual for more
information. The use of symbols does not increase program length.

Example:
symbol RED_LED = B.7 ; define a constant symbol
symbol COUNTER = b0 ; define a variable symbol
let COUNTER = 200 ; preload variable with value 200

mainloop: ; define a program address
; address symbol end with colons

high RED_LED ; switch on output B.7
pause COUNTER ; wait 0.2 seconds
low RED_LED ; switch off output B.7
pause COUNTER ; wait 0.2 seconds
goto mainloop ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

7

7

www.picaxe.com

Directives
Directives are used by the software to set the current PICAXE type and to
determine which sections of the program listing are to be compiled. Directives
are therefore not part of the PICAXE program, they are instructions to the
software compiler.

All directives start with a # and must be used on a single line. Any other non-
relevant line content after the directive is ignored.

Directives marked Programming Editor Only are only supported by the PICAXE
Programming Editor software and will not work with third party applications.

#picaxe xxx
Set the compiler mode. This directive also automatically defines a label of the
PICAXE type e.g. #picaxe 08m2 is also the equivalent of #define 08m2. If no
#picaxe directive is used the system defaults to the currently selected PICAXE
mode (View>Options>Mode menu within Programming Editor).
Example: #picaxe 08m2

#com  device
Set the serial/USB COM port for downloading.
Examples:

#com 1 (Windows AXE026 serial)
#com 6 (Windows AXE027 USB* )
#com / dev/ ttyS0 (Linux AXE026 serial)
#com / dev/ ttyUSB0 (Linux AXE027 USB* )
#com / dev/ tty.usbserial-xxxx (Mac AXE027 USB* )
#com 1 (Windows CE AXE027 USB* )
#com / dev/ tty.iap ( iPhone/ iPod Touch AXE026 serial)

Note that on Linux systems the COM port device name is actually one less than the
COM port, so COM1 is“/dev/ttyS0” On Mac systems xxxx is a unique serial number.
Device names are also case sensitive - type exactly as shown.
*See the AXE027 USB cable datasheet for more details.

#slot number
Select the internal program slot (0-3) or i2c program slot (4-7) on X2 parts.

#revision number
Set the user program version (1-254) on X2 parts.

#no_data
Do not download EEPROM data (only active on parts where program and data
are separate).

#no_table
Do not download table or EEPROM data (X1 and X2 parts only). This
automatically also enables #no_data

#no_end
Do not automatically add an ‘end’ command to the end of the program.

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

8

8

www.picaxe.com

#freq m4/m8/m16
Set the default system clock download frequency for 28X/40X parts only.
Not required for any other parts that automatically use their internal resonator.
Example: #freq m8

#define label
Defines a label to use in an ifdef or ifndef statements.
Example: #define clock8
Do not confuse the use of #define and symbol =
#define is a directive and, when used with #ifdef, determines which sections of code  are
going to be compiled.
‘symbol = ’ is a command used within actual programs to re-label variables and pins.

#undefine label
Removes a label from the current defines list
Example: #undefine clock8

#ifdef /  #ifndef label
#else
#endif
Conditionally compile code depending on whether a label is defined (#ifdef) or
not defined (#ifndef).

Example: #define clock8
#ifdef clock8

let b1 = 8
#else

let b1 = 4
#endif

#error “comment”
Force a compiler error at the current position
Example: #error “Code not finished!”

#rem /  #endrem
Comment out multiple lines of text.
Example:

#rem
high 0
pause 1000
low 0
#endrem

#include “filename”
Include code from a separately saved file within this program.
Example: #include “c:\ test.bas”
NOTE: Reserved for future use. Not currently implemented.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

9

9

www.picaxe.com

Programming Editor Only Directives

#simtask all/0/1/2/3 Programming Editor Only
The task to follow during simulation when using parallel multi-tasking M2 parts.
If no task is specified task 0 will be automatically traced.
Multiple tasks can also be traced at the same time by using ‘all’
Examples: #simtask 1

#simtask all

#sim axe101/axe102/axe103/axe105/axe107/axe092 Programming Editor Only
Use a ‘simulated project kit’ on screen whist simulating
Example: #sim axe105

#simspeed value Programming Editor Only
Set the simulation delay (in milliseconds) between commands
Example: #simspeed 200

#terminal  off/300/600/1200/4800/9600/19200/38400 Programming Editor Only
Configure the Serial Terminal to open after a download (at selected baud rate)
Example: #terminal 4800

#gosubs 16/255 Programming Editor Only
Set the gosubs mode (16/255) on older 18X /  28X parts.
Example: #gosubs 16



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

10

10

www.picaxe.com

Variables - General
The RAM memory is used to store temporary data in variables as the program
runs. It loses all data when the power is removed or reset. There are four types of
RAM variables - general purpose, scratchpad, storage, and special function.

See the ‘let’ command for details about variable mathematics.

General Purpose Variables.
Bytes Bit Name Byte Name Word Name

X2 parts 56 bit0-31 b0-55 w0-27
X1 parts 28 bit0-31 b0-27 w0-13
M2 parts 28 bit0-31 b0-27 w0-13
Older parts 14 bit0-15 b0-13 w0-6

There are 14 (or more) general purpose byte variables. These byte variables are
labelled b0, b1 etc... Byte variables can store integer numbers between 0 and 255
inclusive. Byte variables cannot use negative numbers or fractions, and will
‘overflow’ without warning if you exceed the 0 or 255 boundary values (e.g.  254
+ 3 = 1)  (2 - 3 = 255)

However for larger numbers two byte variables can be combined to create a word
variable, which is capable of storing integer numbers between 0 and 65535
inclusive. These word variables are labelled w0, w1, w2 etc... and are constructed
as follows:

w0 =  b1 : b0
w1 =  b3 : b2
w2 =  b5 : b4
w3 =  b7 : b6
etc...

Therefore the most significant byte of w0 is b1, and the least significant byte of
w0 is b0.

In addition there are up to 32 individual bit variables (bit0, bit1 etc..). These bit
variables can be used where you just require a single bit (0 or 1) storage
capability. Bit variables are part of the lower value byte variables e.g.

b0 =  bit7: bit6: bit5: bit4: bit3: bit2: bit1: bit0
b1 =  bit15: bit14: bit13: bit12: bit11: bit10: bit9: bit8
etc...

You can use any word, byte or bit variable within any mathematical assignment
or command that supports variables. However take care that you do not
accidentally repeatedly use the same ‘byte’ or ‘bit’ variable that is being used as
part of a ‘word’ variable elsewhere.

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

11

11

www.picaxe.com

Indirect Addressing of  General Purpose Variables (M2/X2 parts)

On these parts there are up to 256 general purpose variables. The lower bytes,
known as  b0, b1, b2 etc upwards, can be used directly in any command (as with
all other PICAXE parts).  All 256 bytes (0-255) can also be addressed both
directly and indirectly.

To directly address the values the peek (read the byte) and poke (write the byte)
commands are used. To indirectly address the values the virtual variable name
‘@bptr’ is used. @bptr is a variable name that can be used in any command (ie as
where a ‘b1’ variable would be used). However the value of the variable is not
fixed (as with b1) , but will contain the current value of the byte currently
‘pointed to’ by the byte pointer (bptr).

The compiler also accepts ‘@bptrinc’ (post increment) and ‘@bptrdec’  (post
decrement) .

Every time the ‘@bptrinc’ variable name is used in a command the value of the
byte pointer is automatically incremented by one (ie bptr = bptr+1 occurs
automatically after the read/write of the value @bptr). This makes it ideal for
storage of a single dimensional array of data.

Variables - Storage
Storage variables are additional memory locations allocated for temporary storage
of byte data. They cannot be used in mathematical calculations, but can be used
to temporarily store byte values by use of the peek and poke commands.

The number of available storage locations varies depending on PICAXE type. The
following table gives the number of available byte variables with their addresses.
These addresses vary according to technical specifications of the microcontroller.
See the poke and peek command descriptions for more information.

08M2 99 28 to 127 ($1C to $7F)
18M2 227 28 to 255 ($1C to $FF)
18M2+, 14M2, 20M2 483 28 to 511  ($1C to $1FF)

28X2, 40X2 200 56 to 255 ($38 to $FF)
20X2 72 56 to 127 ($38 to $7F)
All X1 parts 95 80 to 126 ($50 to $7E), 192 to 239 ($C0 to $EF)
All X1 and X2 parts also have the additional scratchpad memory, see next page.

Older discontinued parts:
All M parts 48 80 to 127 ($50 to $7F)
All A parts 48 80 to 127 ($50 to $7F)
18X 96 80 to 127 ($50 to $7F), 192 to 239 ($C0 to $EF)
28X, 40X 112 80 to 127 ($50 to $7F), 192 to 255 ($C0 to $FF)
08 none



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

12

12

www.picaxe.com

Variables - Scratchpad
The scratchpad is a temporary memory area for storage of data such as arrays.
PICAXE-28X1, 40X1, 20X2 parts have 128 scratchpad bytes (0-127)
PICAXE-28X2, 40X2 parts have 1024 scratchpad bytes (0-1023)

To directly address the scratchpad values the get (read the byte) and put (write
the byte) commands are used.

To indirectly address the values the virtual variable name ‘@ptr’ is used. @ptr is a
variable name that can be used in any command (ie as where a ‘b1’ variable
would be used). However the value of the variable is not fixed (as with b1) , but
will contain the current value of the byte currently ‘pointed to’ by the pointer
(ptr).

The compiler also accepts ‘@ptrinc’ (post increment) and ‘@ptrdec’  (post
decrement) . Every time the ‘@ptrinc’ variable name is used in a command the
value of the scratchpad pointer is automatically incremented by one (ie ptr =
ptr+1 occurs automatically after the read/write of the value @ptr). This makes it
ideal for storage of a single dimensional array of data.

ptr = 1 ‘ reset scratchpad pointer to 1
serrxd @ptrinc,@ptrinc,@ptrinc,@ptrinc,@ptr

‘ serin 5 bytes to scratchpad addresses 1-5

ptr =  1 ‘ reset scratchpad pointer to 1
for b1 = 1 to 5
   sertxd (@ptrinc) ‘ re-transmit those 5 values
next b1

See the put and get commands for more details.

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))
))
))
))

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

13

13

www.picaxe.com

Variables - System
The M2 parts have 8 word variables which are reserved for system hardware use.
However if that piece of system hardware is not used within a program the
variables may be used as general purpose variables.

s_w0 task current task (during parallel processing)
s_w1 - reserved for future use
s_w2 - reserved for future use
s_w3 - reserved for future use
s_w4 - reserved for future use
s_w5 - reserved for future use
s_w6 - reserved for future use
s_w7 time elapsed time

The X1 and X2 parts have 8 word variables and 1 flags byte which are reserved for
system hardware use. However if that piece of system hardware is not used within
a program the variables may be used as general purpose variables.

s_w0 - reserved for future use
s_w1 - reserved for future use
s_w2 adcsteup2 high word of adcsetup (28X2 only)
s_w3 timer3 timer3 value (X2 only)
s_w4 compvalue comparator results (X2 only)
s_w5 hserptr hardware serin pointer
s_w6 hi2clast hardware hi2c last byte written (slave mode)
s_w7 timer timer value

The ‘flags’ byte variable is made up of 8 bit variables

flag0 hint0flag X2 only - interrupt on B.0
flag1 hint1flag X2 only - interrupt on B.1
flag2 hint2flag X2 only - interrupt on B.2
flag3 hintflag X2 only - interrupt on any of above
flag4 compflag X2 only - occurs on any comparator change
flag5 hserflag hserial background receive has occurred
flag6 hi2cflag hi2c write has occurred (slave mode)
flag7 toflag timer overflow flag

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))
))

'"#$
))

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

14

14

www.picaxe.com

Variables - Special function
The special function variables available for use depend on the PICAXE type:

PICAXE-08 / 08M / 08M2 Special Function Registers
pins = the input /  output port
dirs = the data direction register (sets whether pins are inputs or outputs)
infra = another term for variable b13, used within the 08M infrain2 command

Additional 08M2 Special Function Registers
bptr - the byte RAM pointer
@bptr - the byte RAM value pointed to by bptr
@bptrinc - the byte RAM value pointed to by bptr (post increment)
@bptrdec - the byte RAM value pointed to by bptr (post decrement)
time - the current time (seconds counter at 4MHz or 16MHz)
task - the current task

The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented.

pins =  x : x : x : pin4 : pin3 : pin2 : pin1 : x

The variable dirs is also broken down into individual bits.
Only valid bi-directional pin configuration bits are implemented.

dirs =  x : x : x : dir4 : x : dir2 : dir1 : x

!"
!"#

!"#$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

15

15

www.picaxe.com

PICAXE-14M2 / 18M2 / 20M2 Special Function Registers

pinsB - the portB input pins
outpinsB - the portB output pins
dirsB - the portB data direction register
pinsC - the portC input pins
outpinsC - the portC output pins
dirsC - the portC data direction register
bptr - the byte RAM pointer
@bptr - the byte RAM value pointed to by bptr
@bptrinc - the byte RAM value pointed to by bptr (post increment)
@bptrdec - the byte RAM value pointed to by bptr (post decrement)
time -  the current time (seconds counter at 4MHz or 16MHz)
task - the current task

When used on the left of an assignment ‘pins’ applies to the ‘output’ pins e.g.
let outpinsB = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input pins e.g.
let b1 = pinsB

will load b1 with the current state of the input pin on portB.

The variable pinsX is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented e.g.

pinsB = pinB.7 : pinB.6 : pinB.5 : pinB.4 :
pinB.3 : pinB.2 : pinB.1 : pinB.0

The variable outpinX is broken down into individual bit variables for writing
outputs directly. Only valid output pins are implemented. e.g.

outpinsB = outpinB.7 : outpinB.6  : outpinB.5 : outpinB.4 :
outpinB.3 : outpinB.2 : outpinB.1 : outpinB.0

The variable dirsX is broken down into individual bit variables for setting inputs/
outputs directly e.g.

dirsB = dirB.7 : dirB.6  : dirB.5 : dirB.4 :
dirB.3 : dirB.2 : dirB.1 : dirB.0

See the ‘Variables - General’ section for more information about
@bptr, @bptrinc, @bptrdec

))
'(#$

))
$!#$

))

))
))
))

'"#$
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

16

16

www.picaxe.com

PICAXE-14M/20M Special Function Registers (NOT 14M2 / 20M2)
pins = the input port when reading from the port
(out)pins = the output port when writing to the port
infra = a separate variable used within the infrain command
keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output
port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.
let pins = %11000000

will switch outputs 7,6  high and the others low.

When used on the right of an assignment pins applies to the input port e.g.
let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that
let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this
type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented.

14M pins =  x : x : x : pin4 : pin3 : pin2 : pin1 : pin0
20M pins =  pin7 to  pin0

The variable outpins is broken down into individual bit variables for writing
outputs directly. Only valid output pins are implemented.

14M outpins =  x : x : outpin5 : outpin4 : outpinx :out pin2 : outpin1 : outpin0
20M outpins =  outpin7  to  outpin0

'(#
))

$!#
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

17

17

www.picaxe.com

PICAXE-18 / 18A / 18M / 18X Special Function Registers (NOT 18M2)
pins = the input port when reading from the port
(out)pins = the output port when writing to the port
infra = a variable used within the infrain command (=B13 on 18M)
keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output
port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.
let pins = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.
let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that
let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this
type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented.

pins =  pin7 : pin6 : x : x : x : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing
outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6  : outpin5 : outpin4 :
outpin3 : out pin2 : outpin1 : outpin0

'"
'"%
'"#

))
'"&



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

18

18

www.picaxe.com

PICAXE-28A / 28X / 40X Special Function Registers

pins = the input port when reading from the port
(out)pins = the output port when writing to the port
infra = a separate variable used within the infrain command
keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output
port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.
let pins = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.
let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that
let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this
type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented.

pins =  pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing
outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6  : outpin5 : outpin4 :
outpin3 : out pin2 : outpin1 : outpin0

$"%
$"&
))
))

(!&
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

19

19

www.picaxe.com

PICAXE-28X1 / 40X1 Special Function Registers

pins = the input port when reading from the port
outpins = the output port when writing to the port
ptr = the scratchpad pointer
@ptr = the scratchpad value pointed to by ptr
@ptrinc = the scratchpad value pointed to by ptr (post increment)
@ptrdec = the scratchpad value pointed to by ptr (post decrement)
flags = system flags

When used on the left of an assignment ‘outpins’ applies to the ‘output’ port e.g.
let outpins = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input port e.g.
let b1 = pins

will load b1 with the current state of the input port.

The variable pins is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented.

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing
outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6  : outpin5 : outpin4 :
outpin3 : out pin2 : outpin1 : outpin0

The scratchpad pointer variable is broken down into individual bit variables:
ptr = ptr7 : ptr6 : ptr5 : ptr4 : ptr3 : ptr2 : ptr1 : ptr0

See the ‘Variables - Scratchpad’ section for more information about
@ptr, @ptrinc, @ptrdec

The system ‘flags’ byte is broken down into individual bit variables. If the special
hardware feature of the flag is not used in a  program the individual flag may be
freely used as a user defined bit flag.

Name Special Special function
flag0 - reserved for future use
flag1 - reserved for future use
flag2 - reserved for future use
flag3 - reserved for future use
flag4 - reserved for future use
flag5 hserflag hserial background receive has occurred
flag6 hi2cflag hi2c write has occurred (slave mode)
flag7 toflag timer overflow flag

))
))

$"&'
))

))
(!&'

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

20

20

www.picaxe.com

PICAXE-20X2 / 28X2 / 40X2 Special Function Registers

pinsA -the portA input pins
dirsA - the portA data direction register
pinsB - the portB input pins
dirsB - the portB data direction register
pinsC - the portC input pins
dirsC - the portC data direction register
pinsD - the portD input pins
dirsD - the portD data direction register
bptr - the byte RAM pointer
@bptr - the byte RAM value pointed to by bptr
@bptrinc - the byte RAM value pointed to by bptr (post increment)
@bptrdec - the byte RAM value pointed to by bptr (post decrement)
ptr - the scratchpad pointer (ptrh : ptrl)
@ptr - the scratchpad value pointed to by ptr
@ptrinc - the scratchpad value pointed to by ptr (post increment)
@ptrdec - the scratchpad value pointed to by ptr (post decrement)
flags - system flags

When used on the left of an assignment ‘pins’ applies to the ‘output’ pins e.g.
let pinsB = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input pins e.g.
let b1 = pinsB

will load b1 with the current state of the input pin on portB.

The variable pinsX is broken down into individual bit variables for reading from
individual inputs with an if...then command. Only valid input pins are
implemented e.g.

pinsB = pinB.7 : pinB.6 : pinB.5 : pinB.4 :
pinB.3 : pinB.2 : pinB.1 : pinB.0

The variable outpinX is broken down into individual bit variables for writing
outputs directly. Only valid output pins are implemented. e.g.

outpinsB = outpinB.7 : outpinB.6  : outpinB.5 : outpinB.4 :
outpinB.3 : outpinB.2 : outpinB.1 : outpinB.0

The variable dirsX is broken down into individual bit variables for setting inputs/
outputs directly e.g.

dirsB = dirB.7 : dirB.6  : dirB.5 : dirB.4 :
dirB.3 : dirB.2 : dirB.1 : dirB.0

The byte scratchpad pointer variable is broken down into individual bit variables:
bptrl = bptr7 : bptr6 : bptr5 : bptr4 : bptr3 : bptr2 : bptr1 : bptr0

See the ‘Variables - General’ section for more information about
@bptr, @bptrinc, @bptrdec

))
))
))

$"&$

))
))

(!&$

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

21

21

www.picaxe.com

The scratchpad pointer variable is broken down into individual bit variables:
ptrl = ptr7 : ptr6 : ptr5 : ptr4 : ptr3 : ptr2 : ptr1 : ptr0
ptrh = xxxx : xxxx : xxxx : xxxx : xxxx : xxxx : ptr9 : ptr8

See the ‘Variables - Scratchpad’ section for more information about
@ptr, @ptrinc, @ptrdec

The system ‘flags’ byte is broken down into individual bit variables. If the special
hardware feature of the flag is not used in a  program the individual flag may be
freely used as a user defined bit flag.

Name Special Special function
flag0 hint0flag hardware interrupt on pin INT0
flag1 hint1flag hardware interrupt on pin INT1
flag2 hint2flag hardware interrupt on pin INT2
flag3 hintflag hardware interrupt on any pin 0,1,2
flag4 compflag hardware interrupt on comparator
flag5 hserflag hserial background receive has occurred
flag6 hi2cflag hi2c write has occurred (slave mode)
flag7 toflag timer overflow flag



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

22

22

www.picaxe.com

Variables - Mathematics
The PICAXE microcontrollers support word (16 bit) mathematics. Valid integers
are 0 to 65535. All internal mathematics is 16 bit, however when, for instance,
the output target is a  byte (8 bit) variable (0-255), if the result of the internal
calculation is greater than 255 overflow will occur without warning.

Maths is performed strictly from left to right. Unlike some computers and
calculators, the PICAXE does not give * and /  priority over + and -.

Therefore 3+4x5 is calculated as
3+4=7
7x5=35

The microcontroller does not support fractions or negative numbers.  However it
is sometimes possible to rewrite equations to use integers instead of fractions, e.g.

let w1 = w2 /  5.7
is not valid, but

let w1 = w2 *  10 /  57
is mathematically equal and valid.

The mathematical functions supported by all parts are:
+ ; add
- ; subtract
* ; multiply (returns low word of result)
** ; multiply (returns high word of result)
/ ; divide (returns quotient)
/ / % ; modulus divide (returns remainder)
MAX ; limit value to a maximum value
MIN ; limit value to a minimum value
AND & ; bitwise AND
OR | ; bitwise OR (typed as SHIFT + \   on UK keyboard)
XOR ^ ; bitwise XOR (typed as SHIFT + 6 on UK keyboard)
NAND ; bitwise NAND
NOR ; bitwise NOR
XNOR ^/ ; bitwise XNOR
ANDNOT &/ ; bitwise AND NOT (NB this is not the same as NAND)
ORNOT | / ; bitwise OR NOT (NB this is not the same as NOR)

The X1 and X2 parts also support
<< ; shift left
>> ; shift right
*/ ; multiply (returns middle word of result)
DIG ; return the digit value
REV ; reverse a number of bits

All mathematics is performed strictly from left to right.

!"
!"#

!"#$

'"
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

23

23

www.picaxe.com

On X1 and X2 parts it is possible to enclose part equations in brackets e.g.
let w1 = w2 /  (b5 + 2)

On all other chips it is not possible to enclose part equations in brackets e.g.
let w1 = w2 /  (b5 + 2)

is not valid. This would need to be entered in equivalent form e.g.
let w1 = b5 + 2
let w1 = w2 /  w1

Further Information:

Addition and Subtraction
The addition (+) and subtraction (-) commands work as expected. Note that the
variables will overflow without warning if the maximum or minimum value is
exceeded (0-255 for bytes variables, 0-65535 for word variables).

Multiplication and Division
When multiplying two 16 bit word numbers the result is a 32 bit (double word)
number. The multiplication (*) command returns the low word of a word*word
calculation.  The ** command returns the high word of the calculation and */
returns the middle word.

Therefore in normal maths $aabb x $ccdd = $eeffgghh
In PICAXE maths

$aabb * $ccdd = $gghh
$aabb ** $ccdd = $eeff

The X1 and X2 parts also support return of the middle word
$aabb */  $ccdd = $ffgg

The division (/) command returns the quotient (whole number) word of a
word*word division.  The modulus (/ /  or %) command returns the remainder of
the calculation.

Max and Min
The MAX command is a limiting factor, which ensures that a value never exceeds
a preset value. In this example the value never exceeds 50. When the result of the
multiplication exceeds 50 the max command limits the value to 50.

let b1 = b2 *  10 MAX 50
if b2 = 3 then b1 = 30
if b2 = 4 then b1 = 40
if b2 = 5 then b1 = 50
if b2 = 6 then b1 = 50 ‘ limited to 50

The MIN command is a similar limiting factor, which ensures that a value is never
less than a preset value. In this example the value is never less than 50. When the
result of the division is less than 50 the min command limits the value to 50.

let b1 = 100 /  b2 MIN 50
if b2 = 1 then b1 = 100
if b2 = 2 then b1 = 50
if b2 = 3 then b1 = 50 ‘ limited to 50



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

24

24

www.picaxe.com

AND, OR, XOR, NAND, NOR, XNOR, ANDNOT, ORNOT
The AND, OR, XOR, NAND, NOR, XNOR commands function bitwise on each
bit in the variables. ANDNOT and ORNOT mean, for example ‘A AND the NOT
of B’ etc. This is not the same as NOT (A AND B), as with the traditional NAND
command.

A common use of the AND (&) command is to mask individual bits:
let b1 = pins & %00000110
This masks inputs 1 and 2, so the variable only contains the data of these two
inputs.

<< , >>
Shift left (or shift right) have the same effect as multiplying (or dividing) by 2. All
bits in the word are shifted left (or right) a number of times. The bit that ‘falls off’
the left (or right) side of the word is lost.
let b1 = %00000110 << 2

DIG
The DIG (digit) command returns the decimal value of a specified digit (0-4,
right to left) of a 16 bit number. Therefore digit 0 of ‘67890’ is 0 and digit 3 is ‘7’.
To return the ASCII value of the digit simply add string “0” to the digit value e.g.
let b1 = b2 DIG 0 + “0”
See also the BINTOASCII and BCDTOASCII commands.

REV
The REV (reverse) command reverses the order of the specified number of bits of
a 16 bit number.  Therefore to reverse the 8 bits of %10110000  (to %00001101)
the command would be
let b1 = %10110000 REV 8



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

25

25

www.picaxe.com

Variables - Unary Mathematics
All parts support the NOT unary command e.g.

let b1 = NOT pins
All parts support the unary minus command e.g.

let b1 =  -b1

The X1 and X2 parts also support these unary commands

SIN ; sine of  angle  (0 to 65535) in degrees
COS ; cosine of angle in degrees
SQR ; square root
INV ; invert /  complement
NCD ; encoder (2n power encoder)
DCD ; decoder (2n  power decoder)
BINTOBCD ; convert binary value to BCD
BCDTOBIN ; convert BCD value to binary
NOB ; count number of set bits (X2 only)
ATAN ; calculate the arctan of a value (result 0-45 degrees) (X2 only)

Unary commands must be the first command on a program line. However they
may be followed by additional mathematical commands eg.

let b1 = sin 30 + 5 is valid
let b1 = 5 +  sin 30 is not valid as the unary command is not first

Further Information:

NOT
The NOT function inverts a value.
e.g let b1 = NOT %01110000 (answer b1 = %10001111)

SIN and COS
The sin function returns a number equivalent to the sine of the value in degrees.
The system uses a 45 step lookup table in each quadrant, giving a very fast, and
reasonably accurate, result.

The sine function only works on positive whole integers. However as all sin and
cos values repeat every 360 degrees, simply add 360 to make a negative value
positive.  e.g. sin (-30) is the same as sin (330) (-30 + 360)

As the real sine value is always a value between 1 and -1, a coding system is used
to increase the accuracy when working with PICAXE whole integers. The value
returned by the sin function is actually 100 x the real sine value. Therefore in
normal mathematics sin 30 = 0.5. In PICAXE mathematics this is returned as 50
(100*0.5). This coding method provides a sine function accuracy equivalent to
two decimal places.
e.g let b1 = sin 30 (answer b1 = 50)

Negative numbers are indicated by setting bit 7 of the returned byte.  This has the
effect of making negative values appear as 128 + the expected value.
e.g let b1 = sin 210 (answer b1 = 128+50 = 178)

))
))
))

))
))

))
))
))
))
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

26

26

www.picaxe.com

The cos function operates in an identical manner.

SQR
The square root function returns the whole integer square root, according to 10
iterations of a N-R formula, using a seed of value/2. This formula provides a fast
and accurate result. Note that as the PICAXE chip only operates with whole
integers, the result will be rounded down to the nearest whole value.
e.g let b1 = sqr 64 (answer b1 = 8)

INV (~)
The invert function complements each bit in the value (ie each 0 is changed to a
1 and each 1 is changed to 0).
e.g let b1 = ~ %10101010 (answer b1 = %01010101)

NCD
The encoder function takes a value and finds the position of the highest bit in
that number that is a 1. Therefore the result will be a number 1 to 16, when bit15
is 1 the answer is 16, when only bit0 is 1 the value is 1. If the value is 0, the result
will be 0.
e.g let b1 = ncd %00000100 (answer b1 = 3)

DCD
The decoder function takes a value between 0 and 15 and returns a 16 bit
number, with that value bit set to 1.
e.g let b1 = dcd 3 (answer b1 = %00001000)

let w1 = dcd 8 (answer w1 = %100000000)

BINTOBCD
The bintobcd function converts a value to binary coded decimal. Note that the
maximum value that can be returned within a byte is 99, or 9999 within a word.
e.g let b1 = bintobcd 99 (answer b1 = %10011001=$99)

BCDTOBIN
The bcdtobin function converts a binary coded decimal value to normal binary.
e.g let b1 = bcdtobin $99 (answer b1 = 99)

NOB (X2 only)
The nob function counts the number of bits that are set.
e.g let b1 = NOB %10100111 (answer b1 = 5)

ATAN (X2 only)
The atan function provides an arctan function for angles between 0 and 45
degrees. This is useful, for example, for calculating robot direction paths.

As the arctan input is always a value between 0 and 1, a coding system is used to
increase the accuracy when working with PICAXE whole integers. The value used
by the atan function is actually 100 x the real atan value (e.g. 0.39 = 39)
e.g let b1 = atan 100 (answer b1 = 45)



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

27

27

www.picaxe.com

Input /  Output Pin Naming Conventions
The first PICAXE chips had a maximum of 8 input and 8 output pins, so there
was no need for a port naming scheme, as there was only one default input port
and one default output port for each chip.

Therefore input and outputs pins were just referred to by their pin number

e.g. Output commands Input Commands
high 1 count 2, 100, w1
sound 2, (50,50) pulsin 1, 1, w1
serout 3, N2400, (b1) serin 0, N2400, b3

However on later M2 and X2 PICAXE parts more flexibility was added by
allowing almost all of the pins to be configured as inputs or outputs as desired.
This creates more than 8 inputs or outputs and an amended naming scheme is
therefore required. Therefore the pins on these parts are referred to by the new
PORT.PIN notation. Up to 4 ports (A, B, C, D) are available, depending on chip
pin count.

e.g. Output commands Input Commands
high B.1 count A.2, 100, w1
sound C.2, (50,50) pulsin B.1, 1, w1
serout A.3, N2400, (b1) serin C.0, N2400, b3

In the case of if...then statements which check the status of the input pin variable,
the naming convention of these input pin variables have changed in a similar
style from

if pin1 =1 then...
to

if pinC.1 = 1 then...

The name of the input pins byte for each port is changed from
pins

to
pinsA, pinsB, pinsC, pinsD

The name of the output pins byte for each port is changed from
outpins

to
outpinsA, outpinsB, outpinsC, outpinsD

The name of the data direction register for each port is changed from
dirs

to
dirsA, dirsB, dirsC, dirsD

This manual generally uses the newer PORT.PIN format in the examples unless an
example is specifically for an older part.

Please see the pinout diagrams (in part 1 of the PICAXE manual) for the chip you
are using. Note that input /  output pin numbers used within commands are not
the same as the physical leg numbers!

!"
!"#

!"#$

'"
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

28

28

www.picaxe.com

adcconfig
Syntax:
adcconfig config
- config is a constant/variable specifying the adc configuration

Function:
Configure the ADC reference voltages

Information:
The default Vref+signal for the ADC is the power supply (V+) and the default
Vref- signal is 0V, so the analogue voltage range is the same as the power supply
to the PICAXE chip.  However, if desired, the Vref signals can be altered to
external pins instead by using adcconfig command.

PICAXE  X2 PARTS

Bit 3,2 = 11 do not use
= 10 VRef+ is FVR (see FVRsetup command)
= 01 VRef+ is external pin
= 00 VRef+ is V+ (power supply)

Bit 1,0 = 11 do not use
= 10 do not use
= 01 VRef- is external pin
= 00 VRef- is 0V

PICAXE  M2 PARTS

Bit 2 = 1 VRef- is external pin (if available)
= 0 VRef- is 0V

Bit 1,0 = 11 VRef+ is FVR (see FVRsetup command)
= 10 VRef+ is external pin (if available)
= 01 do not use
= 00 VRef+ is V+ (power supply)

PICAXE External Vref+ pin External Vref- Pin
08M2 C.1 n/a
14M2 B.1 n/a
18M2 n/a C.2
20M2 B.0 n/a
28X2 A.3 A.2
40X2 A.3 A.2

Example (18M2):
fvrsetup FVR2048 ; set FVR as 2.048V
adcconfig %011 ; set FVR as ADC Vref+, 0V Vref-

))
))

!"#$

))
))
))

'"#$
))

))
'(#$

))
$!#$

))

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

29

29

www.picaxe.com

))
))

!"#$

))
))
))

'"#$
))

))
))
))

$"&$

))
))

(!&$

))
'(#$

adcsetup
Syntax:
{let} adcsetup = channels
- Channels is the number /  mask of ADC to enable.

Function:
On X2 parts it is necessary to configure the ADC pins for use with the ‘readadc/
readadc10’ commands. On all other parts this configuration is automatic.

On M2 parts the appropriate adcsetup bit is set automatically by the ‘readadc/
readadc10/touch’ command. Therefore on these parts the only real use of
adcsetup is to change a pin back from analogue to digital setup.

Note that adcsetup is technically a variable (word length), not a command, and
so can be used in ‘let’ assignments and mathematics (e.g bit masking using & ).

Using adcsetup does NOT actually ‘connect’ the internal adc to the input pin - the
adc is always connected! Using adcsetup just disconnects the digital input buffer,
so that the internal digital input circuitry does not effect the analogue reading.
Therefore readadc commands may still work without correctly configuring
adcsetup, however the analogue readings may not be as reliable as expected.

Due to advances in microcontroller technology the use of ‘adcsetup’ varies slightly
according to the part in use. Please ensure you study the correct page for the part you are
using. There are separate pages for:

PICAXE-28X2 (PIC18F25K22)
PICAXE-40X2 (PIC18F45K22)
PICAXE-28X2-5V (PIC18F2520)
PICAXE-40X2-5V (PIC18F4520)
PICAXE-28X2-3V (PIC18F25K20)
PICAXE-40X2-3V (PIC18F45K20)
PICAXE-20X2 (PIC18F14K22)
Any M2 part (08M2, 14M2, 18M2, 20M2)

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

30

30

www.picaxe.com

PICAXE-28X2 (PIC18F25K22) (not older -5V or -3V versions)
PICAXE-40X2 (PIC18F45K22) (not older -5V or -3V versions)

Individual Pin Masking

With individual pin masking any pin can be individually controlled. Setting the
bit disconnects the corresponding digital input to dedicate to analogue operation.

Note that with these parts the appropriate bit is always automatically set upon
any readadc /  readadc10 /  touch /  touch16 command. Therefore the only real use
of this command is to turn an analogue pin back into a digital pin by clearing the
appropriate bit.

adcsetup variable

Bit 0 - ADC0 Bit 8 - ADC8
Bit 1 - ADC1 Bit 9 - ADC9
Bit 2 - ADC2 Bit 10 - ADC10
Bit 3 - ADC3 Bit 11 - ADC11
Bit 4 - ADC4 Bit 12 - ADC12
Bit 5 - ADC5 Bit 13 - ADC13
Bit 6 - ADC6 Bit 14 - ADC14
Bit 7 - ADC7 Bit 15 - not used

adcsetup2 variable

Bit 0 - ADC16 Bit 8 - ADC24
Bit 1 - ADC17 Bit 9 - ADC25
Bit 2 - ADC18 Bit 10 - ADC26
Bit 3 - ADC19 Bit 11 - ADC27
Bit 4 - ADC20 Bit 12 - not used
Bit 5 - ADC21 Bit 13 - not used
Bit 6 - ADC22 Bit 14 - not used
Bit 7 - ADC23 Bit 15 -  not used

Voltage Reference
The default Vref+signal is the power supply (V+) and Vref- signal is 0V, so the
analogue voltage range is the same as the power supply to the PICAXE chip.
However, if desired, the Vref signals can be altered to external pins instead by
using the adcconfig command.

Example:
let adcsetup = %0000000000001111 ; set ADC0,1,2,3



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

31

31

www.picaxe.com

PICAXE-28X2 -5V  (PIC18F2520)
PICAXE-40X2 -5V  (PIC18F4520)

Sequential Masking
With sequential masking pins can only be configured for analogue readings if:

- the internal pin of the microcontroller supports analogue (see pinout)
- the pin is already configured as an input
- all ADC with a lower number are also enabled

With the sequential system , for instance, it is only possible to enable ADC3 if
ADC0-2 are also enabled. This is an internal design restraint of the PICmicro, not
the PICAXE bootstrap. The number of channels and active ADC pins are shown
below.

channels 28X2-5V 40X2-5V
0 none none
1 ADC0 ADC0
2 ADC0,1 ADC0,1
3 ADC0,1,2 ADC0,1,2
4 ADC0,1,2,3 ADC0,1,2,3
5 ADC0,1,2,3,8 ADC0,1,2,3,5
6 ADC0,1,2,3,8,9 ADC0,1,2,3,5,6
7 ADC0,1,2,3,8,9,10 ADC0,1,2,3,5,6,7
8 ADC0,1,2,3,8,9,10,11 ADC0,1,2,3,5,6,7,8
9 ADC0,1,2,3,8,9,10,11,12 ADC0,1,2,3,5,6,7,8,9
10 - ADC0,1,2,3,5,6,7,8,9,10
11 - ADC0,1,2,3,5,6,7,8,9,10,11
12 - ADC0,1,2,3,5,6,7,8,9,10,11,12

ADC4,5,6,7 do not exist on the 28X2-5V parts.
ADC4 does not exist on the 40X2-5V parts.

Voltage Reference
The default Vref+signal is the power supply (V+) and Vref- signal is 0V, so the
analogue voltage range is the same as the power supply to the PICAXE chip.
However, if desired, the Vref signals can be altered to external pins instead by
setting bits 15 and 14 of adcsetup.

Bit 15 = 1 VRef- is ADC2
= 0 VRef- is 0V

Bit 14 = 1 VRef+ is ADC3
= 0 VRef+ is V+ (power supply)

Example:
let adcsetup = 4 ; set ADC0,1,2,3 as analogue



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

32

32

www.picaxe.com

PICAXE-20X2 (PIC18F14K22)
PICAXE-28X2-3V (PIC18F25K20)
PICAXE-40X2-3V (PIC18F45K20)

Individual Pin Masking

With individual pin masking any pin can be individually controlled. Setting the
bit disconnects the corresponding digital input to dedicate to analogue operation.

Bit 0 - ADC0 Bit 8 - ADC8
Bit 1 - ADC1 Bit 9 - ADC9
Bit 2 - ADC2 Bit 10 - ADC10
Bit 3 - ADC3 Bit 11 - ADC11
Bit 4 - ADC4 Bit 12 - ADC12
Bit 5 - ADC5 Bit 13 -  not used
Bit 6 - ADC6 Bit 14 - VRef+
Bit 7 - ADC7 Bit 15 -  VRef- (not available on 20X2)

Voltage Reference
The default Vref+signal is the power supply (V+) and Vref- signal is 0V, so the
analogue voltage range is the same as the power supply to the PICAXE chip.
However, if desired, the Vref signals can be altered to external pins instead by
setting bits 15 and 14 of adcsetup.

Bit 15 = 1 VRef- is ADC2(28X2, 40X2) (not available on 20X2)
= 0 VRef- is 0V

Bit 14 = 1 VRef+ ADC3 (28X2, 40X2) or ADC1 (20X2)
= 0 VRef+ is V+ (power supply)

Example:
let adcsetup = %0000000000001111 ; set ADC0,1,2,3



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

33

33

www.picaxe.com

ALL M2 series parts

Individual Pin Masking

With individual pin masking any pin can be individually controlled. Setting the
bit disconnects the corresponding digital input to dedicate to analogue operation.

Note that with M2 parts the appropriate bit is always automatically set upon any
readadc /  readadc10 /  touch command. Therefore the only real practical use of
this command is to turn an analogue pin back into a digital pin by clearing the
appropriate bit.

08M2
Bit 1 - ADC on C.1
Bit 2 - ADC on C.2
Bit 4 - ADC on C.4

14M2, 18M2, 20M2
Bit 0 - ADC on B.0 Bit 8 - ADC on C.0
Bit 1 - ADC on B.1 Bit 9 - ADC on C.1
Bit 2 - ADC on B.2 Bit 10 - ADC on C.2
Bit 3 - ADC on B.3 Bit 11 - ADC on C.3
Bit 4 - ADC on B.4 Bit 12 - ADC on C.4
Bit 5 - ADC on B.5 Bit 13 -  ADC on C.5
Bit 6 - ADC on B.6 Bit 14 -  ADC on C.6
Bit 7 - ADC on B.7 Bit 15 -  ADC on C.7

Voltage Reference
The default Vref+signal is the power supply (V+) and Vref- signal is 0V, so the
analogue voltage range is the same as the power supply to the PICAXE chip.
However, if desired, the Vref signals can be altered to external pins instead by use
of the ‘adcconfig’ command.

Example:
let adcsetup = %00001111 ; set ADC on B.0-B.3



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

34

34

www.picaxe.com

backward
Syntax:
BACKWARD motor
- Motor is the motor name A or B.

Function:
Make a motor output turn backwards

Information:
This is a ‘pseudo’ command designed for use by younger students with pre-
assembled classroom models. It is actually equivalent to ‘low 4 : high 5’ (motor
A) or ‘low 6: high 7’ (motor B). This command is not normally used outside of
the classroom.

Example:

main: forward A ; motor a on forwards
wait 5 ; wait 5 seconds
backward A ; motor a on backwards
wait 5 ; wait 5 seconds
halt A ; motor A stop
wait 5 ; wait 5 seconds
goto main ; loop back to start

))
))
))

'"
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

))
))

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

35

35

www.picaxe.com

!"
!"#

!"#$

'"
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

bcdtoascii
Syntax:
BCDTOASCII variable, tens, units
BCDTOASCII wordvariable, thousands, hundreds, tens, units

-  Variable contains the value (0-99) or wordvariable (0-9999)
- Thousands receives the ASCII value (“0” to “9”)
- Hundreds receives the ASCII value (“0” to “9”)
- Tens receives the ASCII value (“0” to “9”)
- Units receives the ASCII value (“0” to “9”)

Function:
Convert a BCD value into separate ASCII bytes.

Information:
This is a ‘pseudo’ command designed to simplify the conversion of byte or word
BCD values into ASCII. Note that the maximum valid value for a BCD value is 99
(byte) or 9999 (word).

Example:

main: inc b1
bcdtoascii b1,b2,b3 ; convert to ascii
debug ; debug values for testing
goto main ; loop back to start

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

36

36

www.picaxe.com

!"
!"#

!"#$

'"
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

bintoascii
Syntax:
BINTOASCII variable, hundreds, tens, units
BINTOASCII wordvariable, tenthousands, thousands, hundreds, tens, units

-  Variable contains the value (0-255) or wordvariable (0-65535)
- TenThousands receives the ASCII value (“0” to “9”)
- Thousands receives the ASCII value (“0” to “9”)
- Hundreds receives the ASCII value (“0” to “9”)
- Tens receives the ASCII value (“0” to “9”)
- Units receives the ASCII value (“0” to “9”)

Function:
Convert a binary value into separate ASCII bytes.

Information:
This is a ‘pseudo’ command designed to simplify the conversion of byte or word
binary values into ASCII.

Example:

main: inc b1
bintoascii b1,b2,b3,b4 ; convert b1 to ascii
debug ; debug values for testing
goto main ; loop back to start

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

37

37

www.picaxe.com

booti2c
Syntax:
booti2c slot
- slot is the external EEPROM address and slot number (4 to 7)

Function:
On X2 parts it is possible to update the internal program by copying a new
program from an external i2c EEPROM.

Information:
The booti2c command can be used to copy a program from an external 24LC128
memory slot into an internal memory slot. The booti2c command is only
processed if the program revision number (set by the #revision directive during
download) in the 24LC128 memory slot is greater than the revision number
currently in the internal program slot. This means that the program copying will
only occur once after a new 24LC128 is fitted.

If an EEPROM is not correctly connected, the data returned from the circuit will
typically be 0 or 255, therefore these two values are not valid #revision numbers
and are ignored.

The booti2c command parameter takes the format of a single data byte, which is
the external i2c address and slot number.

Bit7 24LC128 A2
Bit6 24LC128 A1
Bit5 24LC128 A0
Bit4 reserved for future use
Bit3 reserved for future use
Bit2 must be set to 1 for i2c use
Bit1, 0 slot number

The lower 2 bits of the slot number (bits 1,0) is copied into the same position
within the internal program memory. The data memory is left unchanged. The i2c
to internal program copying of slots is therefore mapped as follows (when using
an EEPROM with address 0):

i2c slot      internal memory slot
   4 (%00000100) -> 0 (%00000000)
   5 (%00000101) -> 1 (%00000001)
   6 (%00000110) -> 2 (%00000010)
   7 (%00000111) -> 3 (%00000011)

After a program has been copied the chip automatically resets (so the program in
slot 0 starts running).

Therefore if you wish to program an EEPROM with a program that is eventually
targeted for updating internal program slot 2 on a different chip, a ‘#slot 6’
directive should be included upon the computer download into the EEPROM.
The EEPROM can then be transferred across and connected to the target system.

))
))
))

))
))
))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

38

38

www.picaxe.com

The type of EEPROM chip must be a device that has a minimum of a 64 byte
page buffer. Therefore the EEPROM recommended is a Microchip brand 24LC128
(or 24LC256 or 24LC512). Non-Microchip brands may not operate correctly if
they have different timing specifications or page buffer capacity.

Example:

booti2c 1 ; check EEPROM & update slot 1 if required



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

39

39

www.picaxe.com

branch
Syntax:
BRANCH  offset,(address0,address1...addressN)
- Offset is a variable/constant which specifies which Address# to use (0-N).
- Addresses are labels which specify where to go.

Function:
Branch to address specified by offset (if in range).

Information:
This command allows a jump to different program positions depending on the
value of the variable ‘offset’. If offset is value 0, the program flow will jump to
address0, if offset is value 1 program flow will jump to address1 etc.
If offset is larger than the number of addresses the whole command is ignored
and the program continues at the next line.

This command is identical in operation to on...goto

Example:

reset1:let b1 = 0
low B.0
low B.1
low B.2
low B.3

main: inc b1
if b1 > 4 then reset1
branch b1,(btn0,btn1, btn2, btn3, btn4)

btn0: high B.0
goto main

btn1: high B.1
goto main

btn2: high B.2
goto main

btn3: high B.3
goto main

btn4: high B.4
goto main

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

40

40

www.picaxe.com

button
Syntax:
BUTTON  pin,downstate,delay,rate,bytevariable,targetstate,address
- Pin is a variable/constant which specifies the i/o pin to use.
- Downstate is a variable/constant (0 or 1) which specifies which logical state is

read when the button is pressed. If the input is active high, at V+ when the
button is pressed (e.g. a 10k pull down resistor with switch wired to V+)  then
enter 1 here. If the input is active low, at 0V when the button is pressed (e.g. a
10k pull up resistor with switch wired to 0V) then enter 0.

- Delay is a variable/constant (1-254, 0 or 255) which is a counter which specifies
the number of loops to complete before the auto repeat feature starts if
BUTTON is used within a loop.   If the value is between 1 and 254 this value
will be loaded into the bytevariable when the switch becomes active, and then
decremented on every loop whilst the button is still active.  Only when the
counter  reaches 0 will the address be processed for the second time. This
gives an initial delay before the auto-repeat starts. A value of 255 disables the
auto-repeat feature. The button will still be debounced, so use the value 255
when you want a simple debounce feature without auto repeat. A value of 0
disables both the debounce and auto-repeat features. Therefore with delay=0
the command will operate as a simple ‘if pin = targetstate then’  command.

- Rate is a variable/constant (0-255) which specifies the auto-repeat rate in
BUTTON cycles. After the initial delay this value will be loaded into the
bytevariable, and then decremented on every loop whilst the button is still
active.  Only when the value reaches 0 will the address be processed again.
This gives the delay between every auto-repeat cycle.

- Bytevariable is a variable which is used as the workspace for the auto repeat loop
counters. It must be cleared to 0 before being used by BUTTON for the first
time (before the loop that BUTTON is used within.)

- Targetstate is a variable/constant (0 or 1) which specifies what state (0=not
pressed, 1=pressed) the button should be in for the branch (goto) to address
to occur. This value can be used to ‘invert’ the operation of the address jump,
jumping when either pushed (1) or when not pushed (0).

- Address is a label which specifies where to go if the button is in the target state.

Function:
Debounce button, auto-repeat, and branch if button is in target state.

Information:
When mechanical switches are activated the metal ‘contacts’ do not actually close
in one smooth action, but ‘bounce’ against each other a number of times before
settling. This can cause microcontrollers to register multiple ‘hits’ with a single
physical action, as the microcontroller can register each bounce as a new hit.
One simple way of overcoming this is to simply put a small pause (e.g. pause 10)
within the program, this gives time for the switch to settle.

Alternately the button command can be used to overcome these issues. When the
button command is executed, the microcontroller looks to see if the ‘downstate’
is matched. If this is true the switch is debounced, and then program flow jumps
to ‘address’ if ‘targetstate’ = 1. If targetstate = ‘0’ the program continues.

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

41

41

www.picaxe.com

If the button command is within a loop, the next time the command is executed
‘downstate’ is once again checked. If the condition is still true, the variable
‘bytevariable’ is loaded with the ‘delay’ value. On each subsequent loop where the
condition is still true bytevariable is decremented until it reaches 0.  At this point
a second jump to ‘address’ is made if ‘targetstate’ = 1.  Bytevariable is then reset to
the ‘rate’ value and the whole process then repeats, as once again on each loop
bytevariable is decremented until it reaches 0, and at 0 another jump to ‘address’
is made if ‘targetstate’ = 1.

This gives action like a computer keyboard key press - send one press, wait for
‘delay’ number of loops, then send multiple presses at time interval ‘rate’.
Note that button should be used within a loop. It does not pause program flow
and so only checks the input switch condition as program flow passes through
the command.

Example:

init: b2 = 0 ; reset targetbyte
; before the loop

; input C.0, active high, jump to ‘pushed’ label when = 1

myloop: button C.0,1,200,100,b2,1,pushed
; jump to cont when C.0 = 1

low B.7 ; output off
pause 10 ; loop delay time
goto myloop

pushed: high B.7 ; output on
sertxd (“PUSH”) ; send push message
goto myloop



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

42

42

www.picaxe.com

))
))
))

'"#$
))

))
))

!"#$

calibadc (calibadc10)
Syntax:
CALIBADC variable
CALIBADC10 wordvariable
- variable receives the adc reading

Function:
Calibrate the microcontrollers internal ADC by measuring a fixed internal fixed
voltage reference.

0.6V 20M,  28X1, 40X1
1.2V 28X2-3V, 28X2-3V
1.024V All other parts that support this command

Note that this command is not available on 28X2-5V/40X2-5V

Information:
The reference voltage used by the PICAXE microcontrollers ADC reading
(readadc/ readadc10) commands is the supply voltage. In the case of a battery
powered system, this supply voltage can change over time (as the battery runs
down), resulting in a varying ADC reading for the same voltage input.

The calibadc/calibadc10 commands can help overcome this issue by providing
the ADC reading of a nominal internal  reference. Therefore by periodically using
the calibadc command you can mathematically calibrate/compensate the readadc
command for changes in supply voltage.

calibadc can be considered as ‘carry out a  readadc on a fixed reference’

Note that the voltage specified is a nominal voltage only and will vary with each
part. Microchip datasheet AN1072 provides further details on how to software
calibrate and use this advanced feature.

A formula to use the 0.6V value is
Vsupply = step * 6 /  calib /  10

where step = 255 (calib) or 1023 (calibadc10) and calib is the value returned
from the  calibadc command. Note that *6 /  10 is mathematically equivalent to
multiply by 0.6 (the voltage reference).

Example:
main:

calibadc b1 ; read the adc reading
debug ; display current value
pause 500 ; wait a while
goto main ; loop back to start

))
))

$"&'
$"&$

))
(!&'
(!&$

))
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

43

43

www.picaxe.com

calibfreq
Syntax:
CALIBFREQ {-} factor
- factor is a constant/variable containing the value -15 to 15

Function:
Calibrate the microcontrollers internal resonator. 0 is the default factory setting.

Information:
PICAXE chips have an internal resonator that can be set to different operating
speeds via the setfreq command.

On these chips it is also possible to ‘calibrate’ this frequency. This is an advanced
feature not normally required by most users, as all chips are factory calibrated to
the most accurate setting. Generally the only use for calibfreq is to slightly adjust
the frequency for serial transactions with third party devices. A larger positive
value increases speed, a larger negative value decreases speed. Try the values -4 to
+ 4 first, before going to a higher or lower value.

Use this command with extreme care. It can alter the frequency of the PICAXE
chip beyond the serial download tolerance - in this case you will need to perform
a ‘hard-reset’ in order to carry out a new download.

The calibfreq is actually a pseudo command that performs a ‘poke’ command on
the microcontrollers OSCTUNE register.

When the value is 0 to 15 the equivalent BASIC code is
pokesfr OSCTUNE, factor
pause 2

When the factor is -15 to -1 the equivalent BASIC code is
let b12 = 64 - factor
pokesfr OSCTUNE, b12
pause 2

Note that in this case variable b12 is used, and hence corrupted, by the
command. This is necessary to poke the OSCTUNE register with the correct value.

))
!"#

!"#$

))
))
))

'"#$
'"&

))
))

$"&'
$"&$

))
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

44

44

www.picaxe.com

clearbit
Syntax:
CLEARBIT var, bit
- var is the target variable.
- bit is the target bit (0-7 for byte variables, 0-15 for word variables)

Function:
Clear a specific bit in the variable.

Information:
This command clears (clears to 0) a specific bit in the target variable.

Example:
clearbit b6, 0
clearbit w4, 15

))
))
))
))
))

))
))
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

45

45

www.picaxe.com

compsetup
Syntax:
COMPSETUP config , ivr
- config is a constant/variable specifying the comparator configuration
- ivr is a constant/variable specifying the internal voltage reference ‘resistor-

ladder’ configuration

Function:
Configure the internal comparators on X2 parts.

Information:
PICAXE-X2 chips have 2 comparators, each with the capability of comparing two
analogue voltages from two external ADC pins or from an external ADC pin and
an internally generated voltage reference. External ADC must be configured using
the adcsetup variable before using this command.

PICAXE-28X2-5V (PIC18F2520) and 40X2-5V (PIC18F4520)

Config:
bit7 not used, use 0
bit6 = 0 Comparator 1 Vin+ is ADC3 and Comparator 2 Vin+ is ADC2

= 1 Comparator of both Vin+ is from voltage divider
bit5 not used, use 0
bit4 = 0 Change in either comparator does not cause change in compflag

= 1 Change in either comparator sets compflag
bit3 = 0 Comparator 2 output is not inverted

= 1 Comparator 2 output is inverted
bit2 = 0 Comparator 1 output is not inverted

= 1 Comparator 1 output is inverted
bit1 = 0 Comparator 2 is disabled

= 1 Both Comparator 1 & 2 are enabled
bit0 = 0 Comparator 1 is disabled

= 1 Comparator 1 is enabled

))
))
))
))
))

))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

))
))

$!&$

-

.
/0

12/3

45678712/,

-

.
/9

12/0

45678712/9

$"&$*+*(!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

46

46

www.picaxe.com

-

.
/0

12/3

45678712/,

-

.
/9

12/0

45678712/9

$"&$*+*(!&$

PICAXE-28X2 (PIC18F25K22) /  40X2 (PIC18F45K22)
PICAXE-28X2-3V (PIC18F25K20) /  40X2-3V (PIC18F45K20)

Config:
bit9 = 0 Comparator 2 Vin+ is set from voltage divider

= 1 Comparator 2 Vin+ is from fixed 1.2V reference
bit8 = 0 Comparator 1 Vin+ is set from voltage divider

= 1 Comparator 1 Vin+ is from fixed 1.2V reference
bit7 = 0 Comparator 2 Vin+ is ADC2

= 1 Comparator 2 Vin+ is from voltage divider/fixed ref
bit6 = 0 Comparator 1 Vin+ is ADC3

= 1 Comparator 1 Vin+ is from voltage divider/fixed ref
bit5 = 0 Change in comparator 2 does not cause change in compflag

= 1 Change in comparator 2 sets compflag
bit4 = 0 Change in comparator 1 does not cause change in compflag

= 1 Change in comparator 1 sets compflag
bit3 = 0 Comparator 2 output is not inverted

= 1 Comparator 2 output is inverted
bit2 = 0 Comparator 1 output is not inverted

= 1 Comparator 1 output is inverted
bit1 = 0 Comparator 2 is disabled

= 1 Comparator 2 is enabled
bit0 = 0 Comparator 1 is disabled

= 1 Comparator 1 is enabled



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

47

47

www.picaxe.com

PICAXE-20X2

Config:
bit9 = 0 Comparator 2 Vin+ is set from voltage divider

= 1 Comparator 2 Vin+ is from fixed 1.024V reference
bit8 = 0 Comparator 1 Vin+ is set from voltage divider

= 1 Comparator 1 Vin+ is from fixed 1.024V reference
bit7 = 0 Comparator 2 Vin+ is ADC2

= 1 Comparator 2 Vin+ is from voltage divider/fixed ref
bit6 not used, use 1
bit5 = 0 Change in comparator 2 does not cause change in compflag

= 1 Change in comparator 2 sets compflag
bit4 = 0 Change in comparator 1 does not cause change in compflag

= 1 Change in comparator 1 sets compflag
bit3 = 0 Comparator 2 output is not inverted

= 1 Comparator 2 output is inverted
bit2 = 0 Comparator 1 output is not inverted

= 1 Comparator 1 output is inverted
bit1 = 0 Comparator 2 is disabled

= 1 Comparator 2 is enabled
bit0 = 0 Comparator 1 is disabled

= 1 Comparator 1 is enabled

-

.
/0

12/:

456

-

.
/9

12/;

45678712/<

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

48

48

www.picaxe.com

 Comparator Result
The result of the two comparators can be read at any time by reading the
‘compvalue’ variable - bits 0 and 1 of compvalue contain the comparator output.
Bit 0 is the output of comparator 1. This output can be inverted, equivalent to
reversing the comparator inputs, by setting bit 2 of config.
Bit 1 is the output of comparator 2. This output can be inverted, equivalent to
reversing the comparator inputs, by setting bit 3 of config.

If required a change in value can be used to trigger a change in the ‘compflag’ bit.
When flag change is enabled (via bits 4 and 5 of config) the ‘compflag’ will be set
whenever there is a change in input condition. This can be used to trigger a
‘setintflags’ interrupt if required. A change will also trigger a wake from sleep.

Internal Voltage Reference
Each comparator can be compared to a configurable internal voltage reference,
generated from an internal resistor ladder  (select via bits 6 and 7 of config).
On some parts it is also possible to compare to a fixed internal voltage instead of
the resistor ladder (select via bits 6, 7, 8 and 9 of config).

The voltage reference is generated from an internal resistor ladder between the
power rails as shown in the diagrams overleaf. Note that the actual value of the
resistors is not relevant, as they are simply dividers in a potential divider
arrangement. The resistors marked 8R are 8 x the value of the other resistors.

The ivr byte used within the compsetup command is configured as follows:

20X2, 28X2, 40X2
bit7 = 0 Voltage Ladder is disabled

= 1 Voltage Ladder is enabled
bit6 not used, use 0
bit5 not used, use 0
bit4:0 Select 1 of the 32 voltage tap-off positions

28X2-5V, 28X2-3V, 40X2-5V, 40X2-3V
bit7 = 0 Voltage Ladder is disabled

= 1 Voltage Ladder is enabled
bit6 not used, use 0
bit5 = 0 Bottom ‘8R’ resistor is used

= 1 Bottom ‘8R’ resistor is shorted out and hence not used
bit4 not used, use 0
bit3:0 Select 1 of the 16 voltage tap-off positions

Example:

init:
adcsetup = 4 ; use adc 0-3 (28X2-5V)
compsetup %00000011,0 ; use comparators 1 and 2

main:
b1 = compvalue ; read value
debug ; display value
pause 500 ; short delay
goto main ; loop back



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

49

49

www.picaxe.com

5.

35

,9
-0

7=
>

?

33333

,97@A'B@ 456

6

6

6

6

6

*"A<C3

93?9

33330

33303

00003

00000

D6

5.

35

0:
-0

7=
>

?

D6

3333

3330

3303

0000

0003

0:7@A'B@ 456

6

6

6

6

6

6

*"A,C3
*"A;

9D?9787<3?9

When Bit5 = 1 (bottom resistor shorted)
IVR = (position /  24) * Supply

When Bit5 = 0 (bottom resistor active)
IVR = (position/32) * Supply + (Supply/4)

Where position = 0 to 15 (Bit3:Bit0)

IVR = (position /  32) * Supply

Where position = 0 to 31 (Bit4:Bit0)



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

50

50

www.picaxe.com

count
Syntax:
COUNT pin, period, wordvariable
- Pin is a variable/constant  which specifies the input pin to use.
- Period is a variable/constant (1-65535ms at 4MHz).
- Wordvariable receives the result (0-65535).

Function:
Count pulses on an input pin.

Information:
Count checks the state of the input pin and counts the number of low to high
transitions within the time ‘period’.  A word variable should be used for ‘variable’.
At 4MHz the input pin is checked every 20us, so the highest frequency of pulses
that can be counted is 25kHz, presuming a 50% duty cycle (ie equal on-off time).

Take care with mechanical switches, which may cause multiple ‘hits’ for each
switch push as the metal contacts ‘bounce’ upon closure.

Effect of increased clock speed:
For all PICAXE chips the minimum width of a clocking signal (total time of high
and low added together) and that signal’s maximum frequency will be as follows:

Clock Signal Signal
Frequency W idth Frequency
4MHz 40us 25kHz
8MHz 20us 50kHz
16MHz 10us 100kHz
32MHz 5us 200kHz
64MHz 2.5us 400kHz

The unit of time for the sampling period is also affected by the operating speed.

Clock Sample Period
Frequency Time Unit
4MHz 1ms (1000 us)
8MHz 500 us
16MHz 250 us
32MHz 125 us
64MHz 62.5 us

Example:

main:
count C.1, 5000, w1 ; count pulses in 5secs (at 4MHz)
debug ; display value
goto main ; loop back to start

))
!"#

!"#$

))
'"%
'"#

'"#$
'"&

))
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

51

51

www.picaxe.com

daclevel
Syntax:
DACLEVEL level
- Level is a variable/constant  which specifies the DAC output level (0-31).

Function:
Set the DAC output level (32 steps, valid value 0-31).

Information:
The daclevel command is used to set the DAC output level to one of 32 levels
which cover the entire voltage range of the DAC. Therefore each level is 1/32nd of
the maximum voltage. A ‘readdac’ command can also read the DAC value, this is
equivalent to a ‘readadc command on the DAC level’.

A dacsetup command must have been used to setup the DAC before this
command will function.

Example:

init: dacsetup %10100000 ; external DAC, supply voltage
main: for b1 = 0 to 31

   daclevel b1 ; set DAClevel
   pause 1000
next b1
goto main ; loop back to start

))
))

!"#$

))
))
))

'"#$
))

))
'(#$

))
$!#$

))

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

52

52

www.picaxe.com

))
))

!"#$

))
))
))

'"#$
))

))
'(#$

))
$!#$

))

dacsetup
Syntax:
DACSETUP config
- config is a constant/variable specifying the DAC configuration

Function:
Configure the DAC (digital to analogue) reference voltage

Information:
Some PICAXE chips have a DAC voltage reference.
This may be used internally, or externally via the
DAC output pin.

Note that the DAC MUST BE BUFFERED for
reliable use. It cannot, for instance, provide
enough current to light an LED. It is purely a
reference voltage for use with, for example, an
op-amp configured as a voltage follower.

After the DAC has been configured, a ‘daclevel’ command is used to set the actual
DAC level, which is divided by 32 equal steps. The maximum theoretical output
value is 31/32 * supply voltage, which equates to 4.84V with a 5V supply.

The best results at 5V supply have been achieved experimentally with a Microchip
MCP6022 op amp with a 100nF capacitor, which gave excellent results (4.78V).
An OP90GPZ gave the second best result with only slight clipping (4.09V). Older
op amps such as the CA3140EZ gave very poor (badly clipped) results (2.73V).

A ‘readdac’ command can also read the DAC value, this is equivalent to a ‘readadc
command on the DAC level’. The supply for the DAC can be configured as
follows:

Config:
bit7 = 0 DAC disabled

= 1 DAC enabled
bit6 = 0 not used, use 0
bit5 = 0 DAC internal only

= 1 DAC also on DAC external output pin (overrides input/output)
bit4 = 0 not used, use 0
bit3-2 = 00 DAC upper is Supply Voltage

= 01 External Vref+ pin (see adcconfig command)
= 10 FVR voltage (see fvrsetup command)
= 11 not used

bit1 = 0 not used, use 0
bit0 = 0 DAC lower is Supply 0V

= 1 External Vref- pin (see adcconfig command)

.

-

EB
&$B

35

21/
B"F

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

53

53

www.picaxe.com

Example:

init: low DAC_PIN ; make the DAC pin an output
dacsetup %10100000 ; external DAC, supply voltage

main: for b1 = 0 to 31
   daclevel b1 ; set DAClevel
   pause 1000
next b1
goto main ; loop back to start



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

54

54

www.picaxe.com

debug
Syntax:
DEBUG  {var}
- Var is an optional variable value (e.g. b3). Its value is not of importance and is

included purely for backwards compatibility with older programs.

Function:
Display variable information in the debug window when the debug command is
processed. Byte information is shown in decimal, binary, hex and ASCII notation.
Word information is shown in decimal and hex notation.

Information:
The debug command uploads the current variable values for *all* the variables
via the download cable to the computer screen. This enables the computer screen
to display all the variable values in the microcontroller for debugging purposes.
Note that the debug command uploads a large amount of data and so
significantly slows down any program loop.

To display user defined debugging messages use the ‘sertxd’ command instead.

Note that on 08 and 14 pin chips debug acts on ‘B.0 /  output 0’. Therefore
programs that use output 0 may corrupt the serial data condition. In this case it is
recommended to use the following structure before a debug command.

low B.0 ; reset B.0 to correct condition
pause 500 ; wait a while
debug ; display values on computer screen

Example:

main:
inc b1 ; increment value of b1
readadc A.2,b2 ; read an analogue value
debug ; display values on computer screen
pause 500 ; wait 0.5 seconds
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

55

55

www.picaxe.com

dec
Syntax:
DEC var
- var is the variable to decrement

Function:
Decrement (subtract 1 from) the variable value.

Information:
This command is shorthand for ‘let var = var - 1’

Example:

let b2 = 10
for b1 = 1 to 5
  dec b2
next b1

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

56

56

www.picaxe.com

))
))
))

'"#$
))

))
!"#

!"#$

))
))

$"&'
$"&$

))
(!&'
(!&$

disablebod
Syntax:
DISABLEBOD

Function:
Disable the on-chip brown out detect function.

Information:
Some PICAXE chips have a programmable internal brown out detect function, to
automatically cleanly reset the chip on a power brown out (a sudden voltage drop
on the power rail).  The brown out detect is always enabled by default when a
program runs. However it is sometimes beneficial to disable this function to
reduce current drain in battery powered  applications whilst the chip is ‘sleeping’.

The brownout voltage is fixed for each device as follows:

1.8V 28X2-3V, 40X2-3V
1.9V 20X2, 14M2, 18M2, 20M2, 28X2, 40X2
2.1V 08, 08M, 14M, 20M, 28X1, 40X1
2.3V 08M2
3.2V 28X2-5V, 40X2-5V
None 18, 18A, 18M, 18X, 28A, 28X, 40X

Use of the disablebod command prior to a sleep will considerably reduce the
current drawn during the actual sleep command.

Example:

main: disablebod ; disable brown out
sleep 10 ; sleep for 23 seconds (2.3x10)
enablebod ; enable brown out
goto main ; loop back to start

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

57

57

www.picaxe.com

disabletime
Syntax:
DISABLETIME

Function:
Disable the elapsed time counter.

Information:
The M2 series have an internal elapsed time counter. This is a word variable called
‘time’ which increments once per second. This seconds counter starts
automatically on a power-on reset, but can also be enabled/disabled by the
disabletime/enabletime commands.

Effect of increased clock speed:
The time function will work correctly at 4MHz or 16 MHz.
At 2MHz or 8MHz the interval will be 2s
At 16MHz the interval will be 0.5s

Example:

main: pause 5000
disabletime ; disable time
pause 5000 ; wait 5 seconds
enabletime ; enable time
debug ; display time value
goto main ; loop back to start

))
))

!"#$

))
))
))

'"#$
))

))
))
))
))

))
))
))

))
'(#$

))
$!#$

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

58

58

www.picaxe.com

disconnect
Syntax:
DISCONNECT

Function:
Disconnect the PICAXE so that it does not scan for new downloads.

Information:
The PICAXE chips constantly scan the serial download pin to see if a computer is
trying to initialise a new program download. However when it is desired to use
the download pin for user serial communication (serrxd command), it is
necessary to disable this scanning. Note that the serrxd command automatically
includes a disconnect command.

After disconnect is used it will not be possible to download a new program until:
1) the reconnect command is issued
2) a reset command is issued
3) a hardware reset  is carried out

Remember that is always possible to carry out a new download by carrying out
the ‘hard-reset’ procedure.

Example:

serrxd [1000, timeout],@ptrinc,@ptrinc,@ptr
reconnect

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))

'"#
'"#$

))

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

59

59

www.picaxe.com

do...loop
Syntax:
DO
{code}
LOOP UNTIL/ WHILE VAR ?? COND

DO
{code}
LOOP UNTIL/ WHILE VAR ?? COND AND/ OR VAR ?? COND...

DO UNTIL/ WHILE VAR ?? COND
{code}
LOOP

DO UNTIL/ WHILE VAR ?? COND AND/ OR VAR ?? COND...
{code}
LOOP

- var is the variable to test
- cond is the condition

?? can be any of the following conditions
= equal to
is equal to
<> not equal to
!= not equal to
> greater than
< less than

Function:
Loop whilst a condition is true (while) or false (until)

Information:
This structure creates a loop that allows code to be repeated whilst, or until, a
certain condition is met. The condition may be in the ‘do’ line (condition is
tested before code is executed) or in the ‘loop’ line (condition is tested after the
code is executed).

The exit command can be used to prematurely exit out of the do...loop.

Example:

do
  high B.1
  pause 1000
  low B.1
  pause 1000
  inc b2
  if pinC.1 = 1 then exit
loop while b2 < 5

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

60

60

www.picaxe.com

doze
Syntax:
DOZE period
- Period is a variable/constant which determines the duration of the reduced-

power sleep (peripherals active).

Function:
Doze for a short period.  Power consumption is reduced, but some timing
accuracy is lost.  Doze uses the same timeout frequency as sleep (2.1s).

Information:
The doze command puts the microcontroller into low power mode for a short
period of time (like the sleep command). However, unlike the sleep command,
all timers are left on and so the pwmout, timer and servo commands will
continue to function. The nominal period of time is 2.1 seconds  Due to
tolerances in the microcontrollers internal timers, this time is subject to  -50 to
+100% tolerance. The external temperature affects these tolerances and so no
design that requires an accurate time base should use this command.

‘doze 0’ puts the microcontroller into permanent doze- it does not wake every 2.1
seconds. The microcontroller is only woken by a hardware interrupt (e.g. hint pin
change or timer tick) or hard-reset. The chip will not respond to new program
downloads when in permanent doze.

Effect of increased clock speed:
The doze command uses the internal timer which is not affected by changes in
resonator clock speed.

Example:

main: high B.1 ; switch on output B.1
doze 1 ; doze for 2.1 s
low B.1 ; switch off output B.1
doze 1 ; doze for 2.1 s
goto main ; loop back to start

))
))
))

))
))
))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

61

61

www.picaxe.com

eeprom (data)
Syntax:
DATA  {location},(data,data...)
EEPROM  {location},(data,data...)
- Location is an optional constant (0-255) which specifies where to begin

storing the data in the EEPROM.  If no location is specified, storage continues
from where it last left off.  If no location was initially specified, storage begins
at 0.

- Data are constants (value 0-255) which will be stored in the EEPROM.

Function:
Preload EEPROM data memory. If no EEPROM command is used the values are
automatically cleared to the value 0. The keywords DATA and EEPROM have
identical functions and either can be used.

Information:
This is not an instruction, but a method of pre-loading the microcontrollers data
memory. The command does not affect program length.

All current PICAXE chips have 256 bytes (address 0-255) of EEPROM memory.
Only these older (discontinued) parts had less:
PICAXE-28, 28A 0 to 63
PICAXE-08, 18, 28X, 40X 0 to 127

Shared Memory Space:
With some PICAXE parts (listed below)  the data memory is shared with program
memory. Therefore only unused bytes may be used by the EEPROM command.
To establish the length of the program use ‘Check Syntax’ from the PICAXE
menu. This will report the length of program. Available data addresses can then
be used as follows:

PICAXE-08 /  18 0 to (127 - number of used bytes)
PICAXE-08M 0 to (255 - number of used bytes)
PICAXE-14M / 20M 0 to (255 - number of used bytes)
PICAXE-18M 0 to (255 - number of used bytes)
PICAXE- 08M2 /  18M2 Program 1792 up to 2048 is EEPROM 255 to 0

(not 18M2+) So on 08M2/older 18M2 all bytes are available if
program is shorter than 1792 bytes long.

Example:

EEPROM 0,(“Hello World”) ; save values in EEPROM

main:
 for b0 = 0 to 10 ; start a loop
   read b0,b1 ; read value from EEPROM
   serout B.7,N2400,(b1) ; transmit to serial LCD module
 next b0 ; next character

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

62

62

www.picaxe.com

enablebod
Syntax:
ENABLEBOD

Function:
Enable the on-chip brown out detect function.

Information:
Some PICAXE chips have a programmable internal brown out detect function, to
automatically cleanly reset the chip on a power brown out (temporary voltage
drop).  The brown out detect is always enabled by default when a program runs.
However it is sometimes beneficial to disable this function to reduce current
drain in battery powered  applications whilst the chip is ‘sleeping’.

The brownout voltage is fixed for each device as follows:

1.8V 28X2-3V, 40X2-3V
1.9V 20X2, 14M2, 18M2, 20M2, 28X2, 40X2
2.1V 08, 08M, 14M, 20M, 28X1, 40X1
2.3V 08M2
3.2V 28X2-5V, 40X2-5V
None 18, 18A, 18M, 18X, 28A, 28X, 40X

Use of the disablebod command prior to a sleep will considerably reduce the
current drawn during the actual sleep command.

Example:

main: disablebod ; disable brown out
sleep 10 ; sleep for 23 seconds (10x2.3)
enablebod ; enable brown out
goto main ; loop back to start

))
))
))

'"#$
))

))
!"#

!"#$

))
))

$"&'
$"&$

))
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

63

63

www.picaxe.com

enabletime
Syntax:
ENABLETIME

Function:
Enable the elapsed time counter.

Information:
The M2 series have an internal elapsed time counter. This is a word variable called
‘time’ which increments once per second. This seconds counter starts
automatically on a power-on reset, but can also be enabled/disabled by the
disabletime/enabletime commands.

Effect of increased clock speed:
The time function will work correctly at 4MHz or 16 MHz.
At 2MHz or 8MHz the interval will be 2s
At 16MHz the interval will be 0.5s

Example:

main: pause 5000
disabletime ; disable time
pause 5000 ; wait 5 seconds
enabletime ; enable time
debug ; display time value
goto main ; loop back to start

))
))

!"#$

))
))
))

'"#$
))

))
))
))
))

))
))
))

))
'(#$

))
$!#$

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

64

64

www.picaxe.com

end
Syntax:
END

Function:
Sleep terminally until the power cycles (program re-runs) or the PC connects for a
new download.  Power is reduced to an absolute minimum (assuming no loads
are being driven) and internal timers are switched off.

Information:
The end command places the microcontroller into low power mode after a
program has finished. Note that as the compiler always places an END instruction
after the last line of a program, this command is rarely required.
The end command switches off internal timers, and so commands such as servo
and pwmout that require these timers will not function after an end command
has been completed.

If you do not wish the end command to be carried out, place a ‘stop’ command at
the bottom of the program. The stop command does not enter low power mode.

The main use of the end command is to separate the main program loop from
sub-procedures as in the example below. This ensures that programs do not
accidentally ‘fall into’ the sub-procedure.

Example:

main:
let b2 = 15 ; set b2 value
pause 2000 ; wait for 2 seconds
gosub flsh ; call sub-procedure
let b2 = 5 ; set b2 value
pause 2000 ; wait for 2 seconds
end ; stop accidentally falling into sub

flsh:
for b0 = 1 to b2 ; define loop for b2 times
  high B.1 ; switch on output B.1
  pause 500 ; wait 0.5 seconds
  low B.1 ; switch off output B.1
  pause 500 ; wait 0.5 seconds
next b0 ; end of loop
return ; return from sub-procedure

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

65

65

www.picaxe.com

exit
Syntax:
EXIT

Function:
Exit is used to immediately terminate a do...loop or for...next program loop.

Information:
The exit command immediately terminates a do...loop or for...next program loop.
It is equivalent to ‘goto line after end of loop’.

Example:

main:
do ; start loop
if b1 = 1 then
   exit
end if
loop ; loop

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

66

66

www.picaxe.com

for...next
Syntax:
FOR  variable = start TO end {STEP {-}increment}
   (other program lines)
NEXT {variable}
- Variable will be used as the loop counter
- Start is the initial value of variable
- End is the finish value of variable
- Increment is an optional value which overrides the default counter value of

+1.  If Increment is preceded by a ‘-’, it will be assumed that Start is greater
than End, and therefore increment will be subtracted (rather than added) on
each loop.

Function:
Repeat a section of code within a FOR-NEXT loop.

Information:
For...next loops are used to repeat a section of code a number of times. When a
byte variable is used, the loop can be repeated up to 255 times. Every time the
‘next’ line is reached the value of variable is incremented (or decremented) by the
step value (+1 by default). When the end value is exceeded the looping stops and
program flow continues from the line after the next command.

For...next loops can be nested 8 deep (remember to use a different variable for
each loop).

The for...next loop can be prematurely ended by use of the exit command.

Example:

main:
for b0 = 1 to 20 ; define loop for 20 times
  if pinC.1 = 1 then exit
  high B.1 ; switch on output B.1
  pause 500 ; wait 0.5 seconds
  low B.1 ; switch off output B.1
  pause 500 ; wait 0.5 seconds
next b0 ; end of loop

pause 2000 ; wait for 2 seconds
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

67

67

www.picaxe.com

forward
Syntax:
FORWARD motor
- Motor is the motor name A or B.

Function:
Make a motor output turn forwards

Information:
This is a ‘pseudo’ command designed for use by younger students with pre-
assembled classroom models. It is actually equivalent to ‘high 4 : low 5’ (motor
A) or ‘high 6: low 7’ (motor B). This command is not normally used outside the
classroom.

Example:

main:
forward A ; motor a on forwards
wait 5 ; wait 5 seconds
backward A ; motor a on backwards
wait 5 ; wait 5 seconds
halt A ; motor A reverse
wait 5 ; wait 5 seconds
goto main ; loop back to start

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

))
))
))

))
))

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

68

68

www.picaxe.com

fvrsetup
Syntax:
FVRSETUP OFF
FVRSETUP config
- config is a constant/variable specifying the fixed voltage reference FVR

configuration

Function:
Configure the internal FVR fixed voltage reference

Information:
Some PICAXE chips have a fixed voltage reference.
This may be set off, or to one of three voltages by use of the constants

FVR1024 1.024V
FVR2048 2.048V
FVR4096 4.096V *

* Note the output of the FVR cannot exceed the supply voltage, so 4.096 is only
available at a 5V supply.

Note that the 1.024V reference may not be used as the Vref+ of the ADC (only
2.048 or 4.096 may be used for this purpose). See the adcconfig command for
more details. To reduce power use the FVR module is also automatically disabled
after a readadc command, so reissue the fvrsetup command again after the
readadc if that feature is still required.

Note that the FVR voltage is reset to 1.024V via a ‘calibadc’ command.

The FVR may also be used as reference to the DAC (see the DACsetup command).

Example:
fvrsetup FVR1024 ; set to 1.024V

))
))

!"#$

))
))
))

'"#$
))

))
'(#$

))
$!#$

))

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

69

69

www.picaxe.com

))
))
))
))
))

))
))
))

))
))

$"&'
$"&$

))
(!&'
(!&$

get
Syntax:
GET  location,variable,variable,WORD wordvariable...
- Location is a variable/constant specifying a scratchpad address.  Valid values

are
0 to 127 for X1 parts
0 to 127 for 20X2 parts
0 to 1023 for  all other X2 parts

- Variable is a byte variable where the data is returned. To use a word variable
the keyword WORD must be used before the wordvariable name)

Function:
Read data from the microcontroller scratchpad.

Information:
The function of the put/get commands is to store temporary byte data in the
microcontrollers scratchpad memory.  This allows the general purpose variables
(b0, b1 etc) to be re-used in calculations.

Put and get have no effect on the scratchpad pointer and so the address next used
by the indirect pointer (ptr) will not change during these commands.

When word variables are used (with the keyword WORD) the two bytes of the
word are saved/retrieved in a little endian manner (ie low byte at address, high
byte at address + 1)

Example:
get 1,b1 ; put value of register 1 into variable b1
get 1, word w1

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

70

70

www.picaxe.com

gosub (call)
Syntax:
GOSUB  address
- Address is a label which specifies where to gosub to.

Function:
Go to sub procedure at ‘address’, then ‘return’ at a later point.
The compiler also accepts ‘call’ as a pseudo for ‘gosub’.

Information:
The gosub (‘goto subprocedure’) command is a ‘temporary’ jump to a separate
section of code, from which you will later return (via the return command). Every
gosub command MUST be matched by a corresponding return command. Do not
confuse with the ‘goto’ command which is a permanent jump to a new program
location.

The table shows the maximum number of gosubs available in each
microcontroller.  Gosubs can normally be nested up to 8 levels deep (ie there is a
8 level stack available in the microcontroller).

gosubs interrupt stack depth
All ‘M2’ parts * 255 1 8
All ‘X2’ parts 255 1 8
All ‘X1’ parts 255 1 8
All ‘X’ parts (obsolete) 255 1 4
All ‘M’ parts 15 1 4
All ‘A’ parts (obsolete) 16 0 4

* On ‘parallel tasking’ M2 parts each task has its own  separate 8 deep stack.

Sub procedures are commonly used to reduce program space usage by putting
repeated sections of code in a single sub-procedure. By passing values to the sub-
procedure within variables, you can repeat a section of code from multiple places
within the program. See the sample below for more information.

Example:
main:

let b2 = 15 ; set b2 value
gosub flsh ; call sub-procedure
let b2 = 5 ; set b2 value
gosub flsh ; call sub-procedure
end ; stop accidentally falling into sub

flsh:
for b0 = 1 to b2 ; define loop for b2 times
  high B.1 ; switch on output 1
  pause 500 ; wait 0.5 seconds
  low B.1 ; switch off output 1
  pause 500 ; wait 0.5 seconds
next b0 ; end of loop
return ; return from sub-procedure

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

71

71

www.picaxe.com

goto
Syntax:
GOTO  address
- Address is a label which specifies where to go.

Function:
Go to address.

Information:
The goto command is a permanent ‘jump’ to a new section of the program.  The
jump is made to a label.

Example:

main:
high B.1 ; switch on output 1
pause 5000 ; wait 5 seconds
low B.1 ; switch off output 1
pause 5000 ; wait 5 seconds
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

72

72

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))
))

'"#$
'"&

hi2cin
Syntax:
HI2CIN  (variable,...)
HI2CIN  location,(variable,...)
HI2CIN  [newslave],(variable,...) (X2 parts only)
HI2CIN  [newslave],location,(variable,...) (X2 parts only)
- Location is a optional variable/constant specifying a byte or word address.
- Variable(s) receives the data byte(s) read.
- Newslave is an optional new slave address for this (and all future) commands.

Function:
Read i2c location contents into variable(s).

Information:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to read byte data from an i2c device. Location defines the
start address of the data read, although it is also possible to read more than one
byte sequentially (if the i2c device supports sequential reads).

Location must be a byte or word as defined within the hi2csetup command. An
hi2csetup command must have been issued before this command is used. The
hi2csetup commands sets the default slave address for this command. However
when addressing multiple parts it may be necessary to repeatedly change the
default slave address. This can be achieved via the optional [newslave] variable.

If the i2c hardware is incorrectly configured, or the wrong i2cslave data has been
used, the value 255 ($FF) will be loaded into each variable.

Example:

; Example of how to use DS1307 Time Clock
; Note the data is sent/received in BCD format.

; set PICAXE as master and DS1307 slave address
hi2csetup i2cmaster, %11010000, i2cslow, i2cbyte

; read time and date and debug display

main:
hi2cin 0,(b0,b1,b2,b3,b4,b5,b6,b7)
debug b1
pause 2000
goto main

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

73

73

www.picaxe.com

    Hi2cIn $AA,(b0)

  Hi2cIn (b0) :  Pause 20 :  Hi2cIn $A9,(b0)

  Hi2cIn $55AA,(b0)



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

74

74

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))
))

'"#$
'"&

hi2cout
Syntax:
HI2COUT  location,(variable,...)
HI2COUT  (variable,...)
HI2COUT  [newslave],location,(variable,...) (X2 parts only)
HI2COUT  [newslave],(variable,...) (X2 parts only)

- Location is a variable/constant specifying a byte or word address.
- Variable(s) contains the data byte(s) to be written.
- Newslave is an optional new slave address for this (and all future) commands.

Function:
Write to i2c bus when acting as an i2c master device.

Information:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to  write byte data to an i2c slave. Location defines the
start address of the data to be written, although it is also possible to write more
than one byte sequentially (if the i2c device supports sequential writes).

Location must be a byte or word as defined within the hi2csetup command. A
hi2csetup command must have been issued before this command is used. The
hi2csetup commands sets the default slave address for this command. However
when addressing multiple parts it may be necessary to repeatedly change the
default slave address. This can be achieved via the optional [newslave] variable.

Example:

; Example of how to use DS1307 Time Clock
; Note the data is sent/received in BCD format.
; Note that seconds, mins etc are variables that need
; defining e.g. symbol seconds = b0 etc.

; set PICAXE as master and DS1307 slave address
hi2csetup i2cmaster, %11010000, i2cslow, i2cbyte

; write time and date e.g. to 11:59:00 on Thurs 25/12/03
start_clock:

let seconds = $00 ; 00 Note all BCD format
let mins    = $59 ; 59 Note all BCD format
let hour    = $11 ; 11 Note all BCD format
let day     = $03 ; 03 Note all BCD format
let date    = $25 ; 25 Note all BCD format
let month   = $12 ; 12 Note all BCD format
let year    = $03 ; 03 Note all BCD format
let control = %00010000 ; Enable output at 1Hz

hi2cout 0,(seconds,mins,hour,day,date,month,year,control)
 end

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

75

75

www.picaxe.com

  Hi2cOut $AA,($A3)

  Hi2cOut ($F3)

    Hi2cOut $55AA,($A3)



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

76

76

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))
))

'"#$
'"&

hi2csetup
Syntax:
HI2CSETUP OFF
HI2CSETUP I2CSLAVE, slaveaddress
HI2CSETUP I2CMASTER, slaveaddress, mode, addresslen

Master mode is when the PICAXE controls the i2c bus. It controls other ‘slave’
devices like memory EEPROMS and can ‘talk’ to any device on the i2c bus.

Slave mode is when the PICAXE is controlled by a different master device (e.g.
another microcontroller). It cannot talk to other devices on the i2c bus.

- SlaveAddress is the i2c slave address
- Mode is the keyword  i2cfast (400kHz) or i2cslow (100kHz). Note that these

keywords must change to i2cfast_8, i2cslow_8 at 8MHz, etc.
- Addresslen is the keyword i2cbyte or i2cword. Note that this is the ‘addressing

method’ used by the i2c device (i.e. some EEPROMs use a byte address, some
use a word address). It is NOT the length of data returned by the hi2cin
command, which is always a byte.

Function:
The hi2csetup command is used to configure the PICAXE pins for i2c use and to
define the type of i2c device to be addressed.

Description:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

hi2csetup - slave mode (X2 parts only)
Slave Address
The slave address is the address that is used by the PICAXE chip for identification.
It can be a number between 1 and 127, but must be held in bits 7 to 1 of the
address (not bits 6 - 0)  e.g.  %1010000x. Bit0 is the read/write bit and so ignored.
If you are not sure which address to use we recommend the ‘standard i2c
EEPROM’ address which is %10100000. Some special i2c addresses (0, %1111xxx,
%0000xxxx)  have special meanings under the i2c protocol and so are not
recommended as they may cause unexpected behaviour on third party devices.

Description:
When in slave mode all i2c functions of the slave PICAXE chip are completely
automatic. An i2c master can read or write to the slave PICAXE chip as if it was a
128 (X1, 20X2) or 256 (X2) byte 24LCxx series EEPROM, with the scratchpad
area acting as the memory transfer area. The master can read the slave PICAXE
chip at any time. This does not have any noticeable effect on the slave PICAXE
program, however commands that disable internal hardware interrupts (e.g.
serout etc) may affect operation. See appendix 2 for more detail on possible
conflicts.

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

77

77

www.picaxe.com

However when the master writes to the slave PICAXE memory the ‘hi2cflag’ is set
and the last address written to is saved in the ‘hi2clast’ variable. Therefore by
polling the hi2cflag bit (or using setintflags to cause an interrupt) the PICAXE
program can take action when a write has occurred. The hi2cflag must be cleared
by the user program after use.

Example:
The following examples show how to use two PICAXE-28X1 chips, one as a
master and one as a slave. The slave acts as an output expander for the master.

Slave code:

init: hi2csetup i2cslave, %10100000

main:
if hi2cflag = 0 then main ; poll flag, else loop

hi2cflag = 0 ; reset flag
get hi2clast,b1 ; get last byte written
let outpins = b1 ; set output pins
goto main

Master code:

init: hi2csetup i2cmaster, %10100000, i2cslow, i2cbyte

main:
inc b1 ; increment variable
hi2cout 0,(b1) ; send value to byte 0 on slave
pause 500 ; wait a while
goto main



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

78

78

www.picaxe.com

hi2csetup - master mode
If you are using a single slave i2c device alongside your PICAXE master you
generally only need one hi2csetup command within a program. After the
hi2csetup has been issued, hi2cin and hi2cout can be used to access the slave i2c
device. When using multiple devices you can change the default slave address
within the hi2cin or hi2cout command.

Slave Address
The slave address varies for different i2c devices (see table below). For the
popular 24LCxx series serial EEPROMs the address is commonly %1010xxxx.

Note that some devices, e.g. 24LC16B, incorporate the block address (ie the
memory page) into bits 1-3 of the slave address. Other devices include the
external device select pins into these bits. In this case care must be made to
ensure the hardware is configured correctly for the slave address used.

Bit 0 of the slave address is always the read/write bit. However the value entered
using the i2cslave command is ignored by the PICAXE, as it is overwritten as
appropriate when the slave address is used within the readi2c and writei2c
commands.

Most datasheets give the slave address in 8 bit format e.g.
1010000x - where x is don’t care (the read/write bit, PICAXE controlled)
However some datasheets use a 7 bit format. In this case the bits must be shifted
left to take account for the read/write bit.

Speed
Speed of the i2c bus can be selected by using one of the keywords i2cfast or
i2cslow (400kHz or 100kHz). The internal slew rate control of the
microcontroller is automatically enabled when required. Always use the
SLOWEST speed of the devices on a bus - do not use i2cfast if any part is a
100KHz part (e.g. DS1307).

Effect of Increased Clock Speed:
Ensure you modify the speed keyword (i2cfast_8, i2cslow_8) at 8MHz or
(i2cfast_16, i2cslow_16) at 16MHz for correct operation.

Address Length
i2c devices commonly have a single byte (i2cbyte) or double byte (i2cword)
address. This must be correctly defined for the type of i2c device being used. If
you use the wrong definition erratic behaviour will be experienced.
When using the i2cword address length you must also ensure the ‘address’ used
in the hi2cin and hi2cout commands is a word variable.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

79

79

www.picaxe.com

Settings for some common parts:
Device Type Slave Speed Address
24LC01B EE 128 %1010xxxx i2cfast i2cbyte
24LC02B EE 256 %1010xxxx i2cfast i2cbyte
24LC04B EE 512 %1010xxbx i2cfast i2cbyte
24LC08B EE 1kb %1010xbbx i2cfast i2cbyte
24LC16B EE 2kb %1010bbbx i2cfast i2cbyte
24LC64 EE 8kb %1010dddx i2cfast i2cword
24LC128 EE 16kb %1010dddx i2cfast i2cword
24LC256 EE 32kb %1010dddx i2cfast i2cword
24LC512 EE 64kb %1010dddx i2cfast i2cword
DS1307 RTC %1101000x i2cslow i2cbyte
MAX6953 5x7 LED %101ddddx i2cfast i2cbyte
AD5245 Digital Pot %010110dx i2cfast i2cbyte
SRF08 Sonar %1110000x i2cfast i2cbyte
AXE033 I2C LCD $C6 i2cslow i2cbyte
CMPS03 Compass %1100000x i2cfast i2cbyte
SPE030 Speech %1100010x i2cfast i2cbyte
x = don’t care (ignored)
b = block select (selects internal memory page within device)
d = device select (selects device via external address pin polarity)

Effect of Increased Clock Speed:
Ensure you modify the mode keyword (i2cfast_8, i2cslow_8) at 8MHz or
(i2cfast_16, i2cslow_16) at 16MHz for correct operation.

Advanced Technical Information:
Users familiar with assembler code programming may choose to create their own
‘mode’ settings to adjust the i2c communication speed. The mode value is a value
between 0-127 that is the preload BRG value loaded into SSPADD. Bit 7 of the
mode byte is used to set/clear the  SSPSTAT,SMP slew control bit.

;5

35

49
/

72
G

5
4/

G

<HI

5.

35

/JEKH7-7L/M

2&A&77-7L21

N*C7$&FO7B#EP'KA7QE&#R@
&#'7B#'-S"AA'R7%"AT7BUJJ-
RE%F7#'@"@AE#@7EF7AT'7"FBUA
B"F@+7VT'@'7$U@A7Q'
#'$EW'R7AE7U@'7AT'749/
R'W"K'7J"H'7AT"@+

<HI

5.

35

L/M

L21

X
4/

1
?

GNEA'7AT'749/7R'W"K'
$&O7T&W'7KT"B7'F&QJ'Y
%#"A'7B#EA'KA7&FR8E#
&RR#'@@7B"F@7AT&A7%"JJ
&J@E7#'ZU"#'7KEFF'KA"EF
AE7357E#75.7&@
&BB#EB#"&A'+



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

80

80

www.picaxe.com

halt
Syntax:
HALT motor
- Motor is the motor name A or B.

Function:
Make a motor output stop.

Information:
This is a ‘pseudo’ command designed for use by younger students with pre-
assembled classroom models. It is actually equivalent to ‘low 4 : low 5’ (motor A)
or ‘low 6: low 7’ (motor B). This command is not normally used outside the
classroom.

Example:

main: forward A ; motor a on forwards
wait 5 ; wait 5 seconds
backward A ; motor a on backwards
wait 5 ; wait 5 seconds
halt A ; motor A halt
wait 5 ; wait 5 seconds
goto main ; loop back to start

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

))
))
))

))
))

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

81

81

www.picaxe.com

hibernate
Syntax:
HIBERNATE config
- config is a constant/variable that sets the type of hibernation

Function:
Make the microcontroller sleep until a reset or interrupt occurs.

Information:
The hibernate command puts the microcontroller into very low power
‘hibernation’ mode. Unlike the sleep command, which wakes up every 2.3s,
hibernate mode enters a state of permanent sleep. The only way to exit this deep
sleep is via an external reset or via a hardware interrupt (hserin, hi2cin, etc.). A
new program download from the computer will NOT wake the microcontroller.

For best low power performance, ensure any unused inputs are tied high/low, and
that no outputs are being actively driven. The hibernate command automatically
shuts down any on-board peripherals (timers, pwm etc) and disables the brown
out detect circuit (equivalent of an automatic ‘disable bod’ command). After a
hibernate command the brown out detect is always re-enabled, so if the brown
out detect feature is not required after the hibernate the user program must
disable it again via a ‘disablebod’ command.

‘config’ value is used to disable/enable and set the  ‘ultra low power wake up
feature’ of analogue pin ADC0. A value of 0 disables this feature.. When enabled,
the hibernate will terminate after a capacitor (connected to ADC0) has
discharged. This is more energy efficient than using the sleep command.

A non-zero config value enables the ULPWU feature on ADC0, and the actual
config value sets the charging time (in ms) for the connected capacitor. Therefore
the hibernate command first charges the capacitor, then hibernates, and then
wakes up again once the capacitor has discharged.

The discharge time is given by the following formula:
Time = ( (initial C voltage - 0.6) * C ) /  (sink current + leakage current)

The sink current is approximately 140nA with 5V power supply. Therefore the
discharge time for a 200 ohm resistor and 1nF capacitor is approximately 30ms.
This means the hibernate will end after approximately 30ms, although the
discharge time is highly dependant on the capacitance (of the capacitor and
circuit), and so, for example, long pcb tracks and moisture in the air can
considerably affect these times.

))
))
))
))
))

))
))
))

))
))

$"&'
))

))
(!&'

))

))
))

12/3

35

/

6

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

82

82

www.picaxe.com

12/3

033H

35

;5

0H

MANUAL WAKEUP - The capacitor can also be completely replaced by a push-to-
make switch (use 1k resistor as R and add another 100k resistor from the top of
the switch to V+ to act as a positive voltage pull-up). The switch then acts as a
manual ‘wake-up’ switch.

Note that the 1k is essential to prevent a possible short circuit situation (if the
switch was pushed whilst the hibernate starts, as it will momentarily make ADC0
an output to ‘charge the capacitor’).

Example:
main:

toggle 1 ; toggle state of output 1
hibernate 50 ; hibernate after charging cap for 50ms
disablebod ; turn bod off
goto main ; loop back to start



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

83

83

www.picaxe.com

high
Syntax:
HIGH  pin {,pin,pin...}
- Pin is a variable/constant which specifies the i/o pin to use.

Function:
Make pin an output and switch it high.

Information:
The high command switches an output on (high).
On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this
command also automatically configures the pin as an output.

Example:

main: high B.1 ; switch on output B.1
pause 5000 ; wait 5 seconds
low B.1 ; switch off output B.1
pause 5000 ; wait 5 seconds
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

84

84

www.picaxe.com

high portc
Syntax:
HIGH  PORTC pin {,pin,pin...}
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Make pin on portc output high.

This command is only used on older 14M and 28X/28X1 parts.
For newer M2 and X2 parts use the PORT.PIN notation directly e.g. high C.2

Information:
The high command switches a portc output on (high).

Example:

main: high portc 1 ; switch on output portC 1
pause 5000 ; wait 5 seconds
low portc 1 ; switch off output portC 1
pause 5000 ; wait 5 seconds
goto main ; loop back to start

))
))
))

))
))
))
))
))

))
$"&
$"&'

))

(!&
(!&'

))

'(#
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

85

85

www.picaxe.com

hintsetup
Syntax:
HINTSETUP mask
- mask is a variable/constant which defines which interrupt pins to activate.

Bit 7 - reserved
Bit 6 - Interrupt 2 Trigger (1 = rising edge, 0 = falling edge)
Bit 5 - Interrupt 1 Trigger (1 = rising edge, 0 = falling edge)
Bit 4 - Interrupt 0 Trigger (1 = rising edge, 0 = falling edge)
Bit 3 - reserved
Bit 2 - Interrupt 2 Enable
Bit 1 - Interrupt 1 Enable
Bit 0 - Interrupt 0 Enable (not available on 20X2)

Function:
The X2 parts have up to 3 hardware interrupts pin (INT0, INT1, INT2) which are
activated/deactivated by the hintsetup command. The hardware interrupt pins
constantly background monitor for an edge based trigger. As they operate in the
background the PICAXE program does not have to poll the input to detect a
change in state.

The hardware interrupts are triggered and processed extremely quickly. Therefore
be aware of, for instance, switch contact bounce, which may give unexpected
results if not debounced by software and/or hardware.

The hardware interrupt pins can also wake a PICAXE microcontroller from sleep/
doze mode.

Information:
The hardware interrupt pins cause an instant change in the hardware interrupt
flags upon input pin condition change.. If a setintflags command has also been
issued, a PICAXE program interrupt may then occur.

Activation of each individual pin sets two flags, its own unique flag and the
shared ‘hintflag’. The flags must be cleared manually in the user’s PICAXE
program. The hintsetup command enables the hardware setting of the flags only,
it does not trigger an actual PICAXE program interrupt.

Therefore to have the PICAXE program call  the ”interrupt:” section of code upon
a hardware pin interrupt you must follow two steps:
1) use ‘hintsetup’ to allow hardware flag setting
2) then use ‘setintflags’ to actually generate an interrupt upon the setting of those
flags. This means it is possible to interrupt on a combination of any, or all, of the
flags via use of the setintflags command. See the setintflags command description
for more details.

Example:

hintsetup %00000111 ; enable all 3 pins
hintsetup %00000010 ; enable INT1 only
hintsetup %00000000 ; disable all pins

))
))
))

))
))
))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

86

86

www.picaxe.com

hpwm
Syntax:
HPWM  mode, polarity, setting, period, duty
HPWM  DIV4, mode, polarity, setting, period, duty
HPWM  DIV16, mode, polarity, setting, period, duty
HPWM  DIV64, mode, polarity, setting, period, duty
HPWM OFF
- Mode is a variable/constant which specifies the hardware pwm mode

pwmsingle - 0
pwmhalf - 1
pwmfull_f - 2
pwmfull_r - 3

- polarity is a variable/constant which specifies the active polarity (DCBA)
pwmHHHH - 0
pwmLHLH - 1
pwmHLHL - 2
pwmLLLL - 3

- setting is a variable/constant which specifies a specific setting
single mode - bit mask %0000 to %1111 to dis/enable DCBA
half mode - dead band delay (value 0-127)
full mode - not used, enter 0 as default value

- Period is a variable/constant (0-255) which sets the PWM period
(period is the length of 1 on/off cycle i.e. the total mark:space time).

- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.
(duty cycle is the mark or ‘on time’ )

The PWMDIV keyword is used to divide the frequencey by 4, 16 or 64. This slows
down the PWM. 64 is not supported by all parts.

Note that the ‘PWMout Wizard’ from the PICAXE>Wizards menu in the
Programming Editor or AXEpad software can also be used to calculate hpwm
frequencies. See the ‘pwmout’ command for more details about this wizard.

28 pin devices - the 28X1, 28X2, 28X2-3V support hpwm, the 28X2-5V does not.
40 pin devices - the 40X2, 40X2-5V and 40X2-3V parts support hpwm, the 40X1 does
not.
This is a design restriction of the silicon within these particular chips.

Function:
Hardware PWM is an advanced method of motor control using PWM methods. It
can use a number of outputs and modes, as defined by the PIC microcontroller’s
internal pwm hardware.
hpwm can be used instead of, not at the same time as, the pwmout command
on 2 (28/40 pin). However pwmout on 1 can be used simultaneously if desired.

))
))
))

))
))
))
))
))

))
))

$"&'
$"&$

))
))

(!&$

'(#
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

87

87

www.picaxe.com

Description:
hpwm gives access to the advanced pwm controller in the PIC microcontroller. It
uses up to 4 pins, which are labelled here A,B,C,D for convenience.. Some of
these pins normally ‘default’ to input status, in this case they will automatically
be converted to outputs when the hpwm command is processed.

On 20 pin devices: On 14 pin devices:
A is input 5 (C.5) A is input 2 (C.5)
B is input 4 (C.4) B is input 1 (C.4)
C is input 3 (C.3) C is input 0 (C.3)
D is output 4 (B.4) D is output 5 (C.2)

On 28 pin devices: On 40 pin devices:
A is input 2 (C.2) A is portC 2 (C.2)
B is output 2 (B.2) B is input 5 (D.5)
C is output 1 (B.1) C is input 6 (D.6)
D is output 4 (B.4) D is input 7 (D.7)
 Not all pins are used in all hpwm modes. Unused bits are left as normal i/o pins.

single - A and/or B and/or C and/or D (each bit is selectable)
half - A, B only
full - A, B, C, D

The active polarity of each pair of pins can be selected by the polarity setting:
pwm_HHHH - A and C active high, B and D active high
pwm_LHLH - A and C active high, B and D active low
pwm_HLHL - A and C active low, B and D active high
pwm_LLLL - A and C active low, B and D active low

When using active high outputs, it is important to use a pull-down resistor from
the PICAXE pin (A-D) to 0V. When using active-low outputs a pull-up resistor is
essential. The purpose of the pull-up/down resistor is to hold the FET driver in
the correct state whilst the PICAXE chip initialises upon power up. During this
short initialisation period the drivers are not actively driven (ie they ‘float’) and
so the resistor is essential to hold the FET in the required off condition.

Single Mode
Supported: 20X2, 28X1, 28X2, 28X2-3V, 40X2, 40X2-3V
Not Supported: 14M, 14M2, 20M2, 28X2-5V, 40X1, 40X2-5V

In single mode each pin works independently. It is therefore equivalent to a
pwmout command. However more than one pin can be enabled at a time.
Therefore this mode has two main uses:
1) To allow the equivalent of a ‘pwmout’ command on different outputs (than
the pwmout command)
2) To allow pwmout on more than one pin (up to 4) at the same time. The
pwmout applied to each output is identical. This is often used to provide a
brightness control on multiple LEDs or to control multiple motors.

To enable a single output simply set its corresponding bit to ‘1’ (D-C-B-A) within
the settings byte of the command e.g. to enable all 4 pins use  %1111



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

88

88

www.picaxe.com

Half Mode (all parts)
In half mode outputs A and C control a half bridge. C and D are not used. The
PWM signal is output on pin A, while the complementary PWM signal is output
on pin B. The dead band delay ‘setting’ value is a very important value, without a
correct value a shoot-through current may destroy the half bridge setup. This
delay prevents both outputs being active at the same time. The command delay
value (0-127) gives a delay equivalent to (value  x oscillator speed (e.g. 4MHz) /
4). The value depends on the switch on/off characteristics of the FET drivers used.

See the hpwm motor driver datasheet for more details.

Full Mode (all parts)
In full bridge mode outputs A, B, C and D control a full bridge.
In forward mode A is driven to its active state whilst D is modulated. B and C are
in their inactive state.
In reverse mode C is driven to its active state whilst B is modulated. A and D are
in their inactive state.

In this mode a deadband delay is generally not required as only one output is
modulated at one time. However there can be conditions (when near 100% duty
cycle) where current shoot-through could occur. In this case it is recommended to
either 1) switch off pwm before changing directions or 2) use a specialist FET
driver that can switch the FET on quicker than it switches off (the opposite is
normally true on non-specialist parts).

See the hpwm motor driver datasheet for more details.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

89

89

www.picaxe.com

hpwm single mode

hpwm full mode



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

90

90

www.picaxe.com

hpwmduty
Syntax:
HPWMDUTY  duty cycles
- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.

(duty cycle is the mark or ‘on time’ )

Function:
Alter the duty cycle after a hpwm command has been issued.

Information:
The hpwmduty command can be used to alter the hpwm duty cycle without
resetting the internal timer (as occurs with a hpwm command). A hpwm
command must be issued before this command will function.

Information:
See the hpwm command for more details.

Example:

init:
hpwm 0,0,%1111,150,100 ; start pwm

main:
hpwmduty 150 ; set pwm duty
pause 1000 ; pause 1 s
hpwmduty 50 ; set pwm duty
pause 1000 ; pause 1 s
goto main ; loop back to start

))
))
))

))
))
))
))
))

))
))

$"&'
$"&$

))
))

(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

91

91

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))
))

'"#$
))

hserin
Syntax (X2 parts):
HSERIN  spaddress, count {,(qualifier)}
HSERIN  [timeout, address], spaddress, count {,(qualifier)}
- Qualifier is an optional single variable/constant (0-255) which must be

received before subsequent bytes can be received and stored in scratchpad
- Spaddress is the first scratchpad address where bytes are to be received
- Count is the number of bytes to receive
- Timeout  is an optional variables/constants which sets the timeout period in

milliseconds
- Address is a label which specifies where to go if a timeout occurs.

Syntax (M2 parts):
HSERIN  var
- Var is a variable to receive the data byte.

Function:
Serial input via the hardware serial input pin (format 8 data, no parity, 1 stop).

Information:
The hserin command is used to receive serial data from the fixed hardware serial
input pin of the microcontroller. It cannot generally be used with the serial
download input pin - use the serrxd command in this case.

Baud rate is defined by the hsersetup command, which must be issued before this
command can be used.

Users familiar with the serin command will note the hserin command has a
completely different format. This is because the hserin command supports much
higher baud rates than serin, and so is unable to process received bytes ’on the fly’
(e.g. by changing ASCII into binary, as with the serin # prefix), as there is
insufficient time for this processing to occur before the next hserin byte is
received (at high baud rates). Therefore the raw data is simply saved in the
memory and the user program must then process the raw data when all the bytes
have been received.

Example - X2 parts:

Note that on X2 parts you may prefer to background receive the serial data into
the scratchpad (hence not requiring use of this command at all) - see the
hsersetup command for more details (hserin only accepts data when the
command is being processed - background receive accepts data all the time).

hsersetup B19200_16, %00 ; baud 19200 at 16MHz
main:

hserin [1000,main],0,4 ; receive 4 bytes into sp
ptr = 0 ; reset sp pointer
hserout 0,(@ptrinc,@ptrinc,@ptrinc,@ptr) ; echo out
goto main ; loop

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

92

92

www.picaxe.com

Example - M2 parts:

On M2 parts the hserin command is used to transfer background received bytes
into a variable. Up to two bytes can be ‘background received’ at any time during
the PICAXE program (not just when the hserin command is processing) and are
temporarily stored in a 2 deep FIFO buffer. Any more than two bytes are lost.

Therefore on M2 parts the hserin command is non-blocking, it always processes
immediately. If there is received data in the internal buffer the first byte is copied
into the variable, if not the variable is left unaltered and the program continues
on the next line. If two bytes are expected in the buffer it is necessary to use two
separate hserin commands to retrieve both bytes.

hsersetup B9600_4, %00 ; baud 9600 at 4MHz
main:

w1 = $FFFF ; set up a non-valid value
hserin w1 ; receive 1 byte into w1
if w1 <> $FFFF then ; if a byte was received

hserout 0,(w1) ; echo it back out
end if
goto main ; loop



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

93

93

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))
))

'"#$
))

hserout
Syntax:
HSEROUT  break, ( {#}data,{#}data...)
- Break is a  variable/constant  (0 or1) which indicates whether to send a ‘break’

(wake-up) signal before the data is sent.

- Data are variables/constants (0-255) which provide the data to be output.
Optional #’s are for outputting ASCII decimal numbers, rather than raw
characters. Text can be enclosed in speech marks (“Hello”)

Function:
Transmit serial data via the hardware serial output pin (8 data bits, no parity, 1
stop bit).

Information:
The hserout command is used to transmit serial data from the fixed hardware
serial output pin of the microcontroller. It cannot be used with the serial
download output pin - use the sertxd command in this case.

Polarity and baud rate are defined by the hsersetup command, which must be
issued before this command can be used.

The # symbol allows ASCII output. Therefore #b1, when b1 contains the data
126, will output the ASCII characters “1” ”2” ”6” rather than the raw data byte
‘126’.

Example:
hsersetup B2400_4, %10 ; 2400 baud, inverted polarity

main:
for b0 = 0 to 63 ; start a loop

read b0,b1 ; read value into b1
hserout 0,(b1) ; transmit value to serial LCD

next b0 ; next loop

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

94

94

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))
))

'"#$
))

hsersetup
Syntax:
HSERSETUP OFF
HSERSETUP baud_setup, mode
- Baud_setup is a variable/constant which specifies the baud rate:

B300_X where X =
B600_X 4 for 4MHz
B1200_X 8 for 8 MHZ
B2400_X 16 for 16MHz
B4800_X 20 for 20MHZ
B9600_X 32 for 32MHx
B19200_X 40 for 40 MHz
B31250_X 64 for 64MHz
B38400_X
B57600_X
B115200_X

- Mode is a variable/constant whose bits specify special functions (not all
features are supported on all chips) :

bit0 - background receive serial data to the scratchpad (not M2 parts)
bit1 - invert serial output data (0 = ‘T’, 1 = “N”)
bit 2 - invert serial input data (0 = “T”, 1 = “N”)
bit 3 - disable hserout (1 = hserout pin normal i/o)
bit 4 - disable hserin (1 = hserin pin normal i/o)

Function:
Configure the hardware serial port for serial operation.

Information:
The hsersetup command is used to configure the fixed hardware serial port of the
microcontroller. It configures two pins to be dedicated to hserin and hserout.
Both pins are affected, you cannot use just one pin for input or output.

The baud rate is configured by the baud_setup value. This is a number that sets
the baud rate. For convenience a number of predefined values are predefined (e.g.
B9600_4 for baud rate of 9600,n,8,1 at 4MHz operation). However other baud
rates can also be calculated by the formula provided later in this section.

Hardware serial input can be configured in two ways:
1) via hserin command only (mode bit0 = 0)
2) automatic in the background (mode bit0 = 1) (not M2 parts)

In automatic background mode the hardware serial input is fully automated.
Serial data received by the hardware pin is saved into the scratchpad memory area
as soon as it is received. Upon the hsersetup command the serial pointer
(hserptr) is reset to 0. When a byte is received it is saved to this scratchpad
address, the hserptr variable is incremented  and the hserinflag flag is set (must be
cleared by user software). Therefore the value ‘hserptr -1’ indicates the last byte
written, and ‘hserinflag = 1’ indicates a byte has been received (see also the
setintflags command). The scratchpad is a circular buffer that overflows without
warning.

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

95

95

www.picaxe.com

Polarity:
When bit1 is 0, the serial output polarity is ‘True’ which is same as a ‘Txxx’ baud
rate in the ‘serout’ command. In this state the pin idles high and pulses low. This
is the state normally used with a MAX232 type inverter for computer connection.

When bit1 is 1, the serial output polarity is ‘Inverted’ which is same as a ‘Nxxx’
baud rate in the ‘serout’ command. In this state the pin idles low and pulses high.
This is the state normally used with third part devices (e.g. an AXE033 serial LCD)
or director ‘resistor’ connection to a PC.

On some parts the hardware serial input polarity is always true, it cannot be
inverted (ie bit 2 serial input inversion only applies to X2 parts). This is a
limitation of the internal microcontroller structure. Therefore a MAX232 type
inverter is required for computer connections.

Example:
hsersetup B9600_4, %10 ; 9600 baud, inverted TXD

main:
for b0 = 0 to 63 ; start a loop

read b0,b1 ; read value into b1
hserout 0,(b1) ; transmit value to serial LCD

next b0 ; next loop

Advanced Technical Information:
Users may choose to create their own ‘baud_setup’ setting for a specific desired
baud rate. ‘baud_setup’ must be a word value, and can be calculated from the
following equation (where ‘n’ is the  baud_setup value):

Desired baud rate = Fosc /  (4 (n + 1) )

So n = (( Fosc /  baud rate ) /  4 ) - 1

So if Fosc (resonator frequency) is 4MHz, and a desired baud rate of 10400
n = ((4 000 000 /  10400) /  4 ) - 1 = 95 (rounded)

Working the other way around to check the calculation, the exact actual baud rate
at baud_setup value of 95 will be

Baud rate = 4000 000 /  (4 (95+1)) = 10416, which is close enough for most
systems!

Therefore the command uses 95 as the baud_value for baud rate 10400 at 4MHz.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

96

96

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))
))
))
))

hspiin (hshin)
Syntax:
HSPIIN (variable, {,variable,...})
- Variable receives the data.

Function:
The hspiin (hshin also accepted by the compiler) command shifts in a data byte
using the SPI hardware pins.

Description:
This command receives SPI data via the microcontroller’s SPI hardware pins. This
method is faster and more code efficient than using the ‘bit-banged’ spiin
command.

When connecting SPI devices (e.g. EEPROM) remember that the data-in of the
EEPROM connects to the data-out of the PICAXE, and vice versa.

Note that a  hspisetup command must be issued before  this command will
function.

Example:
See the hspisetup command for a detailed example.

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

97

97

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))
))
))
))

hspiout (hshout)
Syntax:
HSPIOUT (data, {,data,...})
- Data is a constant/variable of the byte data to output

Function:
The hspiout (hshout also accepted by the compiler) command shifts out data
byte using the SPI hardware pins.

Description:
This command transmits SPI data via the microcontroller’s SPI hardware pins.
This method is faster and more code efficient than using the ‘bit-banged’ spiout
command.

When connecting SPI devices (e.g. EEPROM) remember that the data-in of the
EEPROM connects to the data-out of the PICAXE, and vice versa.

Note that a  hspisetup command must be issued before  this command will
function.

Due to the internal operation of the microcontrollers SPI port, a hspiout
command will only function when the hspiin ‘input pin’ is in the expected
default state. If this pin is incorrect (e.g. high when it should be low), the hspiout
byte cannot be sent (as the microcontroller automatically detects an SPI error
condition).   After 2.3 seconds of fault condition the PICAXE microcontroller will
automatically reset.

Example:
See the hspisetup command for a detailed example.

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

98

98

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))
))
))
))

hspisetup
Syntax:
HSPISETUP OFF
HSPISETUP mode, spispeed
- Mode is a constant/variable to define the mode

spimode00 (mode 0,0 - input sampled at middle of data time)
spimode01 (mode 0,1 - input sampled at middle of data time)
spimode10 (mode 1,0 - input sampled at middle of data time)
spimode11 (mode 1,1 - input sampled at middle of data time)
spimode00e (mode 0,0 - input sampled at end of data time)
spimode01e (mode 0,1 - input sampled at end of data time)
spimode10e (mode 1,0 - input sampled at end of data time)
spimode11e (mode 1,1 - input sampled at end of data time)

-  Spispeed is a constant/variable to define the clock speed
spifast (clock freq /  4 ) (= 1MHz with 4MHz resonator)
spimedium (clock freq /  16) (= 250kHz with 4MHz resonator)
spislow (clock freq /  64) (= 63 kHz with 4MHz resonator)

Function:
The hpisetup command sets the  microcontroller’s hardware pins to SPI mode.

Description:
This command setups the microcontroller for SPI transmission via the
microcontroller’s SPI hardware pins. This method is faster and more code
efficient than using the ‘bit-banged’ spiout (shiftout) command.

When connecting SPI devices (e.g. EEPROM) remember that the data-in (SDI) of
the EEPROM connects to the data-out (SDO) of the PICAXE, and vice versa.

Advanced Technical Information:
Users familiar with assembler code programming may find the following
microcontroller information useful (see Logic Analyser screenshots overleaf).

spimode00 (CKP=0, CKE=1, SMP=0) Mode (0,0)
spimode01 (CKP=0, CKE=0, SMP=0) Mode (0,1)
spimode10 (CKP=1, CKE=1, SMP=0) Mode (1,0)
spimode11 (CKP=1, CKE=0, SMP=0) Mode (1,1)
spimode00e (CKP=0, CKE=1, SMP=1)
spimode01e (CKP=0, CKE=0, SMP=1)
spimode10e (CKP=1, CKE=1, SMP=1)
spimode11e (CKP=1, CKE=0, SMP=1)

Example:
This example shows how to read and write to a 25LC160 EEPROM.
Pin connection of the EEPROM is as follows:

1 - CS picaxe output 7 (B.7)
2 - SO picaxe input 4 (C.4)
3 - WP +5V
4 - Vss 0V
5 - SI picaxe input 5 (C.5)
6 - SCK picaxe input 3 (C.3)
7 - HOLD +5V
8 - Vdd +5V

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

99

99

www.picaxe.com

init:
hspisetup spimode11e, spimedium ; spi mode 1,1

low cs ; enable chip select
hspiout (6) ; send write enable
high cs ; disable chip select

low cs ; enable chip select
hspiout (1,0) ; remove block protection
high cs ; disable chip select
pause 5 ; wait write time

main:
low cs ; enable chip select
hspiout (6) ; send write enable
high cs ; disable chip select

low cs ; enable chip select
hspiout (2,0,5,25) ; write 25 to address 5
high cs ; disable chip select
pause 5 ; wait write time of 5ms

low cs ; enable chip select
hspiout (6) ; send write enable
high cs ; disable chip select

low cs ; enable chip select
hspiout (3,0,5) ; send read command, address 5
hspiin (b1) ; shift in the data
high cs ; disable chip select

low cs ; enable chip select
hspiout (4) ; send write disable
high cs ; disable chip select

debug
pause 1000
goto main



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

100

100

www.picaxe.com

hspiout - mode00

hspiout - mode01



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

101

101

www.picaxe.com

hspiout - mode10

hspiout - mode11



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

102

102

www.picaxe.com

i2cslave
This command is deprecated, please consider using the hi2csetup command instead.

Syntax:
I2CSLAVE  slaveaddress, mode, addresslen
- SlaveAddress  is the i2c slave address
- Mode is the keyword i2cfast (400kHz) or i2cslow (100kHz) at 4Mhz
- Addresslen is the keyword i2cbyte or i2cword

Function:
The i2cslave command (slavei2c also accepted by the compiler) is used to
configure the PICAXE pins for i2c use (in MASTER mode) and to define the type
of i2c device to be addressed.

Description:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

If you are using a single i2c device you generally only need one i2cslave
command within a program. With the PICAXE-18X device you should issue the
command at the start of the program to configure the SDA and SCL pins as
inputs to conserve power.

After the i2cslave has been issued, readi2c and writei2c can be used to access the
i2c device.

Slave Address
The slave address varies for different i2c devices (see table below). For the
popular 24LCxx series serial EEPROMs the address is commonly %1010xxxx.

Note that some devices, e.g. 24LC16B, incorporate the block address (ie the
memory page) into bits 1-3 of the slave address. Other devices include the
external device select pins into these bits. In this case care must be made to
ensure the hardware is configured correctly for the slave address used.

Bit 0 of the slave address is always the read/write bit. However the value entered
using the i2cslave command is ignored by the PICAXE, as it is overwritten as
appropriate when the slave address is used within the readi2c and writei2c
commands.

Mode
Speed mode of the i2c bus can be selected by using one of the two keywords
i2cfast or i2cslow (400kHz or 100kHz). The internal slew rate control of the
microcontroller is automatically enabled at the 400kHz speed (28X/40X). Note
that the 18X internal architecture means that the slower speed is always used with
the 18X, as it is not capable of processing at the faster speed.

Effect of Increased Clock Speed:
Ensure you modify the speed keyword (i2cfast_8, i2cslow_8) at 8MHz or
(i2cfast_16, i2cslow_16) at 16MHz for correct operation.

))
))

!"#$

))
))
))

'"#$
'"&

))
$"&
$"&'
$"&$

(!&
(!&'
(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

103

103

www.picaxe.com

Address Length
i2c devices commonly have a single byte (i2cbyte) or double byte (i2cword)
address. This must be correctly defined for the type of i2c device being used. If
you use the wrong definition erratic behaviour will be experienced.
When using the i2cword address length you must also ensure the ‘address’ used
in the readi2c and writei2c commands is a word variable.

Note this is the EEPROM address length only, not the data bytes themselves. It is
not possible to transmit a word value directly over i2c (e.g. word w0 must be
transmitted as the two separate bytes b0 and b1)

Settings for some common parts:

Device Type Slave Speed Mode
24LC01B EE 128 %1010xxxx i2cfast i2cbyte
24LC02B EE 256 %1010xxxx i2cfast i2cbyte
24LC04B EE 512 %1010xxbx i2cfast i2cbyte
24LC08B EE 1kb %1010xbbx i2cfast i2cbyte
24LC16B EE 2kb %1010bbbx i2cfast i2cbyte
24LC64 EE 8kb %1010dddx i2cfast i2cword
24LC128 EE 16kb %1010dddx i2cfast i2cword
24LC256 EE 32kb %1010dddx i2cfast i2cword
24LC512 EE 64kb %1010dddx i2cfast i2cword
DS1307 RTC %1101000x i2cslow i2cbyte
MAX6953 5x7 LED %101ddddx i2cfast i2cbyte
AD5245 Digital Pot %010110dx i2cfast i2cbyte
SRF08 Sonar %1110000x i2cfast i2cbyte
AXE033 I2C LCD $C6 i2cslow i2cbyte
CMPS03 Compass %1100000x i2cfast i2cbyte
SPE030 Speech %1100010x i2cfast i2cbyte

x = don’t care (ignored)
b = block select (selects internal memory page within device)
d = device select (selects device via external address pin polarity)

See readi2c or writei2c for example program for DS1307 real time clock.

;5

35

49
/

72
G

5
4/

G

<HI

5.

35

/JEKH7-7L/M

2&A&77-7L21

N*C7$&FO7B#EP'KA7QE&#R@
&#'7B#'-S"AA'R7%"AT7BUJJ-
RE%F7#'@"@AE#@7EF7AT'7"FBUA
B"F@+7VT'@'7$U@A7Q'
#'$EW'R7AE7U@'7AT'749/
R'W"K'7J"H'7AT"@+

<HI

5.

35

L/M

L21

X
4/

1
?

GNEA'7AT'749/7R'W"K'
$&O7T&W'7KT"B7'F&QJ'Y
%#"A'7B#EA'KA7&FR8E#
&RR#'@@7B"F@7AT&A7%"JJ
&J@E7#'ZU"#'7KEFF'KA"EF
AE7357E#75.7&@
&BB#EB#"&A'+



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

104

104

www.picaxe.com

if...then \  elseif...then \  else \  endif
Syntax:
IF variable ?? value {AND/ OR variable ?? value ...} THEN
{code}
ELSEIF variable ?? value {AND/ OR variable ?? value ...} THEN
{code}
ELSE
{code}
ENDIF

Additional option on X1/X2 parts only :
IF variable BIT value SET THEN
{code}
ELSEIF variable BIT value CLEAR THEN
{code}
ELSE
{code}
ENDIF

- Variable(s) will be compared to value(s).
- Value is a variable/constant.
- Bit is the bit number to check if set (1) or clear (0)

?? can be any of the following conditions
= equal to
is equal to
<> not equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Function:
Compare and conditionally execute sections of code.

Information:
The multiple line  if...then\ elseif \  else \  endif command is used to test input pin
variables (or general variables) for certain conditions. If these conditions are met
that section of the program code is executed, and then program flow jumps to the
endif position. If the condition is not met program flows jumps directly to the
next elseif or else command.

The ‘else’ section of code is only executed if none of the if or elseif conditions
have been true.

When using inputs the input variable (pin1, pin2 etc) must be used (not the
actual pin name 1, 2 etc.) i.e. the line must read ‘if pin1 = 1 then...’, not ‘if 1 = 1
then...’

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

105

105

www.picaxe.com

Note that

if b0 > 1 then (goto) label ;(single line structure)
if b0 > 1 then gosub label ;(single line structure)
if b0 > 1 then…else…endif ;(multi line structure)

are 3 completely separate structures which cannot be combined. Therefore the following
line is invalid as it tries to combine both a single and multi-line  structure

if b0 > 1 then goto label else goto label2

This is invalid as the compiler does not know which structure you are trying to use
ie:

if b0 > 1 then goto label : else : goto label2
or

if b0 > 1 then : goto label : else : goto label2

To achieve this structure the line must be re-written as

if b0 > 1 then
goto label

else
goto label2

endif

or

if b0 > 1 then : goto label : else : goto label2 : endif

The : character separates the sections into correct syntax for the compiler.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

106

106

www.picaxe.com

if...then {goto}

if...and/ or..then {goto}
Syntax:
IF variable ?? value {AND/ OR variable ?? value ...} THEN address
IF variable BIT value SET/ CLEAR THEN address (X1/ X2 parts only)
- Variable(s) will be compared to value(s).
- Value is a variable/constant.
- Address is a label which specifies where to go if condition is true.
The keyword goto after then is optional.

?? can be any of the following conditions
= equal to
is equal to
<> not equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Function:
Compare and conditionally jump to a new program position.

Information:
The if...then command is used to test input pin variables (or general variables) for
certain conditions. If these conditions are met program flow jumps to the new
label. If the condition is not met the command is ignored and program flow
continues on the next line.

When using inputs the input variable (pin1, pinC.2 etc) must be used (not the
actual pin name 1, 2 etc.) i.e. the line must read ‘if pinC.2 = 1 then...’, not ‘if 2 = 1
then...’.  The if...then command only checks an input at the time the command is
processed. Therefore it is normal to put the if...then command within a program
loop that regularly scans the input. For details on how to permanently scan for an
input condition using interrupts see the ‘setint’ command.

Examples:
Checking an input within a loop.

main:
if pinC.0 = 1 then

goto flsh ; jump to flsh if pin0 is high
end if
goto main ; else loop back to start

flsh: high B.1 ; switch on output B.1
pause 5000 ; wait 5 seconds
low B.1 ; switch off output B.1
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

107

107

www.picaxe.com

if porta...then {goto}

if portc...then {goto}
Syntax:
IF PORTA pin ?? value {AND/ OR variable ?? value ...} THEN address
IF PORTC pin ?? value {AND/ OR variable ?? value ...} THEN address
- Pin is the porta /  portc pin to be tested
- Value is a variable/constant.
- Address is a label which specifies where to go if condition is true.
The keyword goto after then is optional.

?? can be any of the following conditions
= equal to
is equal to
<> not equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Function:
Compare and conditionally jump to a new program position.

Information:
This command is only used with the older 28X/X1 parts. For newer parts use
the direct PORT.PIN notation instead e.g. if pinC.1 = 1 then...

Some PICAXE parts have additional inputs on porta and portc. In this case the
PORTA or PORTC keyword is inserted after IF to redirect the whole line to the
desired port. It is possible to use AND and OR within the command, but all pins
tested will be on the same port, it is not possible to mix ports within one line.

The if...then command only checks an input at the time the command is
processed. Therefore it is normal to put the if...then command within a program
loop that regularly scans the input. For details on how to permanently scan for an
input condition using interrupts see the ‘setint’ command.

Examples:
Checking a porta input within a loop.

main:
if porta pin0 = 1 then flsh ; jump to flsh if pin0 is high
goto main ; else loop back to start

flsh: high 1 ; switch on output 1
pause 5000 ; wait 5 seconds
low 1 ; switch off output 1
goto main ; loop back to start

))
))
))

))
$"&
$"&'

))

(!&
(!&'

))

))
))
))
))
))

))
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

108

108

www.picaxe.com

if...then exit

if...and/ or...then exit
Syntax:
IF variable ?? value {AND/ OR variable ?? value ...} THEN EXIT
IF variable BIT value SET/ CLEAR THEN EXIT (X1/ X2 parts only)
- Variable(s) will be compared to value(s).
- Value is a variable/constant.

?? can be any of the following conditions
= equal to
is equal to
<> not equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Function:
Compare and conditionally exit a do...loop or for...next loop

Information:
The if...then exit command is used to test input pin variables (or general
variables) for certain conditions. If these conditions are met the current loop
(do...loop or for...next) is prematurely ended.

Multiple compares can be combined with the AND and OR keywords. For
examples on how to use AND and OR see the if...then goto command.

Example:
Checking an input within a do loop.

do
if pinC.0 = 1 then exit ; exit if pinC.0 is high

loop

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

109

109

www.picaxe.com

if...then gosub

if...and/ or...then gosub
Syntax:
IF variable ?? value {AND/ OR variable ?? value ...} THEN GOSUB address
IF variable BIT value SET/ CLEAR THEN GOSUB address (X1/ X2 parts only)
- Variable(s) will be compared to value(s).
- Value is a variable/constant.
- Address is a label which specifies where to gosub if condition is true.

?? can be any of the following conditions
= equal to
is equal to
<> not equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Function:
Compare and conditionally execute a gosub command.

Information:
The if...then gosub command is used to test input pin variables (or general
variables) for certain conditions. If these conditions are met a sub procedure is
executed. If the condition is not met the command is ignored and program flow
continues on the next line. Any executed sub procedure returns to the next line.

When using inputs the input variable (pin1, pin2 etc) must be used (not the
actual pin name 1, 2 etc.) i.e. the line must read ‘if pin1 = 1 then gosub...’, not ‘if
1 = 1 then gosub...’

The if...then gousb command only checks an input at the time the command is
processed. Therefore it is normal to put the if...then command within a program
loop that regularly scans the input.

Multiple compares can be combined with the AND and OR keywords. For
examples on how to use AND and OR see the if...then goto command.

Example:
Checking an input within a loop.

main:
if pinC.0 = 1 then gosub flsh ; sub to flsh if pin0 is high
goto main ; else loop back to start

flsh: high B.1 ; switch on output B.1
pause 5000 ; wait 5 seconds
low B.1 ; switch off output B.1
return

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

110

110

www.picaxe.com

2 input AND gate
if pinC.1 = 1 and pinC.2 = 1 then gosub label

3 input AND gate
if pinC.0 =1 and pinC.1 =1 and pinC.2 = 1 then gosub label

2 input OR gate
if pinC.1 =1 or pinC.2 =1 then gosub label

analogue value between certain values
readadc 1,b1
if b1 >= 100  and b1 <= 200 then gosub label

To read the whole input port at once the variable ‘pins’ can be used
if pins = %10101010 then gosub label

To read the whole input port and mask individual inputs (e.g. 6 and 7)
let b1 = pins & %11000000
if b1 = %11000000 then gosub label

The words is (=), on (1) and off (0) can also be used with younger students.

loop1:
if pin0 is on then gosub flsh ; flsh if pin0 is high
goto loop1 ; else loop back to start

flsh: high B.1 ; switch on output B.1
pause 5000 ; wait 5 seconds
low B.1 ; switch off output B.1
return ; return



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

111

111

www.picaxe.com

inc
Syntax:
INC var
- var is the variable to increment

Function:
Increment (add 1 to) the variable value.

Information:
This command is shorthand for ‘let var = var + 1’

Example:

for b1 = 1 to 5
  inc b2
next b1

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

112

112

www.picaxe.com

!"#

!
"

#
$

%
&

'
(

)*
+

,

-.

/.

-0

/0

!*.

infrain
This command is deprecated, please consider using the irin command instead.

Syntax:
INFRAIN

Function:
Wait until a new infrared command is received.

Description:
This command is primarily used to wait for
a new infrared signal from the infrared TV
style transmitter. It can also be used with an
infraout signal from a separate PICAXE chip.
All processing stops until the new command
is received. The value of the command
received is placed in the predefined variable
‘infra’.

The infra-red input is input 0 on all parts that
support this command. See also infrain2.
The variable ‘infra’ is separate from the other byte
variables.

After using this command you may have to
perform a ‘hard reset’ to download a new
program to the microcontroller. See the
Serial Download section for more details.

Effect of Increased Clock Speed:
This command will only function at 4MHz

Use of TVR010 Infrared Remote Control:
The table shows the value that will be
placed into the variable ‘infra’ depending
on which key is pressed on the transmitter.

Before use (or after changing batteries) the
TVR010 transmitter must be programmed
with ‘Sony’ codes as follows:

1. Insert 3 AAA size batteries, preferably
alkaline.

2. Press ‘C’.  The LED should light.
3. Press ‘2’.  The LED should flash.
4. Press ‘1’.  The LED should flash.
5. Press ‘2’.  The LED should flash and then go out.

Key Value
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
P+ 10
0 11
V+ 12
P- 13

10+ 14
V- 15

Mute 16
Power 17

35

<H
I

;5

<+IU!
.

0
9
,

,-.%&/

"FBUA7B"F

0
9
,

))
))
))

))
))
))
))

'"&

$"%
$"&
))
))

(!&
))
))

))
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

113

113

www.picaxe.com

Example:

main:
infrain ;wait for new signal
if infra = 1 then swon1 ;switch on 1
if infra = 2 then swon2 ;switch on 2
if infra = 3 then swon3 ;switch on 3
if infra = 4 then swoff1 ;switch off 1
if infra = 5 then swoff2 ;switch off 2
if infra = 6 then swoff3 ;switch off 3
goto main

swon1: high 1
goto main

swon2: high 2
goto main

swon3: high 3
goto main

swoff1: low 1
goto main

swoff2: low 2
goto main

swoff3: low 3
goto main

!"#

! " #

$ % &

' ( )

*

+ ,

-. /./.

-0 /0!*.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

114

114

www.picaxe.com

infrain2
This command is deprecated, please consider using the irin command instead.

Syntax:
INFRAIN2

Function:
Wait until a new infrared command is received.

Description:
This command is used to wait for an
infraout signal from a separate PICAXE
chip.  It can also be used with an infrared
signal from the infrared TV style transmitter
(i.e.. can replace infrain). All processing
stops until the new command is received.
The value of the command received is
placed in the predefined variable ‘infra’. This
will be a number between 0 and 127. See
the infraout command description for more
details about the values that will be received
from the TVR010 remote control.

On the PICAXE-08M/14M/20M ‘infra’ is another name for ‘b13’ - it is the same
variable.  The infra-red input is fixed to a single input - see the PICAXE pinout
diagrams. On M2 parts the compiler outputs an irin command using b13.

After using this command you may have to perform a ‘hard reset’ to download a
new program to the microcontroller. See the Serial Download section for more
details.

Effect of Increased Clock Speed:
This command will only function at 4MHz. Use a setfreq m4 command before
this command if using 8MHz speed,

Example:
main:

infrain2 ; wait for new signal
if infra = 1 then swon1 ; switch on 1
if infra = 4 then swoff1 ; switch off 1
goto main

swon1: high 1
goto main

swoff1: low 1
goto main

35

<H
I

;5

<+IU!
.

0
9
,

,-.%&/

"FBUA7B"F

0
9
,

))
'"%
'"#

'"#$
'"&

))
!"#

!"#$

$"%
$"&
))
))

(!&
))
))

'(#
'(#$

))
$!#$

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

115

115

www.picaxe.com

infraout
This command is deprecated, please consider using the irout command instead.

Syntax:
INFRAOUT device,data
- device is a constant/variable (valid device ID 1-31)
- data is a constant/variable (valid data 0-127)

Function:
Transmit an infra-red signal, modulated at 38kHz.

Description:
This command is used to transmit the infra-red data to Sony ™ device (can also be
used to transmit data to another PICAXE that is using the infrain or infrain2
command). Data is transmitted via an infra-red LED (connected on output 0)
using the SIRC (Sony Infra Red Control) protocol.

device - 5 bit device ID (0-31)
data - 7 bit data (0-127)

When using this command to transmit data to another PICAXE the device ID
used must be value 1 (TV). The infraout command can be used to transmit any of
the valid TV command 0-127. Note that the Sony protocol only uses 7 bits for
data, and so data of value 128 to 255 is not valid.

Therefore the valid infraout command for use with infrain2 is
infraout 1,x ‘;(where x = 0 to 127)

Sony SIRC protocol:
The SIRC protocol uses a 38KHz modulated infra-red signal consisting of a start
bit (2.4ms) followed by 12 data bits (7 data bits and 5 device ID bits). Logic level
1 is transmitted as a 1.2 ms pulse, logic 0 as a 0.6ms pulse. Each bit is separated
by a 0.6ms silence period.

Example:
All commercial remote controls repeat the signal every 45ms whilst the button is
held down. Therefore when using the PICAXE system higher reliability may be
gained by repeating the transmission (e.g. 10 times) within a for..next loop.

for b1 = 1 to 10
   infraout 1,5
   pause 45
next b1

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 ID0 ID1 ID2 ID3 ID4

2.4ms 1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

))
!"#

!"#$

))
))

'"#
'"#$

))

))
))
))
))

))
))
))

'(#
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

116

116

www.picaxe.com

Interaction between infrain, infrain2 and infraout command.

Infrain and Infraout
The original infrain command
was designed to react to signals
from the TV style remote control
TVR010. Therefore it only
acknowledges the data sent from
the 17 buttons on this remote
(1-9, 0. 10+, P+, P-, V+, V-,
MUTE, PWR) with a value
between 1 and 17.

The infraout command can be
used to ‘emulate’ the TVR010
remote to transit signals that will
be acceptable for the infrain
command. The values to be used
for each TV remote button are
shown in the table.

Infrain2 and Infraout
The infrain2 command will react
to any of the valid TV data
commands (0 to 127).

The infraout command can be
used to transmit any of the valid
TV command 0-127. Note that
the Sony protocol only uses 7
bits for data, and so data of 128
to 255 is not valid.

Therefore the valid infraout
command for use with infrain2
is (where x = 0 to 127)
infraout 1,x

Effect of Increased Clock Speed:
This command will only function at 4MHz.

Common Sony Device IDs.:
TV 1 VTR3 11
VTR1 2 Surround Sound 12
Text 3 Audio 16
Widescreen 4 CD Player 17
MDP / Laserdisk 6 Pro-Logic 18
VTR2 7 DVD 26

TVR010 TV
Remote
Control

infraout /  irout
command

infrain
variable data

value

infrain2, Irin
variable data

value

1 infraout 1,0 1 0

2 infraout 1,1 2 1

3 infraout 1,2 3 2

4 infraout 1,3 4 3

5 infraout 1,4 5 4

6 infraout 1,5 6 5

7 infraout 1,6 7 6

8 infraout 1,7 8 7

9 infraout 1,8 9 8

P+ infraout 1,16 10 16

0 infraout 1,9 11 9

V+ infraout 1,18 12 18

P- infraout 1,17 13 17

10+ infraout 1,12 14 12

V- infraout 1,19 15 19

MUTE infraout 1,20 16 20

PWR infraout 1,21 17 21

!"#

!
"

#
$

%
&

'
(

)*
+

,

-.

/.

-0

/0

!*.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

117

117

www.picaxe.com

Button infraout data for a typical Sony TV (device ID 1)
          000     1 button
          001     2 button
          002     3 button
          003     4 button
          004     5 button
          005     6 button
          006     7 button
          007     8 button
          008     9 button
          009     10 button/0 button
          011     Enter
          016     channel up
          017     channel down
          018     volume up
          019     volume down
          020     Mute
          021     Power
          022     Reset TV
          023     Audio Mode:Mono/SAP/Stereo
          024     Picture up
          025     Picture down
          026     Color up
          027     Color down
          030     Brightness up
          031     Brightness down
          032     Hue up
          033     Hue down
          034     Sharpness up
          035     Sharpness down
          036     Select TV tuner
          038     Balance Left
          039     Balance Right
          041     Surround on/off
          042     Aux/Ant
          047     Power off
          048     Time display
          054     Sleep Timer
          058     Channel Display
          059     Channel jump
          064     Select Input Video1
          065     Select Input Video2
          066     Select Input Video3



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

118

118

www.picaxe.com

Button infraout data for a typical Sony TV (continued...)

          074     Noise Reduction on/off
          078     Cable/Broadcast
          079     Notch Filter on/off
          088     PIP channel up
          089     PIP channel down
          091     PIP on
          092     Freeze screen
          094     PIP position
          095     PIP swap
          096     Guide
          097     Video setup
          098     Audio setup
          099     Exit setup
          107     Auto Program
          112     Treble up
          113     Treble down
          114     Bass up
          115     Bass down
          116     + key
          117     - key
          120     Add channel
          121     Delete channel
          125     Trinitone on/off
          127     Displays a red RtestS on the screen



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

119

119

www.picaxe.com

Button infraout data for a typical Sony VCR (device ID 2 or 7)

          000     1 button
          001     2 button
          002     3 button
          003     4 button
          004     5 button
          005     6 button
          006     7 button
          007     8 button
          008     9 button
          009     10 button/0 button
          010     11 button
          011     12 button
          012     13 button
          013     14 button
          020     X 2 play w/sound
          021     power
          022     eject
          023     L-CH/R-CH/Stereo
          024     stop
          025     pause
          026     play
          027     rewind
          028     FF
          029     record
          032     pause engage
          035     X 1/5 play
          040     reverse visual scan
          041     forward visual scan
         042     TV/VTR
         045     VTR from TV
         047     power off
          048     single frame reverse/slow reverse play
          049     single frame advance/slow forward play
         060     aux
         070     counter reset
        078     TV/VTR
         083     index (scan)
        106      edit play
        107     mark



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

120

120

www.picaxe.com

input
Syntax:
INPUT  pin,pin,pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:
Make pin an input.

Information:
This command is only required on microcontrollers with programmable input/
output pins. This command can be used to change a pin that has been configured
as an output back to an input.
All pins are configured as inputs on first power-up (unless the pin is a fixed
output). Fixed pins are not affected by this command. These pins are:

08, 08M, 08M2 0 = fixed output 3 = fixed input
14M2 B.0 = fixed output C.3 = fixed input
18M2 C.3 = fixed output C.4, C.5 = fixed input
20M2, 20X2 A.0 = fixed output C.6 = fixed input
28X2, 40X2 A.4 = fixed output

Example:

main:
input B.1 ; make pin input
reverse B.1 ; make pin output
reverse B.1 ; make pin input
output B.1 ; make pin output

))
))
))

'"#$
))

!"
!"#

!"#$

))
))
))

$"&$

))
))

(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

121

121

www.picaxe.com

))
))
))
))
))

))
))
))

))
))
))
))

))
))
))

))
'(#$

))
$!#$

))

inputtype
Syntax:
INPUTTYPE  mask
- Mask is a variable/constant which specifies the input pin type.

Function:
Make pin an input of hardware silicon type TTL (0) or ST (1).

Information:
Microcontroller inputs can be of two types, TTL compatible or ST (Schmitt
Trigger). On most PICAXE chips this type is predefined by the internal silicon
design and cannot be changed. Many chips contain a mixture of both types. See
the tables overleaf for more details about the type of each PICAXE chip input.

However, with improvements in silicon technology, on the more recent M2 parts
each input can be user configured to be either the TTL (0) or ST (1) type. Mask is
a word length value where bits0-7 correspond to B.0 to B.7 and bits8-15
correspond to C.0 to C.7. Setting a bit to 1 makes it a ST type input, setting abit
to 0 makes it a TTL type (power up value is 0, TTL, on all pins).

The difference between TTL/ST input pin types is as follows:

Schmitt Trigger (ST) Examples: 5V 3V
Status ‘high’ if > 0.8 * Vsupply >4V >2.4V
Status ‘low’ if < 0.2 * Vsupply <1V <0.6V

TTL (Supply voltage > 4.5V)
Status ‘high’ if > 2.0V >2V n/a
Status ‘low’ if < 0.8V <0.8V n/a

TTL (Supply voltage < 4.5V)
Status ‘high’ if > 0.25 * Vsupply + 0.8V n/a >1.55V
Status ‘low’ if < 0.15 * Vsupply n/a <0.45V

Values between these voltages are  ‘floating’ and cannot be reliably used as either
a high or low signal.

Therefore in general TTL inputs are considered more versatile, as, for instance, at a
5V supply they will be guaranteed a ‘high’ signal at above 2V instead of at above
4V. However on some occasions Schmitt Trigger inputs may be desired.

Example:

main:
inputtype %0000000000001111 ; make pin B.0 to B.3 ST
inputtype %0000111100000000 ; make pin C.0 to C.3 ST



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

122

122

www.picaxe.com

Input Pin Types:

        08M2    08M     08
Serin   TTL     TTL     TTL
C.1     TTL     TTL     TTL
C.2     ST      ST      ST
C.3     TTL     TTL     TTL
C.4     TTL     TTL     TTL

        14M2*   14M
Serin   TTL     TTL
B.0     TTL     n/a
B.1     TTL     n/a
B.2     TTL     n/a
B.3     TTL     n/a
B.4     TTL     n/a
B.5     TTL     n/a
C.0     TTL     TTL
C.1     TTL     TTL
C.2     TTL     TTL
C.3     TTL     TTL
C.4     TTL     TTL

* 14M2 pins can be reconfigured via ‘inputtype’ command

        18M2    18X     18M     18A     18
Serin   TTL     ST      ST      ST      ST
B.0     TTL     n/a     n/a     n/a     n/a
B.1     TTL     n/a     n/a     n/a     n/a
B.2     TTL     n/a     n/a     n/a     n/a
B.3     TTL     n/a     n/a     n/a     n/a
B.4     TTL     n/a     n/a     n/a     n/a
B.5     TTL     n/a     n/a     n/a     n/a
B.6     TTL     n/a     n/a     n/a     n/a
B.7     TTL     n/a     n/a     n/a     n/a
C.0     TTL     TTL     TTL     TTL     ST
C.1     TTL     TTL     TTL     TTL     ST
C.2     TTL     TTL     TTL     TTL     ST
C.5     TTL     n/a     n/a     n/a     n/a
C.6     TTL     ST      ST      ST      ST
C.7     TTL     ST      ST      ST      ST



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

123

123

www.picaxe.com

        20X2    20M2*   20M
Serin   TTL     TTL     TTL
B.0     TTL     TTL     n/a
B.1     TTL     TTL     n/a
B.2     ST      TTL     n/a
B.3     ST      TTL     n/a
B.4     ST      TTL     n/a
B.5     TTL     TTL     n/a
B.6     TTL     TTL     n/a
B.7     TTL     TTL     n/a
C.0     TTL     TTL     TTL
C.1     ST      TTL     ST
C.2     ST      TTL     ST
C.3     ST      TTL     ST
C.4     ST      TTL     ST
C.5     ST      TTL     ST
C.6     TTL     TTL     TTL
C.7     TTL     TTL     TTL

* 20M2 pins can be reconfigured via ‘inputtype’ command

        28X2    28X2-5V 28X2-3V 28X1    28X     28A     28
Serin   ST      ST      ST      ST      ST      ST      ST
A.0     TTL     TTL     TTL     TTL     TTL     ADC     ADC
A.1     TTL     TTL     TTL     TTL     TTL     ADC     ADC
A.2     TTL     TTL     TTL     TTL     TTL     ADC     ADC
A.3     TTL     TTL     TTL     TTL     TTL     ADC     ADC
B.0     TTL     TTL     TTL     n/a     n/a     n/a     n/a
B.1     TTL     TTL     TTL     n/a     n/a     n/a     n/a
B.2     TTL     TTL     TTL     n/a     n/a     n/a     n/a
B.3     TTL     TTL     TTL     n/a     n/a     n/a     n/a
B.4     TTL     TTL     TTL     n/a     n/a     n/a     n/a
B.5     TTL     TTL     TTL     n/a     n/a     n/a     n/a
B.6     TTL     TTL     TTL     n/a     n/a     n/a     n/a
B.7     TTL     TTL     TTL     n/a     n/a     n/a     n/a
C.0     TTL     ST      ST      ST      ST      ST      ST
C.1     TTL     ST      ST      ST      ST      ST      ST
C.2     TTL     ST      ST      ST      ST      ST      ST
C.3     TTL     ST      ST      ST      ST      ST      ST
C.4     TTL     ST      ST      ST      ST      ST      ST
C.5     TTL     ST      ST      ST      ST      ST      ST
C.6     TTL     ST      ST      ST      ST      ST      ST
C.7     TTL     ST      ST      ST      ST      ST      ST



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

124

124

www.picaxe.com

        40X2    40X2-5V 40X2-3V 40X1    40X
Serin   ST      ST      ST      ST      ST
A.0     TTL     TTL     TTL     TTL     TTL
A.1     TTL     TTL     TTL     TTL     TTL
A.2     TTL     TTL     TTL     TTL     TTL
A.3     TTL     TTL     TTL     TTL     TTL
A.5     TTL     ST      ST      ADC     ADC
A.6     TTL     ST      ST      ADC     ADC
A.7     TTL     ST      ST      ADC     ADC
B.0     TTL     TTL     TTL     n/a     n/a
B.1     TTL     TTL     TTL     n/a     n/a
B.2     TTL     TTL     TTL     n/a     n/a
B.3     TTL     TTL     TTL     n/a     n/a
B.4     TTL     TTL     TTL     n/a     n/a
B.5     TTL     TTL     TTL     n/a     n/a
B.6     TTL     TTL     TTL     n/a     n/a
B.7     TTL     TTL     TTL     n/a     n/a
C.0     TTL     ST      ST      ST      ST
C.1     TTL     ST      ST      ST      ST
C.2     TTL     ST      ST      ST      ST
C.3     TTL     ST      ST      ST      ST
C.4     TTL     ST      ST      ST      ST
C.5     TTL     ST      ST      ST      ST
C.6     TTL     ST      ST      ST      ST
C.7     TTL     ST      ST      ST      ST
D.0     TTL     TTL     TTL     TTL     TTL
D.1     TTL     TTL     TTL     TTL     TTL
D.2     TTL     TTL     TTL     TTL     TTL
D.3     TTL     TTL     TTL     TTL     TTL
D.4     TTL     TTL     TTL     TTL     TTL
D.5     TTL     TTL     TTL     TTL     TTL
D.6     TTL     TTL     TTL     TTL     TTL
D.7     TTL     TTL     TTL     TTL     TTL



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

125

125

www.picaxe.com

irin
Syntax:
IRIN  pin, variable
IRIN  [timeout], pin, variable
IRIN  [timeout, address], pin, variable
- Timeout  is a variable/constant which sets

the timeout period in milliseconds
- Address is a label which specifies where to go if a timeout occurs.
- pin is a variable/constant which specifies the i/o pin to use.
- Variable receives the data

Function:
Wait until a new infrared command
is received. This command is similar
to the ‘infrain2’ command found on
other PICAXE devices, but can be
used on any input pin.

Description:
This command is used to wait for an
infraout signal from a separate
PICAXE chip.  It can also be used
with an infrared signal from the infrared TV style transmitter (i.e.. can replace
infrain). All processing stops until the new command is received, but after a
timeout period program flow will jump to ‘address’. The value of the command
received is placed into the defined variable. This will be a number between 0 and
127. See the infraout command description for more details about the values that
will be received from the TVR010 remote control.

To replace an infrain /  infrain2 command with irin use these two lines:
symbol infra = b13 ; define an infra variable
irin C.0, infra ; read input C.0 into infra

Effect of Increased Clock Speed:
This command will automatically use the internal 4MHz resonator for correct
operation.

Example:
main:

irin [1000,main],C.3,b0 ;wait for new signal
if b0 = 1 then swon1 ;switch on 1
if b0 = 4 then swoff1 ;switch off 1
goto main

swon1: high B.1
goto main

swoff1: low B.1
goto main

Start Data0 Data1 Data2 Data3 Data4 Data5 Data6 ID0 ID1 ID2 ID3 ID4

2.4ms 1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

1.2 or
0.6ms

0
9
,

35

<H
I

;5

<+IU!
.

0
9
,

,-.%&/

"FBUA7B"F

))
))

!"#$

))
))
))

'"#$
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

126

126

www.picaxe.com

TVR010 TV
Remote
Control

irout  command
infrain

variable data
value

infrain2, irin
variable data

value

1 irout pin,1,0 1 0

2 irout pin,1,1 2 1

3 irout pin,1,2 3 2

4 irout pin,1,3 4 3

5 irout pin,1,4 5 4

6 irout pin,1,5 6 5

7 irout pin,1,6 7 6

8 irout pin,1,7 8 7

9 irout pin,1,8 9 8

P+ irout pin,1,16 10 16

0 irout pin,1,9 11 9

V+ irout pin,1,18 12 18

P- irout pin,1,17 13 17

10+ irout pin,1,12 14 12

V- irout pin ,1,19 15 19

MUTE irout pin,1,20 16 20

PWR irout pin,1,21 17 21



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

127

127

www.picaxe.com

))
))

!"#$

))
))
))

'"#$
))

))
))

$"&'
$"&$

))
(!&'
(!&$

irout
Syntax:
IROUT pin,device,data
- pin is a variable/constant which specifies the i/o pin to use.
- device is a constant/variable (valid device ID 1-31)
- data is a constant/variable (valid data 0-127)

Function:
Transmit an infra-red signal, modulated at 38kHz.
This command is similar to the ‘infraout’ command found on earlier PICAXE
devices, but can be used on any output pin.

Description:
This command is used to transmit the infra-red data to Sony ™ device (can also be
used to transmit data to another PICAXE that is using the irin, infrain or infrain2
command). Data is transmitted via an infra-red LED using the SIRC (Sony Infra
Red Control) protocol.

device - 5 bit device ID (0-31)
data - 7 bit data (0-127)

When using this command to transmit data to another PICAXE the device ID
used must be value 1 (TV). The irout command can be used to transmit any of
the valid TV command 0-127. Note that the Sony protocol only uses 7 bits for
data, and so data of value 128 to 255 is not valid.

Therefore the valid infraout command for use with infrain2/infrain/irin is
irout  1,1,x ; (where x = 0 to 127)

Sony SIRC protocol:
The SIRC protocol uses a 38KHz modulated infra-red signal consisting of a start
bit (2.4ms) followed by 12 data bits (7 data bits and 5 device ID bits). Logic level
1 is transmitted as a 1.2 ms pulse, logic 0 as a 0.6ms pulse. Each bit is separated
by a 0.6ms silence period. For more information about the protocol see the
‘infraout’ command description.

Effect of Increased Clock Speed:
This command will automatically use the internal 4MHz resonator for correct
operation.

Example:
All commercial remote controls repeat the signal every 45ms whilst the button is
held down. Therefore when using the PICAXE system higher reliability may be
gained by repeating the transmission (e.g. 10 times) within a for..next loop.

for b1 = 1 to 10
   irout 1,1,5
   pause 45
next b1

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

128

128

www.picaxe.com

TVR010 TV
Remote
Control

irout  command
infrain

variable data
value

infrain2, irin
variable data

value

1 irout pin,1,0 1 0

2 irout pin,1,1 2 1

3 irout pin,1,2 3 2

4 irout pin,1,3 4 3

5 irout pin,1,4 5 4

6 irout pin,1,5 6 5

7 irout pin,1,6 7 6

8 irout pin,1,7 8 7

9 irout pin,1,8 9 8

P+ irout pin,1,16 10 16

0 irout pin,1,9 11 9

V+ irout pin,1,18 12 18

P- irout pin,1,17 13 17

10+ irout pin,1,12 14 12

V- irout pin ,1,19 15 19

MUTE irout pin,1,20 16 20

PWR irout pin,1,21 17 21



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

129

129

www.picaxe.com

))
))
))

kbin
Syntax:
KBIN variable
KBIN [timeout], variable
KBIN [timeout, address],variable
KBIN #variable (M2 parts only)
KBIN [timeout], #variable (M2 parts only)
KBIN [timeout, address], #variable (M2 parts only)
- Variable receives the key
- Timeout  is a variable/constant which sets

the timeout period in milliseconds
- Address is a label which specifies where to go if a timeout occurs.

Function:
Wait until a new keyboard press is received. This command is similar to the keyin
command found on older PICAXE parts, but also includes a timeout option.

Information:
This command is used to wait for a new key press from a computer keyboard
(connected directly to the PICAXE - not the keyboard used whilst programming,
see keyled command for connection details). All processing stops until the new
key press is received, but program flow will jump to address after the timeout
period. The value of the key press received is placed in the variable.

Note the design of the keyboard means that the value of each key is not logical,
each key value must be identified from the table (see table on next page). Some
keys use two numbers, the first $E0 is ignored by the PICAXE and so keyvalue
will return the second number. Note all the codes are in hex and so should be
prefixed with $ whilst programming. The PAUSE and PRNT SCRN keys cannot be
used reliably as they have a special long multi-digit code. Also note that some
keys may not work correctly when the ‘Nums Lock’ LED is set on with the keyled
command.

To overcome some of these issues the #variable option has been added to M2
parts. In this case the ASCII character of the keyboard letter is loaded into the
variable. Unsupported characters like ‘Ctrl’ will get an ASCII “?” returned.

For older parts yhe sample file ‘keyin.bas’ (installed in the \samples folder)
provides details on how you can convert the key presses into ASCII characters by
means of a look up table.

Effect of Increased Clock Speed:
This command will automatically use the internal 4MHz resonator for correct
operation.

))
))
))

'"#$
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

130

130

www.picaxe.com

Example:

main:
kbin [1000,main],b1
if b1 = $45 then

low b.1
end if
if b1= $25 then

high b.1
end if
goto main

!"# "$%& !"# "$%& !"# "$%&

! "# $ %& ' &(

) *+ , -. /0-123 .45.-

" #* 6 -& -789 "%5.-

: +* ; (( <=>< :45.-

- &* ? :( -/-@-: #45.-

A )* <1B) %% :2- $%5.-

> &+ -"!<1 $* 2:>< !45.-

9 ++ )!/ :. C800!= (45.-

3 +& 1<!" D( C800!@ )%5.-

E )+ /A391@ *# C800!: *45.-

B *& @0/"@ &# C800!0 &45.-

@ )& 3=>@ A#5.- 7=2 44

7 !+ /@!@ ## F<B !&5.-

2 #+ /A910 $( G<B "4

8 && @0/"0 &#5.- 6<B )4

< :& 3=>0 4*5.- H<B $4

I (# /@!0 ##5.- 2-<B !(5.-

0 :* 1<<! A*5.- J<B #4

1 )# 0-/2- !( .<B .4

/ "* "1- %4 #<B $%

= "+ #A (. *<B *4

K !* *A %. +<B !4

C :# +A &. &<B )%

L ** &A %. (<B +4

M (+ (A +. %<B &4

N !# %A ). 4<B "%

. (& 4A +D D<B (4

# %# DA !. $<B :4

* -# $A #. O )(

+ %* .#A $. P "&

& (* ##A D4 Q *(

( -* *#A 4. 5 #&

% %+ 0"1/20< RR J $&

4 :+ @@80"1 -4 F !&

D -+ -1=!< RR



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

131

131

www.picaxe.com

keyin
This command is deprecated, please consider using the kbin command instead.

Syntax:
KEYIN

Function:
Wait until a new keyboard press is received.

Information:
This command is used to wait for a new key press from a computer keyboard
(connected directly to the PICAXE - not the keyboard used whilst programming,
see keyled command for connection details). All processing stops until the new
key press is received. The value of the key press received is placed in the
predefined variable ‘keyvalue’.

Note the design of the keyboard means that the value of each key is not logical,
each key value must be identified from the table on the next page. Some keys use
two numbers, the first $E0 is ignored by the PICAXE and so keyvalue will return
the second number. Note all the codes are in hex and so should be prefixed with
$ whilst programming. The PAUSE and PRNT SCRN keys cannot be used reliably
as they have a special long multi-digit code.. Also note that some keys may not
work correctly when the ‘Nums Lock’ LED is set on with the keyled command.

The sample file ‘keyin.bas’ (installed in the \samples folder) provides details on
how you can convert the key presses into ASCII characters by means of a look up
table.

After using this command you may have to perform a ‘hard reset’ to download a
new program to the microcontroller. See the Serial Download section for more
details.

Effect of Increased Clock Speed:
This command will only function at 4MHz.

Example:

main:
keyin ;wait for new signal
if keyvalue = $45 then swon1 ;switch on 1
if keyvalue = $25 then swoff1 ;switch off 1
goto main

swon1: high 1
goto main

swoff1: low 1
goto main

))
))
))

))
'"%

))
))

'"&

))
$"&
))
))

(!&
))
))

))
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

132

132

www.picaxe.com

!"# "$%& !"# "$%& !"# "$%&

! "# $ %& ' &(

) *+ , -. /0-123 .45.-

" #* 6 -& -789 "%5.-

: +* ; (( <=>< :45.-

- &* ? :( -/-@-: #45.-

A )* <1B) %% :2- $%5.-

> &+ -"!<1 $* 2:>< !45.-

9 ++ )!/ :. C800!= (45.-

3 +& 1<!" D( C800!@ )%5.-

E )+ /A391@ *# C800!: *45.-

B *& @0/"@ &# C800!0 &45.-

@ )& 3=>@ A#5.- 7=2 44

7 !+ /@!@ ## F<B !&5.-

2 #+ /A910 $( G<B "4

8 && @0/"0 &#5.- 6<B )4

< :& 3=>0 4*5.- H<B $4

I (# /@!0 ##5.- 2-<B !(5.-

0 :* 1<<! A*5.- J<B #4

1 )# 0-/2- !( .<B .4

/ "* "1- %4 #<B $%

= "+ #A (. *<B *4

K !* *A %. +<B !4

C :# +A &. &<B )%

L ** &A %. (<B +4

M (+ (A +. %<B &4

N !# %A ). 4<B "%

. (& 4A +D D<B (4

# %# DA !. $<B :4

* -# $A #. O )(

+ %* .#A $. P "&

& (* ##A D4 Q *(

( -* *#A 4. 5 #&

% %+ 0"1/20< RR J $&

4 :+ @@80"1 -4 F !&

D -+ -1=!< RR



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

133

133

www.picaxe.com

kbled (keyled)
Syntax:
kbled  mask
- Mask is a variable/constant which specifies the LEDs to use.

Function:
Set/clear the keyboard LEDs

Information:
This command is used to control the LEDs on a computer keyboard (connected
directly to the PICAXE - not the keyboard used whilst programming). The mask
value sets the operation of the LEDs.

Mask is used as follows:
Bit 0 - Scroll Lock (1=on, 0=off)
Bit 1 - Num Lock (1=on, 0=off)
Bit 2 - Caps Lock (1=on, 0=off)
Bit 3-6 - Not Used
Bit 7 - Disable Flash (1=no flash, 0=flash)

On reset mask is set to 0, and so all three LEDs will flash when the ‘keyin’
command detects a new key hit. This provides the user with feedback that the key
press has been detected by the PICAXE. This flashing can be disabled by setting
bit 7 of mask high. In this case the condition of the three LEDs can be manually
controlled by setting/clearing bits 2-0.

Effect of Increased Clock Speed:
This command will only function at 4MHz.

Example:

main:
keyled %10000111 ; all LEDs on
pause 500 ; pause 0.5s
keyled %10000000 ; all LEDs off
pause 500 ; pause 0.5s
goto main ; loop

;5

35

[
G

\
*

]
1

6
2

<HI

5.

35

/JEKH

2&A&

N*C7$E@A7B#EP'KA7QE&#R@
&#'7B#'-S"AA'R7%"AT7BUJJ-
RE%F7#'@"@AE#@7EF7AT'7"FBUA
B"F@+7VT'@'7$U@A7Q'
#'$EW'R7AE7U@'7AT'
H'OQE&#R7J"H'7AT"@+

<HI

5.

35

"FBUA:

"FBUAI

X
4/

1
?

G

<

,

;

0

0)123*#232)4-5*6,7+$8
07-72&A&7^AE7X4/1?G7"FBUAI_
97-7NEA7U@'R
,7-7357`#EUFR
<7-7.;57LUBBJO
;7-7/JEKH7^AE7X4/1?G7"FBUA:_
:7-7NEA7U@'R

LEKH'A7^EF7BKQ_

XJUa7^EF7K&QJ'_

! "

# $

% &

" !

$ #

& %

))
))
))

))
))
))

'"#$
'"&

))
$"&
$"&'
$"&$

(!&
(!&'
(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

134

134

www.picaxe.com

let
Syntax:
{LET}  variable = {-} value ?? value ...
- Variable will be operated on.
- Value(s) are variables/constants which operate on variable.

Function:
Perform variable manipulation (wordsize-to-wordsize).
Maths is performed strictly from left to right.
The ‘let’ keyword is optional.

Information:
The microcontroller supports word (16 bit) mathematics. Valid integers are 0 to
65535. All mathematics can also be performed on byte (8 bit) variables (0-255).
The microcontroller does not support fractions or negative numbers.

However it is sometimes possible to rewrite equations to use integers instead of
fractions, e.g.
let w1 = w2 /  5.7
is not valid, but
let w1 = w2 *  10 /  57
is mathematically equal and valid.

The mathematical functions supported by all parts are:

+ ; add
- ; subtract
* ; multiply (returns low word of result)
** ; multiply (returns high word of result)
/ ; divide (returns quotient)
/ / (or %) ; modulus divide (returns remainder)

MAX ; limit value to a maximum value
MIN ; limit value to a minimum value

AND & ; bitwise AND
OR | ; bitwise OR (typed as SHIFT + \   on UK keyboard)
XOR ^ ; bitwise XOR (typed as SHIFT + 6 on UK keyboard)
NAND ; bitwise NAND
NOR ; bitwise NOR
ANDNOT &/ ; bitwise AND NOT (NB this is not the same as NAND)
ORNOT | / ; bitwise OR NOT (NB this is not the same as NOR)
XNOR ^/ ; bitwise XOR NOT (same as XNOR)

The X1 and X2 parts also support

<< ; shift left
>> ; shift right
*/ ; multiply (returns middle word of result)

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

135

135

www.picaxe.com

The X1 and X2 parts also support these unary commands

SIN ; sine of  angle  (0 to 65535) in degrees (value * 100 is returned)
COS ; cosine of angle in degrees (value * 100 is returned)
SQR ; square root
INV ; invert
NCD ; encoder (2n power encoder)
DCD ; decoder (2n  power decoder)
BINTOBCD ; convert binary value to BCD
BCDTOBIN ; convert BCD value to binary

REV ; reverse a number of bits
DIG ; return a BCD digit

All mathematics is performed strictly from left to right.

On X1 and X2 parts it is possible to enclose part equations in brackets e.g.
let w1 = w2 /  (  b5 + 2)

On all other chips it is not possible to enclose part equations in brackets e.g.
let w1 = w2 /  (  b5 + 2)

is not valid. This would need to be entered as an equivalent e.g.
let w1 = b5 + 2
let w1 = w2 /  w1

Further Information:
For further information please see the ‘variable mathematics’ section of this
manual.

Example:

main:
inc b0 ; increment b0
sound B.7,(b0,50) ; make a sound
if b0 > 50 then rest ; after 50 reset
goto main ; loop back to start

rest:
let b0 = b0 max 10 ; limit b0 back to 10

; as 10 is the maximum value
goto main ; loop back to start



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

136

136

www.picaxe.com

let dirs /  dirsc =
For M2 and X2 parts see the next page.

Syntax:
{LET}  dirs = value
{LET}  dirsc = value
- Value(s) are variables/constants which operate on the data direction register.

Function:
Configure pins as inputs or outputs (let dirs =) (08/08M/08M2)
Configure pins as inputs or outputs on portc (let dirsc =) (14M)
Configure pins as inputs or outputs on portc (let dirsc =) (28X/40X)
Configure pins as inputs or outputs on portc (let dirsc =) (28X1/40X1)

Information:
Some microcontrollers allow inputs to be configured as inputs or outputs. In
these cases it is necessary to tell the microcontroller which pins to use as inputs
and/or outputs (all are configured as inputs on first power up). There are a
number of ways of doing this:

1) Use the input/output/reverse commands.
2) Use an output command (high, pulsout etc) that automatically configures the

pin as an output.
3) Use the let dirs = statement.

When working with this statement it is conventional to use binary notation. With
binary notation pin 7 is on the left and pin 0 is on the right. If the bit is set to 0
the pin will be an input, if the bit is set to 1 the pin will be an output.

Note that the 8 pin PICAXE have some pre-configured pins (e.g. pin 0 is always
an output and pin 3 is always an input). Adjusting the bits for these pins will
have no effect on the microcontroller.

Example:

let dirs = %00000011 ; switch pins 0 and 1 to outputs
let pins = %00000011 ; switch on outputs 0 and 1

!"
!"#

))

))
))
))
))
))

))
$"&
$"&'

))

(!&
(!&'

))

'(#
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

137

137

www.picaxe.com

let dirsA /  dirsB /  dirsC /  dirsD =
Syntax:
{LET}  dirsA = value
{LET}  dirsB = value
{LET}  dirsC = value
{LET}  dirsD = value
- Value(s) are variables/constants which operate on the data direction register.

Function:
Configure pins as inputs or outputs.

Information:
Many PICAXE microcontrollers allow pins to be configured as inputs or outputs.
In these cases it is necessary to tell the microcontroller which pins to use as
inputs and/or outputs (all are configured as inputs on first power up). There are a
number of ways of doing this:

1) Use the input/output/reverse commands.
2) Use an output command (high, pulsout etc) that automatically configures the

pin as an output.
3) Use the let dirs = statement.

When working with this statement it is conventional to use binary notation. With
binary notation pin 7 is on the left and pin 0 is on the right. If the bit is set to 0
the pin will be an input, if the bit is set to 1 the pin will be an output.

Note that some pins are fixed as inputs/outputs and so using this command will
have no effect on these pins.

Example:

let dirsB = %00000011 ‘ switch pins 0 and 1 to outputs
let pinsB = %00000011 ‘ switch on outputs 0 and 1

))
))

!"#$

))
))
))

'"#$
))

))
))
))

$"&$

))
))

(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

138

138

www.picaxe.com

let pins /  pinsc =
For M2 and X2 parts see the next page.

Syntax:
{LET}  pins = value
{LET}  pinsc = value
- Value(s) are variables/constants which operate on the output port.

Function:
Set/clear all outputs on the main output port (let pins = ).
Set/clear all outputs on portc (let pinsc =)

Information:
High and low commands can be used to switch individual outputs high and low.
However when working with multiple outputs it is often convenient to change all
outputs simultaneously. When working with this statement it is conventional to
use binary notation. With binary notation output7 is on the left and output0 is
on the right. If the bit is set to 0 the output will be off (low), if the bit is set to 1
the output will be on (high).

Do not confuse the input port with the output port. These are separate ports on
all except the 8 pin PICAXE. The command
let pins = pins
means ‘make the output port the same as the input port’.

Note that on devices that have input/output bi-directional pins (08 /  08M), this
command will only function on pins configured as outputs. In this case it is
necessary to configure the pins as outputs (using a let dirs = command) before
use of this command.

Example:

let pins = %10000011 ; switch outputs 7,0,1 on
pause 1000 ; wait 1 second
let pins = %00000000 ; switch all outputs off

!"
!"#

))

'"
'"%
'"#

'"#$
'"&

'(#
))

))
$"&
$"&'

))

(!&
(!&'

))

$!#
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

139

139

www.picaxe.com

let pinsA /  pinsB /  pinsC /  pinsD =
Syntax:
{LET}  pinsA = value
{LET}  pinsB = value
{LET}  pinsC = value
{LET}  pinsD = value
- Value(s) are variables/constants which operate on the output port.

Function:
Set/clear all outputs on the selected port.

Information:
High and low commands can be used to switch individual outputs high and low.
However when working with multiple outputs it is often convenient to change all
outputs simultaneously. When working with this statement it is conventional to
use binary notation. With binary notation output7 is on the left and output0 is
on the right. If the bit is set to 0 the output will be off (low), if the bit is set to 1
the output will be on (high).

Note that  this command will only function on pins configured as outputs. In
this case it is necessary to configure the pins as outputs (using a let dirsX =
command) before use of this command.

Example:
let dirsB = %10000011 ; 7,0,1 as outputs
let pinsB = %10000011 ; switch outputs 7,0,1 on
pause 1000 ; wait 1 second
let pinsB = %00000000 ; switch all outputs off

))
))

!"#$

))
))
))

'"#$
))

))
))
))

$"&$

))
))

(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

140

140

www.picaxe.com

lookdown
Syntax:
LOOKDOWN  target,(value0,value1...valueN),variable
- Target is a variable/constant which will be compared to Values.
- Values are variables/constants.
- Variable receives the result (if any).

Function:
Get target’s match number (0-N) into variable (if match found).

Information:
The lookdown command should be used when you have a specific value to
compare with a pre-known list of options. The target variable is compared to the
values in the bracket. If it matches the 5th item (value4) the number ‘4’ is
returned in variable. Note the values are numbered from 0 upwards (not 1
upwards). If there is no match the value of variable is left unchanged.

In this example the variable b2 will contain the value 3 if b1 contains “d” and the
value 4 if b1 contains “e”

Example:

lookdown b1,(“abcde”),b2

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

141

141

www.picaxe.com

lookup
Syntax:
LOOKUP  offset,(data0,data1...dataN),variable
- Offset is a variable/constant which specifies which data# (0-N) to place in

Variable.

- Data are variables/constants.
- Variable receives the result (if any).

Function:
Lookup data specified by offset and store in variable (if in range).

Description:
The lookup command is used to load variable with different values. The value to
be loaded in the position in the lookup table defined by offset. In this example if
b0 = 0 then b1 will equal “a”, if b0 =1 then b1 will equal “b” etc. If offset exceeds
the number of entries in the lookup table the value of variable is unchanged.

Each lookup is limited to 256 entries, but each entry may be a bit, byte or word
constant or variable.

Example:

main:
lookup b0,(“abcde”),b1 ; put ASCII character into b1
inc b0 ; increment b0
if b0 < 4 then main ; loop
end

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

142

142

www.picaxe.com

low
Syntax:
LOW  pin {,pin,pin...}
- Pin is a variable/constant  which specifies the i/o pin to use.

Function:
Make pin an output and switch low.

Information:
The low command switches an output off (low).
On microcontrollers with configurable input/output pins this command also
automatically configures the pin as an output.

Example:

main: high B.1 ; switch on output B.1
pause 5000 ; wait 5 seconds
low B.1 ; switch off output B.1
pause 5000 ; wait 5 seconds
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

143

143

www.picaxe.com

low portc
Syntax:
LOW  PORTC pin {,pin,pin...}
- Pin is a variable/constant  which specifies the i/o pin to use.

Function:
Make pin on portc output low.

This command is only used on older 14M and 28X/28X1 parts.
For newer M2 and X2 parts use the PORT.PIN notation directly e.g. low C.2

Information:
The high command switches a portc output off (low).

Example:

main: high portc 1 ‘ switch on output 1
pause 5000 ‘ wait 5 seconds
low portc 1 ‘ switch off output 1
pause 5000 ‘ wait 5 seconds
goto main ‘ loop back to start

))
))
))
))
))

))
))
))

))
$"&
$"&'

))

(!&
(!&'

))

'(#
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

144

144

www.picaxe.com

nap
Syntax:
NAP  period
- Period is a variable/constant which determines the duration of the reduced-

power nap (normally 0-7 but M2 parts also support 0-14).

Function:
Nap for a short period.  Power consumption is
reduced, but some timing accuracy is lost.  A
longer delay is possible with the sleep command.

Information:
The nap command puts the microcontroller into
low power mode for a short period of time.

When in low power mode all timers are switched
off and so the pwmout and servo commands will
cease to function (see the ‘doze’ command). The
nominal approximate period of time is given by
this table.

Due to tolerances in the microcontrollers
internal timers, this time is subject to -50 to
+100% tolerance. The external temperature
affects these tolerances and so no design that
requires an accurate time base should use this
command.

A ‘hard-reset’ will always be required during very
long naps.

Effect of increased clock speed:
The nap command uses the internal watchdog
timer which is not affected by changes in resonator clock speed.

Example:

main: high B.1 ; switch on output B.1
nap 4 ; nap for 288ms
low B.1 ; switch off output B.1
nap 7 ; nap for 2.3 s
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'

))

(!&
(!&'

))

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$

))

Period Time Delay

0 18ms

1 32ms

2 72ms

3 144ms

4 288ms

5 576ms

6 1.1s

7 2.3s

8 4s

9 8s

10 16s

11 32s

12 64s (1 min)

13 128s (2 mins)

14 256s (4 mins)



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

145

145

www.picaxe.com

on...goto
Syntax:
ON  offset GOTO address0,address1...addressN
- Offset is a variable/constant which specifies which Address# to use (0-N).
- Addresses are labels which specify where to go.

Function:
Branch to address specified by offset (if in range).

Information:
This command allows a jump to different program positions depending on the
value of the variable ‘offset’. If offset is value 0, the program flow will jump to
address0, if offset is value 1 program flow will jump to adddress1 etc.
If offset is larger than the number of addresses the whole command is ignored
and the program continues at the next line.

This command is identical in operation to branch

Example:

reset1:let b1 = 0
low B.0
low B.1
low B.2
low B.3

main: pause 1000
inc b1
if b1 > 3 then reset1
on b1 goto btn0,btn1, btn2, btn3
goto main

btn0: high B.0
goto main

btn1: high B.1
goto main

btn2: high B.2
goto main

btn3: high B.3
goto main

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

146

146

www.picaxe.com

on...gosub
Syntax:
ON offset GOSUB address0, address1, ...addressN
- Offset is a variable/constant which specifies which subprocedure to use (0-N).
- Addresses are labels which specify which subprocedure to gosub to.

Function:
gosub address specified by offset (if in range).

Information:
This command allows a conditional gosub depending on the value of the variable
‘offset’. If offset is value 0, the program flow will gosub to address0, if offset is
value 1 program flow will gosub to adddress1 etc.
If offset is larger than the number of addresses the whole command is ignored
and the program continues at the next line.

The return command of the sub procedure will return to the line after on...gosub.
This command counts as a single gosub within the compiler.

Example:

reset1:let b1 = 0
low B.0
low B.1
low B.2
low B.3

main: pause 1000
inc b1
if b1 > 3 then reset1
on b1 gosub btn0,btn1, btn2, btn3
goto main

btn0: high B.0
return

btn1: high B.1
return

btn2: high B.2
return

btn3: high B.3
return

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

147

147

www.picaxe.com

output
Syntax:
OUTPUT  pin,pin, pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:
Make pin an output.

Information:
This command is only required on microcontrollers with programmable input/
output pins . This command can be used to change a pin that has been
configured as an input to an output.
All pins are configured as inputs on first power-up (unless the pin is a fixed
output). Fixed pins are not affected by this command. These pins are:

08, 08M, 08M2 0 = fixed output 3 = fixed input
14M2 B.0 = fixed output C.3 = fixed input
18M2 C.3 = fixed output C.4, C.5 = fixed input
20M2, 20X2 A.0 = fixed output C.6 = fixed input
28X2, 40X2 A.4 = fixed output

Example:

main:
input B.1 ; make pin input
reverse B.1 ; make pin output
reverse B.1 ; make pin input
output B.1 ; make pin output

!"
!"#

!"#$

))
))
))

'"#$
))

))
))
))

$"&$

))
))

(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

148

148

www.picaxe.com

owin
Syntax:
owin  pin,mode,(variable, variable...)
- Pin is a variable/constant which specifies input pin to use.
- Mode is a variable/  constant which selects the mode.
  Each bit of ‘mode’ has a separate function:

bit 0 - reset pulse sent before data
bit 1 - reset pulse sent after data
bit 2 - bit mode (receive 1 bit rather than 8 bits (1 byte))
bit 3 - apply strong pullup after data

For convenience these predefined constants may be used:
0 ownoreset 4 ownoreset_bit
1 owresetbefore 5 owresetbefore_bit
2 owresetafter 6 owresetafter_bit
3 owresetboth 7 owresetboth_bit

- Variables(s) receives the data.

Function:
Read data (either full byte or single bit) from one-wire device connected to an
input pin, with optional reset pulses before and after the read.

This command cannot be used on the following pins due to silicon restrictions:
20X2 C.6 = fixed input

Information:
Use of one-wire parts is covered in more detail in the separate ‘One-Wire Tutorial’
datasheet.

This command is used to read data from a one-wire device.

Example:

; Read raw temperature value from DS18B20
; (this achieves a similar function to the readtemp12 command)

main:
owout C.1,%1001,($CC,$44)

; send ‘reset’ then ‘skip ROM’
; then ‘convert’ then apply ‘pullup’

pause 750 ; wait 750ms with strong pullup
owout C.1,%0001,($CC,$BE)

; send ‘reset’ then ‘skip ROM’
; then ‘read temp’ command

owin C.1,%0000,(b0,b1) ; read in result
sertxd (#w0,CR,LF) ; transmit value
goto main

))
))
))
))
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

149

149

www.picaxe.com

owout
Syntax:
owout  pin,mode,(variable,variable...)
- Pin is a variable/constant  which specifies the pin to use.
- Mode is a variable/  constant which selects the mode.
  Each bit of ‘mode’ has a separate function:

bit 0 - reset pulse sent before data
bit 1 - reset pulse sent after data
bit 2 - bit mode (send 1 bit rather than 8 bits (1 byte))
bit 3 - apply strong pullup after data

For convenience these predefined constants may be used:
0 ownoreset 4 ownoreset_bit
1 owresetbefore 5 owresetbefore_bit
2 owresetafter 6 owresetafter_bit
3 owresetboth 7 owresetboth_bit

- Variables(s) contain the data to be sent.

Function:
Write data to one-wire device connected to an input pin, with optional reset
pulses before and after the write.

Information:
Use of one-wire parts is covered in more detail in the separate ‘One-Wire Tutorial’
datasheet.

This command is used to write data to a one-wire device. Some devices, such as
the DS18B20 temperature sensor, may require a strong pullup after a byte is
written.

This command cannot be used on the following pins due to silicon restrictions:
20X2 C.6 = fixed input

Example:

; Read raw temperature value from DS18B20
; (this achieves a similar function to the readtemp12 command)

main:
owout C.1,%1001,($CC,$44)

; send ‘reset’ then ‘skip ROM’
; then ‘convert’ then apply ‘pullup’

pause 750 ; wait 750ms with strong pullup
owout C.1,%0001,($CC,$BE)

; send ‘reset’ then ‘skip ROM’
; then ‘read temp’ command

owin C.1,%0000,(b0,b1) ; read in result
sertxd (#w0,CR,LF) ; transmit value
goto main

))
))
))
))
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

150

150

www.picaxe.com

pause
Syntax:
PAUSE  milliseconds
- Milliseconds is a variable/constant (0-65535) which specifies how many

milliseconds to pause (at 8MHz on X2 parts,  4MHz on all other parts)

Function:
Pause for some time.  The duration of the pause is as accurate as the resonator
time-base, and presumes a 4MHz resonator (8MHz on X2 parts).

Information:
The pause command creates a time delay (in milliseconds). The longest time
delay possible is just over 65 seconds. To create a longer time delay (e.g. 5
minutes) use a for...next loop

for b1 = 1 to 5 ‘ 5 loops
pause 60000 ‘ wait 60 seconds
next b1

During a pause the only way to react to inputs is via an interrupt (see the setint
command for more information). Do not put long pauses within loops that are
scanning for changing input conditions.

When using time delays longer than 5 seconds it may be necessary to perform a
‘hard reset’ to download a new program to the microcontroller. See the Serial
Download section for more details.

Effect of increased clock speed:
The  timebase is altered if the default frequency is altered, for instance running
4MHz parts at 8MHz will result in a pause half the expected length.

During M2 part multi task programs the accuracy of pause is reduced due to the
parallel processing. The minimum resolution is around 20ms in multi task
programs. For greater accuracy use single task mode.

Example:

main: high B.1 ; switch on output B.1
pause 5000 ; wait 5 seconds
low B.1 ; switch off output B.1
pause 5000 ; wait 5 seconds
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

151

151

www.picaxe.com

pauseus
Syntax:
PAUSEUS  microseconds
- Microseconds is a variable/constant (0-65535) which specifies how many

multiples of 10 microseconds to pause (at 8MHz on X2 parts, else 4MHz).

Function:
Pause for some time.  The duration of the pause is as accurate as the resonator
time-base, and presumes a 4MHz resonator (8MHz on X2 parts).

Information:
The pauseus command creates a time delay (in multiples of 10 microseconds at
4MHz). As it takes a discrete amount of time to execute the command, small
time delays may be inaccurate due to this ‘overhead processing’  time. This
inaccuracy decreases as the delay gets longer.

Effect of increased clock speed:
The  timebase is reduced to 5us at 8MHz and 2.5us at 16MHz (non-X2 parts).

Example:

main: high B.1 ; switch on output B.1
pauseus 5000 ; wait 50 000us = 50 milliseconds
low B.1 ; switch off output B.1
pauseus 5000 ; wait 50 000us = 50 milliseconds
goto main ; loop back to start

))
))
))

'"#$
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

152

152

www.picaxe.com

peek
Syntax:
PEEK  location,variable,variable,WORD wordvariable...
- Location is a variable/constant specifying a register address.
- Variable is a byte variable where the data is returned. To use a word variable

the keyword WORD must be used before the wordvariable name)

Function:
Read data from the microcontroller RAM registers. This allows use of additional
storage variables not defined by the bxx variables.

Information:
For M2 and X2 parts see the information on the following page.

For non M2/X2 parts:

The function of the poke/peek commands is two fold.

The most commonly used function is to store temporary byte data in the
microcontrollers spare ‘storage variable’ memory.  This allows the general purpose
variables (b0, b1 etc.) to be re-used in calculations.

Addresses $50 to $7E are general purpose registers that can be used freely.

Addresses $C0 to $EF can also be used by PICAXE-18X.
Addresses $C0 to $FF can also be used by PICAXE-28X, 40X
Addresses $C0 to $EF can also be used by PICAXE-28X1, 40X1

The second function of the peek command is for experienced users to study the
internal microcontroller SFR (special function registers).

Addresses $00 to $1F and $80 to $9F are special function registers (e.g. PORTB)
which determine how the microcontroller operates. Avoid using these addresses
unless you know what you are doing! The command uses the microcontroller
FSR register which can address register banks 0 and 1 only.

Addresses $20 to $4F and $A0 to $BF are general purpose registers reserved for
use with the PICAXE bootstrap interpreter. Poking these registers will produce
unexpected results and could cause the interpreter to crash.

When word variables are used (with the keyword WORD) the two bytes of the
word are saved/retrieved in a little endian manner (ie low byte at address, high
byte at address + 1)

Example:
peek 80,b1 ; put value of register 80 into variable b1
peek 80, word w1

))
!"#

!"#$

'"
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

153

153

www.picaxe.com

For M2 parts:

The function of the poke/peek commands is amended on  M2 parts.

The M2 parts have up to 512 bytes of user RAM.

The peek and poke commands are used to read and write to all 256 bytes of the
user RAM. However the lower 28 bytes (addresses 0 to 27) also correspond to the
variables b0 to b27. Therefore these lower bytes can be accessed in two ways, via
the bxx variable name or via the peek/poke command. The higher variables can
only be accessed via the peek/poke commands.

See the peeksfr and pokesfr commands for details on how to access the internal
microcontroller SFR (special function registers).

Note that on the 18M2 part bytes 128-255 are reserved during parallel multi-tasking
mode (they are freely available in single task mode). This is a restriction of the limited
available RAM on this particular part and does not apply to the 14M2/20M2 parts.

Example:
peek 80,b1 ; put value of register 80 into variable b1

For X2 parts:

The function of the poke/peek commands is amended on  X2 parts.

The 20X2 parts have 128 bytes of user RAM (+128 more in scratchpad)
The 28X2 parts have 256 bytes of user RAM (+1024 more in scratchpad)
The 40X2 parts have 256 bytes of user RAM (+1024 more in scratchpad)

The peek and poke commands are used to read and write to all 256 bytes of the
user RAM. However the lower 56 bytes (addresses 0 to 55) also correspond to the
variables b0 to b55. Therefore these lower bytes can be accessed in two ways, via
the bxx variable name or via the peek/poke command. The higher variables can
only be accessed via the peek/poke commands.

See the peeksfr and pokesfr commands for details on how to access the internal
microcontroller SFR (special function registers).

Example:
peek 80,b1 ; put value of register 80 into variable b1



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

154

154

www.picaxe.com

peeksfr
Syntax:
PEEKSFR  location,variable,variable,...
- Location is a variable/constant specifying a register address.  Valid values are 0

to 255 (not all implemented, see below).
- Variable is a byte variable where the data is returned.

Function:
Read data from the  microcontroller special function registers. This allows
experienced users to read the on-board peripheral microcontroller settings. This
command is for M2 and X2 parts only, for other parts see the peek command.

Information:
The peeksfr command is for experienced users to study the internal
microcontroller SFR (special function registers).

Only SFRs associated with peripherals (e.g. ADC or timers) may be accessed.
Peeking or poking SFRs associated with PICAXE program operation (e.g. FSR,
EEPROM or TABLE registers) will cause the PICAXE chip to immediately reset.

X2 parts
As location can only take the value 0-255 on X2 locations taken from the
Microchip datasheet drop the initial ‘F’ from the hexadecimal value
e.g. BAUDCON FB8h becomes $B8

M2 parts
As location can only take the value 0-255 the value for M2 locations taken from
the Microchip datasheet are created as follows:

Bit 7-5 Memory Bank $00-$07
Bit4-0 Addresses $0C to $1F on this bank

($00-$0B are invalid and cause instant reset)
e.g. BAUDCON, address 01Fh on bank 3, becomes %011 11111

Example:
peeksfr $9B,b1 ; Read OSCTUNE into variable b1

))
))

!"#$

))
))
))

'"#$
))

))
))
))

$"&$

))
))

(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

155

155

www.picaxe.com

play
Syntax:
PLAY  pin, tune (all non-8 pin parts)
PLAY  pin, tune, LED_mask (M2 parts only)
PLAY  tune, LED_option (8 pin devices only)
- pin is a variable/constant which specifies the i/o pin to use (not available on

8 pin PICAXE parts, which are fixed to using output 2).
- Tune is a variable/constant (0 - 3) which specifies which tune to play

0 - Happy Birthday
1 - Jingle Bells
2 - Silent Night
3 - Rudolph the Red Nosed Reindeer

- LED_mask (M2 parts only) is a variable/constant which specifies if other
PICAXE outputs (on the same port as the piezo) flash at the same time as the
tune is being played. For example use %00000011 to flash output 0 and 1.

- LED_option (08M/08M2 only) is a variable/constant (0 -3) which specifies if
other 8pin PICAXE outputs flash at the same time as the tune is being played.

0 - No outputs
1 - Output 0 flashes on and off
2 - Output 4 flashes on and off
3 - Output 0 and 4 flash alternately

Function:
Play an embedded tune out of the PICAXE output pin.

Description:
PICAXE chips can play musical tones. The PICAXE is supplied with up to 4 pre-
programmed internal tunes, which can be output via the play command. As these
tunes are already included within the PICAXE bootstrap code, they use very little
user program memory. To generate your own tunes use the ‘tune’ command,
which can play any “mobile phone” style RTTTL tune.

See the Tune command for suitable piezo /  speaker circuits.

The PICAXE-08M has 4 internal tunes, other parts have less. However on these
other parts the ‘missing’ tunes (Silent Night /  Rudolph etc.) are automatically
downloaded via the compiler as the appropriate ‘tune’ command. Therefore the
play command will always work on all 4 tunes.

Effect of increased clock speed:
Parts automatically drop to 4MHz to process this command.

Example:
; (8 pin parts only)
play 3,1 ; rudolf red nosed reindeer with output 0 flashing
; (all other parts)
play 2,1 ; jingle bells on output pin 2
; (18M2)
play B.3, 1, %00000011 ; output B.3 with B.0 and B.1 flashing

))
!"#

!"#$

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

'"#
'"#$

))

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

156

156

www.picaxe.com

poke
Syntax:
POKE  location,data,data,WORD wordvariable...
- Location is a variable/constant specifying a register address.
- Data is a variable/constant which provides the data byte to be written. To use

a word variable the keyword WORD must be used before the wordvariable)

Function:
Write data into FSR location. This allows use of registers not defined by b0, b1
etc.

Information:
For M2 and X2 parts see the information on the following page.

For non M2 /   X2 parts:
The function of the poke/peek commands is two fold.

The most commonly used function is to store temporary byte data in the
microcontrollers spare ‘storage variable’ memory.  This allows the general purpose
variables (b0,b1 etc) to be re-used in calculations. Remember that to save a word
variable two separate poke/peek commands will be required - one for each of the
two bytes that form the word.

Addresses $50 to $7E are general purpose registers that can be used freely.

Addresses $C0 to $EF can also be used by PICAXE-18X.
Addresses $C0 to $FF can also be used by PICAXE-28X, 40X
Addresses $C0 to $EF can also be used by PICAXE-28X1, 40X1

The second function of the poke command is for experienced users to write
values to the internal microcontroller SFR (special function registers)

Addresses $00 to $1F and $80 to $9F are special function registers (e.g. PORTB)
which determine how the microcontroller operates. Avoid using these addresses
unless you know what you are doing! The command uses the microcontroller
FSR register which can address register banks 0 and 1 only.

Addresses $20 to $4F and $A0 to $BF are general purpose registers reserved for
use with the PICAXE bootstrap interpreter. Poking these registers will produce
unexpected results and could cause the interpreter to crash.

When word variables are used (with the keyword WORD) the two bytes of the
word are saved/retrieved in a little endian manner (ie low byte at address, high
byte at address + 1)

Example:
poke 80,b1 ‘ save value of b1 in register 80
poke 80, word w1

))
!"#

!"#$

'"
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

157

157

www.picaxe.com

For M2 parts:

The function of the poke/peek commands is amended on  M2 parts.

The M2 parts have up to 512 bytes of user RAM.

The peek and poke commands are used to read and write to all 256 bytes of the
user RAM. However the lower 28 bytes (addresses 0 to 27) also correspond to the
variables b0 to b27. Therefore these lower bytes can be accessed in  three ways,
via the bxx variable name or via the peek/poke command or via the @bptr
variable. The higher variables can be accessed via the peek/poke commands or
@bptr variable.

See the peeksfr and pokesfr commands for details on how to access the internal
microcontroller SFR (special function registers).

Note that on the 18M2 part bytes 128-255 are reserved during parallel multi-tasking
mode (they are freely available in single task mode). This is a restriction of the limited
available RAM on this particular part and does not apply to the 14M2/20M2 parts.

Example:
poke 80,b1 ; poke value of variable b1 into register 80

For X2 parts:

The function of the poke/peek commands is amended on  X2 parts.

The 20X2 parts have 128 bytes of user RAM (+128 more in scratchpad)
The 28X2 parts have 256 bytes of user RAM (+1024 more in scratchpad)
The 40X2 parts have 256 bytes of user RAM (+1024 more in scratchpad)

The peek and poke commands are used to read and write to all 256 bytes of the
user RAM. However the lower 56 bytes (addresses 0 to 55) also correspond to the
variables b0 to b55. Therefore these lower bytes can be accessed in  three ways,
via the bxx variable name or via the peek/poke command or via the @bptr
variable. The higher variables can be accessed via the peek/poke commands or
@bptr variable.

See the peeksfr and pokesfr commands for details on how to access the internal
microcontroller SFR (special function registers).

Example:
poke 80,b1 ; poke value of variable b1 into register 80



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

158

158

www.picaxe.com

pokesfr
Syntax:
POKESFR  location,data,data,...
- Location is a variable/constant specifying a register address.  Valid values are 0

to 255 (not all implemented, see below).
- Data is a variable/constant which provides the data byte to be written.

Function:
Write data to the  microcontroller special function registers. This allows
experienced users to adjust the on-board peripheral microcontroller settings. This
command is for M2 and X2 parts only, for other parts see the poke command.

Information:
The pokesfr command is for experienced users to adjust the internal
microcontroller SFR (special function registers).

Only SFRs associated with peripherals (e.g. ADC or timers) may be accessed.
Peeking or poking SFRs associated with PICAXE program operation (e.g. FSR,
EEPROM or TABLE registers) will cause the PICAXE chip to immediately reset.

X2 parts
As location can only take the value 0-255 on X2 locations taken from the
Microchip datasheet drop the initial ‘F’ from the hexadecimal value
e.g. BAUDCON FB8h becomes $B8

M2 parts
As location can only take the value 0-255 the value for M2 locations taken from
the Microchip datasheet are created as follows:

Bit 7-5 Memory Bank $00-$07
Bit4-0 Addresses $0C to $1F on this bank

($00-$0B are invalid and cause instant reset)
e.g. BAUDCON, address 01Fh on bank 3, becomes %011 11111

Example:
pokesfr $9B,b1 ; put value of variable b1 into OSCTUNE

))
))

!"#$

))
))
))

'"#$
))

))
))
))

$"&$

))
))

(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

159

159

www.picaxe.com

))
))

!"#$

))
))
))

'"#$
))

))
))
))

$"&$

))
))

(!&$

))
'(#$

pullup
Syntax:
PULLUP mask
PULLUP OFF (= PULLUP 0)
PULLUP ON (= PULLUP 255)
- mask is a variable/constant specifying a bit mask of the target port.

Function:
Enable or disable the internal weak pull-up resistors on the target device.

Information:
The pullup command can enable/disable the internal pull-up resistors on some
input pins. Not all pins have internal pull-up resistors. When a pin is configured
as an output the pull-up is automatically disconnected.

An internal pull-up allows the hardware to reliably use, for instance, a switch
between the pin and ground without an external resistor.

‘Mask’ function varies with the PICAXE chip in use. It can contain up to 16
individual bits, bit0 to bit15. Not all pins have pullup functionality due to the
internal construction of the microcontroller.

08M2 bit0-bit4 = C.0 to C.4
14M2 bit0-bit7 = B.0 to B.7 bit8-bit15 = C.0 to C.7
18M2 bit0-bit7 = B.0 to B.7
20M2 bit0-bit7 = B.0 to B.7 bit8-bit15 = C.0 to C.7
20X2 bit0-bit7 = C.0, C.6, C.7, B.0, B.1 B.5, B.6, B.7
28X2/40X2 bit0-bit7 = B.0 to B.7
28X2-5V/40X2-5V On = all PORTB
28X2-3V/40X2-3V bit0-bit7 = B.0 to B.7

On older 28X2-5V /  40X2-5V parts the pull-ups are on portB only, and cannot be
individually masked. Therefore just use ‘on’ or ‘off’ to enable/disable all 8 pullups
at the same time.

Examples:
pullup on ;enable pullups on 28X2-5V
pullup %11110000 ;enable pullups on portB4-7 on 28X2
pullup %00000111 ;enable pullups on portC on 20X2

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

160

160

www.picaxe.com

pulsin
Syntax:
PULSIN  pin, state, wordvariable
- Pin is a variable/constant which specifies the i/o pin to use.
- State is a variable/constant (0 or 1) which specifies which edge must occur

before beginning the measurement in 10us units (at 4MHz resonator).
- Wordvariable receives the result (1-65535).  If timeout occurs (0.65536s) the

result will be 0.

Function:
Measure the length of an input pulse.

Information:
The pulsin command measures the length of a pulse. In no pulse occurs in the
timeout period, the result will be 0. If state = 1 then a low to high transition starts
the timing, if state = 0 a high to low transition starts the timing.
Use the count command to count the number of pulses with a specified time
period.

It is normal to use a word variable with this command.

Effect of Increased Clock Speed:
4MHz 10us unit 0.65536s timeout
8MHz 5us unit 0.32768s timeout
16MHz 2.5us unit 0.16384s  timeout
32MHz 1.25us unit 0.08192s  timeout
64MHz 0.625us unit 0.04096s  timeout

Example:

pulsin C.3,1,w1 ; record the length of a pulse on C.3 into w1

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

161

161

www.picaxe.com

pulsout
Syntax:
PULSOUT  pin,time
- Pin is a variable/constant which specifies the i/o pin to use.
- Time is a variable/constant which specifies the period (0-65535) in 10us units

(at 4MHz resonator).

Function:
Output a timed pulse by inverting a pin for some time.

Information:
The pulsout command generates a pulse of length time. If the output is initially
low, the pulse will be high, and vice versa.  This command automatically
configures the pin as an output, but for reliable operation  you should always
ensure this pin is an output before using the command.

Effect of Increased Clock Speed:
4MHz 10us unit
8MHz 5us unit
16MHz 2.5us unit
32MHz 1.25us unit
64MHz 0.625us unit

Example:
main:

pulsout B.1,150 ; send a 1.50ms pulse out of pin B.1
pause 20 ; pause 20 ms
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

162

162

www.picaxe.com

put
Syntax:
PUT location,data,data,WORD wordvariable...
- Location is a variable/constant specifying a scratchpad address.  Valid values are

0 to 127 for X1 parts
0 to 127 for 20X2 parts
0 to 1023 for other X2 parts.

- Data is a variable/constant which provides the data byte to be written. To use a
word variable the keyword WORD must be used before the wordvariable.

Function:
Write data into scratchpad location.

Information:
The function of the put/get commands is store temporary byte data in the
microcontrollers scratchpad memory.  This allows the general purpose variables
(b0, b1, etc.) to be re-used in calculations.

Put and get have no effect on the scratchpad pointer and so the address next used
by the indirect pointer (ptr) will not change during these commands.

When word variables are used (with the keyword WORD) the two bytes of the
word are saved/retrieved in a little endian manner (ie low byte at address, high byte
at address + 1)

Example:
put 1,b1 ; save value of b1 in register 1
put 1, word w1

))
))
))
))
))

))
))
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

163

163

www.picaxe.com

pwm
Syntax:
PWM  pin,duty,cycles
- Pin is a variable/constant which specifies the i/o pin to use.
- Duty is a variable/constant (0-255) which specifies analog level.
- Cycles is a variable/constant (0-255) which specifies number of cycles.  Each

cycle takes about 5ms at 4MHz clock frequency.

Function:
Output pwm then return pin to input.

Information:
This command is historical and hence rarely used. For pwm control of motors etc.
the pwmout command is recommended instead.

This pwm command is used to provide ‘bursts’ of PWM output to generate a
pseudo analogue output on the PICAXE pins. This is achieved with a resistor
connected to a capacitor connected to ground; the resistor-capacitor junction
being the analog output. PWM should be executed periodically to update/refresh
the analog voltage.

Example:
main:

pwm C.4,150,20 ; send 20 pwm bursts out of pin 4
pause 20 ; pause 20 ms
goto main ; loop back to start

!"
!"#

!"#$

))
))
))

'"#$
))

))
))
))

$"&$

))
))

(!&$

))
'(#$

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

164

164

www.picaxe.com

pwmduty
Syntax:
PWMDUTY  pin,duty cycles
- Pin is a constant which specifies the i/o pin to use. Note that the

pwmout pin is not always a default output pin - see the pinout diagram.
- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.

(duty cycle is the mark or ‘on time’ )

Function:
Alter the duty cycle after a pwmout command has been issued.

Information:
On some parts the pwmduty command can be used to alter the pwm duty cycle
without resetting the internal timer (as occurs with a pwmout command). A
pwmout command must be issued on the appropriate pin before this command
will function.

Information:
See the pwmout command for more details.

Example:

init:
pwmout C.2,150,100 ; start pwm

main:
pwmduty C.2,150 ; set pwm duty
pause 1000 ; pause 1 s
pwmduty C.2,50 ; set pwm duty
pause 1000 ; pause 1 s
goto main ; loop back to start

))
))

!"#$

))
))
))

'"#$
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

165

165

www.picaxe.com

pwmout
Syntax:
PWMOUT  pin, period, duty cycles
PWMOUT  PWMDIV4,pin, period, duty cycles
PWMOUT  PWMDIV16, pin, period, duty cycles
PWMOUT  PWMDIV64, pin, period, duty cycles
PWMOUT  pin, OFF
- Pin is a variable/constant which specifies the i/o pin to use. Note that the

pwmout pin is not always a default output pin - see the pinout diagram.
- Period is a variable/constant (0-255) which sets the PWM period

(period is the length of 1 on/off cycle i.e. the total mark:space time).
- Duty is a variable/constant (0-1023) which sets the PWM duty cycle.

(duty cycle is the mark or ‘on time’ )

The PWMDIV keyword is used to divide the frequency by 4, 16 or 64. This slows
down the PWM.

Function:
Generate a continuous pwm output using the microcontroller’s internal pwm
module.  also see the HPWM command, which can produce the equivalent of
pwmout on different output pins.

Information:
This command is different to most other BASIC commands in that the pwmout
runs continuously (in the background) until another pwmout command is sent.
Therefore it can be used, for instance, to continuously drive a motor at varying
speeds. To stop pwmout issue a ‘pwmout pin, off’ (=pwmout pin,0,0) command.
The PWM period = (period + 1) x 4 x resonator speed

(resonator speed for 4MHz = 1/4000000)
The PWM duty cycle = (duty) x resonator speed

Note that the period and duty values are linked by the above equations. If you wish to
maintain a 50:50 mark-space ratio whilst increasing the period, you must also increase
the duty cycle value appropriately. A change in resonator will change the formula.
NB: If you wish to know the frequency,  PWM frequency = 1 /  (the PWM period)

In many cases you may want to use these equations to setup a duty cycle at a
known frequency = e.g. 50% at 10 kHz. The Programming Editor software
contains a wizard to automatically calculate the period and duty cycle values for
you in this situation.

))
!"#

!"#$

))
))
))

'"#$
'"&

))
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

166

166

www.picaxe.com

Select the PICAXE>Wizards>pwmout menu to use this wizard.

As the pwmout command uses the internal pwm module of the microcontroller
there are certain restrictions to its use:
1) The command only works on certain pins.
2) Duty cycle is a 10 bit value (0 to 1023). The maximum duty cycle value must

not be set greater than 4x the period, as the mark ‘on time’ would then be
longer than the total PWM period (see equations above)! Setting above this
value will cause erratic behaviour.

3) The pwmout module uses a single timer for both the C.1/C.2 pins on 28/40
pin devices. Therefore when using PWMOUT on both these pins the period
will be the same for both pins (however different duty cycles are possible).

4) The servo command cannot generally be used at the same time as the
pwmout command as they both use the same timer (but see * below).

5) pwmout stops during nap, sleep, or after an end command
6) pwmout 1 can be used at the same time as hpwm (see 3 above)
7) pwmout 2 cannot be used as the same time as hpwm
8)  pwmout is dependant on the clock frequency. On some X1/X2 timing

sensitive commands, such as readtemp, the command automatically drops to
the internal 4MHz resonator to ensure timing accuracy. This will cause the
background pwm to change, so pwm should be stopped during these
commands.

* On older PICAXE parts the same internal timer (timer2) is used for both
pwmout and servo, so these commands cannot be used at the same time.
However some newer parts  have additional dedicated internal timers that allow
pwmout and servo to work together. This applies to these pwmout channels:

14M2 B.2, B.4 (C.0, C.2 share the servo timer)
18M2 B.3, B.6
20M2 B.1, C.2 (C.3, C.5 share the servo timer)
28X2 B.0, B.5 (C.1, C.2 share the servo timer)

Note that on X2 parts (only), use of any ‘pwmout’ command will reset all the
other active pwm pins to pwmdiv1. To keep different pins operating at pwmdiv4
or pwmdiv16 reissue a

PWMOUT PWMDIV4 , PIN
 command for each of the other pins after the new pwmout command.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

167

167

www.picaxe.com

To stop pwmout on a pin it is necessary to issue a ‘pwmout pin, off’ command.
Note that this stops all pwm channels sharing that timer (e.g. both C.1 and C.2
will stop together on a 28X2 part). To just stop one channel use ‘pwmduty pin, 0’

The pwmout command initialises the pin for pwm operation and starts the
internal timers. As each pwmout command always resets the internal timer, the
pwmduty command  is recommended when rapidly changing the dut (i.e. use an
initial pwmout command and then use pwmduty commands after that).

When driving a FET, a pull-down
resistor between the PICAXE pin
and 0V is essential. The purpose of
the pull-down resistor is to hold the
FET driver in the correct ‘low’ state
whilst the PICAXE chip initialises
upon power up. During this short
initialisation period the pwmout
pins are not actively driven (ie they
‘float’) and so the resistor is
essential to hold the FET in the off
condition.

Example:

init:
pwmout C.2,150,150 ; set pwm duty

main:
pwmduty C.2,150 ; set pwm duty
pause 1000 ; pause 1 s
pwmduty C.2,50 ; set pwm duty
pause 1000 ; pause 1 s
goto main ; loop back to start

35

X"F

.;5

46M;93

=0N<330

03H



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

168

168

www.picaxe.com

random
Syntax:
RANDOM  wordvariable
- Wordvariable is both the workspace and the result. As random generates a

pseudo-random sequence it is advised to repeatedly call it within a loop. A
word variable must be used, byte variables will not operate correctly.

Function:
Generate next pseudo-random number in a wordvariable.

Description:
The random command generates a pseudo-random sequence of numbers
between 0 and 65535. All microcontrollers must perform  mathematics to
generate random numbers, and so the sequence can never be truly random. On
computers a changing quantity (such as the date/ time) is used as the start of the
calculation, so that each random  command is different. The PICAXE does not
contain such date functionality, and so the sequence it generates will always be
identical unless the value of the word variable is set to a different value before the
random command is used.

When used with M2, X1, X2 parts you can set the timer running and then  use the
timer variable to ‘seed’ the random command. This will give much better results:

let w0 = timer ; seed w0 with timer value
random w0 ; put random value into w0

When used with M2 parts you can set the timer running and then  use the timer
variable to ‘seed’ the random command. This will give much better results:

let w0 = time ; seed w0 with time value
random w0 ; put random value into w0

Another common way to overcome this issue (can be used on all parts) is to
repeatedly call the random command within a loop, e.g. whilst waiting for a
switch push. As the number of loops will vary between switch pushes, the output
is much more random.

If you only require a byte variable (0-255), still use the word variable (e.g. w0) in
the command. As w0 is made up of b0 and b1, you can use either of these two
bytes as your desired random byte variable.

Example:
main: ; note random is repeatedly called

random w0 ; within the loop
if pinC.1 =1 then
   let pinsB = b1 ; put random byte value on output pins
   pause 100 ; wait 0.1s
end if
goto main

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

169

169

www.picaxe.com

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$

read
Syntax:
READ  location,variable,variable, WORD wordvariable
- Location is a variable/constant specifying a byte-wise address (0-255).
- Variable receives the data byte read.To use a word variable the keyword WORD

must be used before the wordvariable)

Function:
Read EEPROM data memory byte content into variable.

Information:
The read command allows byte data to be read from the microcontrollers data
memory. The contents of this memory is not lost when the power is removed.
However the data is updated (with the EEPROM command specified data) upon
a new download. To save the data during a program use the write command.

The read command is byte wide, so to read a word variable two separate byte read
commands will be required, one for each of the two bytes that makes the word
(e.g. for w0, read both b0 and b1).

With the PICAXE-08, 08M, 08M2, 14M, 18, 18M and 18M2 the data memory is
shared with program memory. See the EEPROM command for more details.

When word variables are used (with the keyword WORD) the two bytes of the
word are saved/retrieved in a little endian manner (ie low byte at address, high
byte at address + 1)

Example:

main:
for b0 = 0 to 63 ; start a loop

read b0,b1 ; read value at b0 into b1
serout B.7,N2400,(b1) ; transmit value to serial LCD

next b0 ; next loop



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

170

170

www.picaxe.com

readadc
Syntax:
READADC  channel,variable
- channel is a variable/constant specifying the ADC pin
- Variable receives the data byte read.

Function:
Read the  ADC channel (8 bit resolution) contents into variable.
On X2 parts the adcsetup command must be used to configure the pin as an
analogue input. On all other parts configuration is automatic.

Information:
The readadc command is used to read the analogue value from the
microcontroller input pins. Note that not all inputs have internal ADC
functionality - check the pinout diagrams for the PICAXE chip you are using.

Example:

main:
  readadc C.1,b1 ; read value into b1
  if b1 > 50 then flsh ; jump to flsh if b1 > 50
  goto main ; else loop back to start

flsh:
high B.1 ; switch on output B.1
pause 5000 ; wait 5 seconds
low B.1 ; switch off output B.1
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

171

171

www.picaxe.com

readadc10
Syntax:
READADC10  channel,wordvariable
- channel is a variable/constant specifying the input pin
- wordvariable receives the data word read.

Function:
Read the  ADC channel (10 bit resolution) contents into wordvariable.
On X2 parts the adcsetup command must be used to configure the pin as an
analogue input. On all other parts configuration is automatic.
On X2 parts you must use the ADC channel, not the pin number, in the readadc
command (e.g. readadc10 0,w1 NOT readadc10 A.0, w1)

Information:
The readadc10 command is used to read the analogue value from
microcontrollers with 10-bit capability. Note that not all inputs have internal
ADC functionality - check the table under ‘readadc’ command for the PICAXE
chip you are using.

As the result is 10 bit a word variable must be used - for a byte value use the
readadc command instead.

Users of old AXE026 Serial Cable (does not apply to AXE027 USB Cable):
When using the debug command to output 10 bit numbers, the electrical
connection to the computer via the serial download cable may slightly affect the
ADC values. In this case it is recommended that the ‘enhanced’ interface circuit is
used on a serial connection. The Schottky diode within this circuit reduces this
issue.

Example:

main:
  readadc10 C.1,w1 ; read value into b1
  debug ; transmit to computer
  pause 200 ; short delay
  goto main ; loop back to start

))
!"#

!"#$

))
))
))

'"#$
'"&

))
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

b
b

b
b

b X4/1?G

@'#"&J7EUA
@'#"&J7"F
3599H

03H

1QEW'7W"'%
0D3

*1VD;

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

172

172

www.picaxe.com

readdac
Syntax:
READDAC  variable
- variable  is a byte variable to receive the DAC value

Function:
Read the DAC value into variable.

Information:
The readdac command reads the current DAC level, which must have been
already setup via dacsetup and daclevel commands. It can be considered as
‘readadc on the DAC voltage level’.

Example:

main:
readdac b1 ; read DAC level into b1

))
))

!"#$

))
))
))

'"#$
))

))
))
))
))

))
))
))

))
'(#$

))
$!#$

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

173

173

www.picaxe.com

readdac10
Syntax:
READDAC10  wordvariable
- variable  is a word variable to receive the DAC value

Function:
Read the DAC value into variable.

Information:
The readdac command reads the current DAC level, which must have been
already setup via dacsetup and daclevel commands. It can be considered as
‘readadc10 on the DAC voltage level’.

Example:

main:
readdac10 w1 ; read DAC level into w1

))
))

!"#$

))
))
))

'"#$
))

))
))
))
))

))
))
))

))
'(#$

))
$!#$

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

174

174

www.picaxe.com

))
))
))

))
))
))

'"#$
'"&

))
$"&
$"&'
$"&$

(!&
(!&'
(!&$

))
'(#$

))
$!#$
$!&$

readi2c
This command is deprecated, please consider using the hi2cin command instead.

Syntax:
READI2C  (variable,...)
READI2C  location,(variable,...)
- Location is a optional variable/constant specifying a byte or word address.
- Variable(s) receives the data byte(s) read.

Function:
The readi2c (i2cread also accepted by the compiler) command read i2c location
contents into variable(s).

Information:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to read byte data from an i2c device. Location defines the
start address of the data read, although it is also possible to read more than one
byte sequentially (if the i2c device supports sequential reads).

Location must be a byte or word as defined within the i2cslave command. An
i2cslave command must have been issued before this command is used.

If the i2c hardware is incorrectly configured, or the wrong i2cslave data has been
used, the value 255 ($FF) will be loaded into each variable.

Example:

; Example of how to use DS1307 Time Clock
; Note the data is sent/received in BCD format.

; set DS1307 slave address
i2cslave %11010000, i2cslow, i2cbyte

; read time and date and debug display

main:
readi2c 0,(b0,b1,b2,b3,b4,b5,b6,b7)
debug
pause 2000
goto main



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

175

175

www.picaxe.com

))
))

!"#$

))
))
))

'"#$
))

))
))
))
))

))
))
))

))
'(#$

))
$!#$

))

readinternaltemp
Syntax:
READINTERNALTEMP voltage, offset, variable
READINTERNALTEMP voltage, - offset, variable
- Voltage is a constant that indicates the power supply voltage. Options are:

IT_5V0 5V supply
IT_4V5 4.5V supply
IT_4V0 4V supply
IT_3V5 3.5V supply
IT_3V3 3.3V supply
IT_3V0 3V supply
IT_RAW_H Raw word reading (high setting, above 4V only)
IT_RAW_L Raw word reading  (low setting, any voltage)

- Offset is an optional correction factor, defaults to 0
- Variable receives the temperature data.

Function:
The readinternaltemp command reads the analogue voltage drop across 2 (low)
or 4 (high) internal diodes. This gives a very approximate temperature indicator.

Information:
This command is used to provide an indicator of the internal temperature of the
chip. It is designed to be used as a cooling failure warning threshold device, not
an accurate temperature sensor! For accuracy use a DS18B20 sensor and the
readtemp command instead.

Internally an ADC reading is measured across two or four diodes that are linked
to the power supply.  As temperature changes the ADC reading will also vary.  As
the ADC reference is the supply voltage the reading will also change with a
change in supply (e.g. as a battery runs down).

When IT_RAW_H or IT_RAW_L  are used, the raw reading is returned in a word
variable. Offset is ignored in these cases and so should be set to 0.

When the other settings are used the PICAXE attempts to mathematically change
the value into an approximate reading in degrees Celsius. If desired an ‘offset’ can
be added or subtracted from the raw reading before this conversion occurs to try
to improve accuracy.

Kindly note this system can never be an accurate sensor and should only be used
as an indicator of extreme temperature only. Thresholds and offsets will vary from
part to part. For accuracy use an external DS18B20 instead!

Example:

main:
readinternaltemp IT_5V0,0,b1
debug
pause 500
goto main



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

176

176

www.picaxe.com

Advanced information:
The mathematical equations used to attempt to convert the raw values into
degrees Celsius are:

5V0 RAW_H +/- K -508 * 14 /  13 + 5
4V5 RAW_H +/- K -450 * 14 /  15 + 5
4V0 RAW_H +/- K -378 * 14 /  18 + 5

3V5 RAW_L +/- K -668 * 14 /  10 + 5
3V3 RAW_L +/- K -647 * 14 /  10 + 5
3V0 RAW_L +/- K -609 * 14 /  10 + 5



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

177

177

www.picaxe.com

readfirmware
Syntax:
READFIRMWARE  variable
- variable  is a byte variable to receive the revision value

Function:
Read the PICAXE bootstrap firmware revision value into variable.

Information:
The readfirmware command retrieves the PICAXE bootstrap firmware version and
loads it into a variable.
Do not confuse the revision (user program) with the firmware version (PICAXE
bootstrap version).

Example:

main:
readfirmware b1 ; read firmware version into b1

))
))
))

))
))
))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

178

178

www.picaxe.com

readmem
This command is deprecated.

Syntax:
READMEM  location,data
- Location is a variable/constant specifying a byte-wise address (0-255).
- Data is a variable into which the data is read.

Function:
Read FLASH program memory byte data into variable.

Information:
The data memory on the PICAXE-28A is limited to only 64 bytes. Therefore the
readmem command provides an additional 256 bytes storage in a second data
memory area. This second data area is not reset during a download.

This command is not available on the PICAXE-28X as a larger i2c external
EEPROM can be used.

The readmem command is byte wide, so to read a word variable two separate
byte read commands will be required, one for each of the two bytes that makes
the word (e.g. for w0, read both b0 and b1).

Example:

main: for b0 = 0 to 255 ; start a loop
readmem b0,b1 ; read value into b1
serout 7,T2400,(b1) ; transmit value to serial LCD

next b0 ; next loop

))
))
))
))
))

))
))
))

$"%
))
))
))

))
))
))

))
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

179

179

www.picaxe.com

readtable
Syntax:
readtable location,variable
- location is a variable/constant specifying the address
- variable receives the byte value stored at the table location

Function:
Read the value from an embedded lookup table.

Information:
Some PICAXE chips enable lookup data (e.g. LCD messages) to be embedded in
a table within the program (via the table command). This is a very efficient way
of storing data. See the ‘table’ command for more details.

Blocks of data may also be transferred to RAM via the tablecopy command.

Example:

TABLE 0,(“Hello World”) ; save values in table

main:
for b0 = 0 to 10 ; start a loop
   readtable b0,b1 ; read value from table
   serout B.7,N2400,(b1) ; transmit to serial LCD module
next b0 ; next character

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))
))

'"#$
))

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

180

180

www.picaxe.com

readoutputs
Syntax:
READOUTPUTS  variable
- variable  is a byte variable to receive the output pins values

Function:
Read the output pins  value into variable.

Information:
The current state of the output pins can be read into a variable using the
readoutputs command. Note that this is not the same as ‘let var = pins’, as this let
command reads the status of the input (not output) pins.

This command is not normally used with M2, X1 or X2 parts as the outputs can
be read directly with ‘let var = outpinsX’

Example:

main:
readoutputs b1 ; read outputs value into b1

))
!"#

!"#$

'"
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'

))

(!&
(!&'

))

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

181

181

www.picaxe.com

))
))
))

))
))
))
))
))

))
))

$"&'
))

))
(!&'

))

))
))

readportc
Syntax:
READPORTC  variable
- variable  is a byte variable to receive the portc values

Function:
Read the portc value into variable.

Information:
The current state of the portc pins on the 40X1 part can be read into a variable
using the readportc command. This command is not required on other parts as
you can just use the command ‘let var = pinsC’

Example:

main:
readportc b1 ; read value into b1

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

182

182

www.picaxe.com

readrevision
Syntax:
READREVISION  variable
- variable  is a byte variable to receive the revision value

Function:
Read the program slot revision value into variable.

Information:
Using the #revision directive it is possible to embed a revision number of the user
code into the downloaded program. The readrevision command retrieves this
value and loads it into a variable.
The revision value is also used by the booti2c command. Do not confuse the
revision (user program) with the firmware version (PICAXE bootstrap version).

Example:

main:
readrevision b1 ; read revision into b1

))
))
))

))
))
))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

183

183

www.picaxe.com

))
))
))

))
))
))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

readsilicon
Syntax:
READSILICON  variable
- variable  is a byte variable to receive the siliconvalue

Function:
Read the siliconrevision of an X2 part into variable.

Bits 7 - 5 PICAXE Type
000 reserved for future use
001 PICAXE-20X2 (PIC18F14K22)
010 PICAXE-28X2-5V (PIC18F2520)
011 PICAXE-40X2-5V (PIC18F4520)
100 PICAXE-28X2 (PIC18F25K22)
101 PICAXE-40X2 (PIC18F45K22)
110 PICAXE-28X2-3V (PIC18F25K20)
111 PICAXE-40X2-3V (PIC18F45K20)

Bits 4 - 0
Microchip  Silicon Die  Version

Information:
The readsilsicon command retrieves information about the silicon dies inside the
microcontroller and loads it into a variable. Do not confuse with the revision
(user program) or the firmware version (PICAXE bootstrap version).

Example:

main:
readsilicon b1 ; read silicon into b1

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

184

184

www.picaxe.com

readtemp
Syntax:
READTEMP  pin,variable
- Pin is the input pin.
- Variable receives the data byte read.

Function:
Read temperature from a DS18B20 digital temperature sensor and store  in
variable.  The conversion takes up to 750ms.  Readtemp carries out a full 12 bit
conversion and then rounds the result to the nearest full degree Celsius (byte
value). For the full 12 bit value use the readtemp12 command.

Information:
The temperature is read back in whole degree steps, and the sensor operates from
-55 to + 125 degrees Celsius. Note that bit 7 is 0 for positive temperature values
and 1 for negative values (ie negative values will appear as 128 + numeric  value).
Note the readtemp command does not work with the older DS1820 or DS18S20
as they have a different internal resolution. This command is not designed to be
used with parasitically powered DS18B20 sensors, the 5V pin of the sensor must
always be connected.

This command cannot be used on the following pins due to silicon restrictions:
08, 08M, 08M2 C.3,C. 5 = fixed input, C.0 = fixed output
14M, 14M2 C.3 = fixed input, B.0 = fixed output
18M2 C.4, C.5 = fixed input
20M,20M2, 20X2 C.6 = fixed input

Effect of increased clock speed:
This command only functions at 4MHz. M2, X1 and X2 parts automatically use
the internal 4MHz resonator for this command.

Example:
main:

readtemp C.1,b1 ; read value into b1
if b1 > 127 then neg ; test for negative
serout B.7,N2400,(#b1) ; transmit value to serial LCD
goto loop

neg:
let b1 = b1 - 128 ; adjust neg value
serout B.7,N2400,(“-”) ; transmit negative symbol
serout B.7,N2400,(#b1) ; transmit value to serial LCD
goto main

2L0D*93

;5

35

X
4/

1
?

G

A'$B'#&AU#'
@'F@E#

<HI

5.

35

"FBUA
B"F

5.
R&A&
35

N*C7$E@A7B#EP'KA7QE&#R@
&#'7B#'-S"AA'R7%"AT7&7BUJJ-
RE%F7#'@"@AE#7EF7AT'7"FBUA
B"F+7VT"@7$U@A7Q'7#'$EW'R
AE7U@'7AT'7A'$B+7@'F@E#+

))
!"#

!"#$

))
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

185

185

www.picaxe.com

readtemp12
Syntax:
READTEMP12  pin,wordvariable
- Pin is the input pin.
- Variable receives the raw 12 bit data read.

Function:
Read 12 bit temperature data from a DS18B20 digital temperature sensor and
store  in variable. The conversion takes up to 750ms.  Both readtemp and
readtemp12 take the same time to convert.

Information:
This command is for advanced users only. For standard ‘whole degree’ data use
the readtemp command.

The temperature is read back as the raw 12 bit data into a word variable (0.0625
degree resolution). The user must interpret the data through mathematical
manipulation. See the DS18B20 datasheet for more information on the 12 bit
Temperature/Data relationship.

See the readtemp command for a suitable circuit.

Note the readtemp12 command does not work with the older DS1820 or
DS18S20 as they have a different internal resolution. This command is not
designed to be used with parasitically powered DS18B20 sensors, the 5V pin of
the sensor must be connected.

This command cannot be used on the following pins due to silicon restrictions:
08, 08M, 08M2 3 = fixed input
14M, 14M2 C.3 = fixed input
18M2 C.4, C.5 = fixed input
20M,20M2, 20X2 C.6 = fixed input

Effect of increased clock speed:
This command only functions at 4MHz. M2, X1 and X2 parts automatically use
the internal 4MHz resonator for this command.

Example:

main:
readtemp12 1,w1 ; read value into b1
debug ; transmit to computer screen
goto main

))
!"#

!"#$

))
'"%
'"#

'"#$
'"&

))
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

186

186

www.picaxe.com

readowclk
Syntax:
readowclk  pin
- Pin is a variable/constant which specifies the i/o pin to use.

Function:
Read seconds from a DS2415 clock chip.

Information:
This command only applies to the PICAXE-18A.  It is now rarely used as most
users prefer to use the more powerful DS1307 i2c part interfaced to a PICAXE-
18M2 microcontroller.

The DS2415 is an accurate ‘second counter’. Every second, the 32 bit (4 byte)
counter is incremented. Time is very accurate due to the use of a watch crystal.
Therefore by counting elapsed seconds you can work out the accurate elapsed
time. The 32 bit register is enough to hold 136 years worth of seconds.  If desired
the DS2415 can be powered by a separate 3V cell and so continue working when
the main PICAXE power is removed.

Note that after first powering the DS2415 you must use a resetowclk command to
activate the clock crystal and reset the counter. See the circuit diagram under the
resetowclk command description.

The readowclk command reads the 32 bit counter and then puts the 32 bit value
in variables b10 (LSB) to b13 (MSB) (also known as w6 and w7).

Using byte variables:
The number in b10 is the number of single seconds
The number in b11 is the number x 256 seconds
The number in b12 is the number x 65536 seconds
The number in b13 is the number x 16777216 seconds

Using word variables:
The number in w6 is the number of single seconds
The number in w7 is the number x 65536 seconds

Effect of Increased Clock Speed:
This command will only function at 4MHz.

Example:

main:
resetowclk 2 ; reset the clock on pin2

loop1:
readowclk 2 ; read clock on input2
debug ; display the elapsed time
pause 10000 ; wait 10 seconds
goto loop1

))
'"%

))
))
))

))
))
))

))
))
))
))

))
))
))

))
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

187

187

www.picaxe.com

resetowclk
Syntax:
resetowclk  pin
- Pin is a variable/constant (0-7) which specifies the i/o pin to use.

Function:
Reset seconds count to 0 on a DS2415 clock chip.

Information:
This command resets the time on a DS2415 one wire clock chip. It also switches
the clock crystal on, and so must be used when the chip is first powered up to
enable the time counting.

Effect of Increased Clock Speed:
This command will only function at 4MHz.

See the example under the readowclk command.

;5

35

7772L9<0;

35

0-%"#'

?0

?9

N*C7$E@A7B#EP'KA7QE&#R@
&#'7B#'-S"AA'R7%"AT7BUJJ-
RE%F7#'@"@AE#@7EF7AT'7"FBUA
B"F+7VT"@7$U@A7Q'7#'$EW'R
AE7U@'7AT'7EF'7%"#'7R'W"K'
J"H'7AT"@+

<HI

5.

35

"FBUA

X
4/

1
?

G

X"F7<7^5Q&A_7K&F7Q'
KEFF'KA'R7AE7AT'7FE#$&J
X4/1?G7@UBBJO7E#7&
@'B&#&A'7,57Q&KHUB7K'JJ
^A"$'7$&"FA&"F'R7%T'F
X4/1?G7BE%'#7#'$EW'R_

5Q&A

5RR

/#O@A&J7$U@A7Q'
,9+I:DHcd7%&AKT
ZU&#Ad7K#O@A&J7%"AT
:B!7^FEA709_7JE&R
K&B&K"A&FK'+

<

,

0

9

;

:

033F!

))
'"%

))
))
))

))
))
))

))
))
))
))

))
))
))

))
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

188

188

www.picaxe.com

readowsn
Syntax:
readowsn  pin
- Pin is a variable/constant which specifies the input pin to use.

Function:
Read serial number from any Dallas/Maxim 1-wire device.

Information:
This command (read-one-wire-serial-number) reads the unique serial number
from any Dallas 1-wire device (e.g DS18B20 digital temp sensor, DS2415 clock,
or DS1990A iButton).

If using an iButton device (e.g. DS1990A) this serial number is laser engraved on
the casing of the iButton.

The readowsn command reads the serial number and then puts the family code
in b6, the serial number in b7 to b12, and the checksum in b13

Note that you should not use variables b6 to b13 for other purposes in your
program during a readowsn command.

E#&Fa'
O'JJE%

a#''F
QJU'

MG
2

.
MG

2
-

0-
%

"#' 35
;5

35

"*UAAEF
['O N*C7$E@A7B#EP'KA7QE&#R@

&#'7B#'-S"AA'R7%"AT7BUJJ-
RE%F7#'@"@AE#@7EF7AT'7"FBUA
B"F+7VT"@7$U@A7Q'7#'$EW'R
AE7U@'7AT'7EF'7%"#'7R'W"K'
J"H'7AT"@+

<HI

5.

35

"FBUA

X
4/

1
?

G
VT'7#'&RE%@F7^#'&R-EF'
%"#'-@'#"&J-FU$Q'#_
KE$$&FR7%"JJ7#'&R7AT'
@'#"&J7FU$Q'#7S#E$7&FO
2&JJ&@70-%"#'7R'W"K'7J"H'
&72L0ee317"*UAAEF7H'O+

Part RSA002 - iButton Contact probe

))
!"#

!"#$

))
'"%
'"#

'"#$
'"&

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

189

189

www.picaxe.com

This command cannot be used on the following pins due to silicon restrictions:
08, 08M, 08M2 3 = fixed input
14M, 14M2 C.3 = fixed input
18M2 C.4, C.5 = fixed input
20M,20M2, 20X2 C.6 = fixed input

Example:

main:
let b6 = 0 ; reset family code to 0

; loop here reading numbers until the
; family code (b6) is no longer 0

loop1:
readowsn C.2 ; read serial number on input2
if b6 = 0 then loop1

; Do a simple safety check here.
; b12 serial no value will not likely be FF
; if this value is FF, it means that the device
; was removed before a full read was completed
; or a short circuit occurred

if b12 = $FF then main

; Everything is ok so continue

debug ; ok so display
pause 1000 ; short delay

goto main



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

190

190

www.picaxe.com

reconnect
Syntax:
RECONNECT

Function:
Reconnect a disconnected PICAXE so that it scans for new downloads.

Information:
The PICAXE chips constantly scan the serial download pin to see if a computer is
trying to initialise a new program download. However when it is desired to use
the download pin for user serial communication (serrxd command), it is
necessary to disable this scanning.

After disconnect is used it will not be possible to download a new program until:
1) the reconnect command is issued
2) a reset command is issued
3) a hardware reset  is carried out

Remember that is always possible to carry out a new download by carrying out
the ‘hard-reset’ procedure.

Example:

disconnect
serrxd  [1000, timeout],@ptrinc,@ptrinc,@ptr
reconnect

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))

'"#
'"#$

))

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

191

191

www.picaxe.com

reset
Syntax:
reset

Function:
Force a chip reset. This is the software equivalent of pressing the external reset
switch or removing/reconnecting power.

Information:
The reset command is the software equivalent of pressing the external reset switch
(if present). The program is reset to the first line and all variables, stacks etc are
reset.

Example:

main:
let b2 = 15 ; set b2 value
pause 2000 ; wait for 2 seconds
gosub flsh ; call sub-procedure
let b2 = 5 ; set b2 value
pause 2000 ; wait for 2 seconds
reset ; start again

))
))

!"#$

))
))
))

'"#$
))

))
'(#$

))
))

$"&'
$"&$

))
(!&'
(!&$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

192

192

www.picaxe.com

restart
Syntax:
restart  task
- task is a variable/constant which indicates which task to restart

Function:
Restart the task.

Information:
M2 parts can process a number of tasks in parallel. The restart command is used
to restart a single task back to its first line. If the task is suspended at that point it
will also be resumed. All other tasks continue as normal. This command does not
reset any variables, to do this a ‘reset’ command would be needed to reset the
entire chip.

Example:

start0:
b3 = 0 ; reset b3

loop0:
high B.0 ; B.0 high
pause 1000 ; wait for 1 second
low B.0 ; B.0 low
pause 1000 ; wait for 1 second
inc b3 ; increment variable
goto loop0 ; loop

start1:
inc b4 ; increment variable
if b4 > 10 then ; if b4 > 10 then

restart 0 ; restart task 0. Var b3 will drop to 0
b4 = 0

end if
debug ; display variables
pause 1000
goto start1

))
))

!"#$

))
))
))

'"#$
))

))
))
))
))

))
))
))

))
'(#$

))
$!#$

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

193

193

www.picaxe.com

resume
Syntax:
resume  task
- task is a variable/constant which indicates which task to restart

Function:
Resume a suspended task.

Information:
M2 parts can process a number of tasks in parallel. The resume command is used
to resume a previously suspended task. All other tasks continue as normal. If the
task is already running the command is ignored.

Example:

start0:
high B.0 ; B.0 high
pause 100 ; wait for 0.1 second
low B.0 ; B.0 low
pause 100 ; wait for 0.1 second
goto start0 ; loop

start1:
pause 5000 ; wait 5 seconds
suspend 0 ; suspend task 0
pause 5000 ; wait 5 seconds
resume 0 ; resume task 0
goto start1 ; loop

))
))

!"#$

))
))
))

'"#$
))

))
))
))
))

))
))
))

))
'(#$

))
$!#$

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

194

194

www.picaxe.com

return
Syntax:
RETURN

Function:
Return from subroutine.

Information:
The return command is only used with a matching ‘gosub’ command, to return
program flow back to the main program at the end of the sub procedure. If a
return command is used without a matching ‘gosub’ beforehand, the program
flow will crash.

Example:

main:
let b2 = 15 ; set b2 value
pause 2000 ; wait for 2 seconds
gosub flsh ; call sub-procedure
let b2 = 5 ; set b2 value
pause 2000 ; wait for 2 seconds
gosub flsh ; call sub-procedure
end ; stop accidentally falling into sub

flsh:
for b0 = 1 to b2 ; define loop for b2 times
  high B.1 ; switch on output B.1
  pause 500 ; wait 0.5 seconds
  low B.1 ; switch off output B.1
  pause 500 ; wait 0.5 seconds
next b0 ; end of loop
return ; return from sub-procedure

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

195

195

www.picaxe.com

reverse
Syntax:
REVERSE  pin,pin,pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:
Make pin an output if now input and vice versa.

Information:
This command is only required on microcontrollers with programmable input/
output pins. This command can be used to change a pin that has been configured
as an input to an output.
All pins are configured as inputs on first power-up (unless the pin is a fixed
output). Fixed pins are not affected by this command. These pins are:

08, 08M, 08M2 0 = fixed output 3 = fixed input
14M2 B.0 = fixed output C.3 = fixed input
18M2 C.3 = fixed output C.4, C.5 = fixed input
20M2, 20X2 A.0 = fixed output C.6 = fixed input
28X2, 40X2 A.4 = fixed output

Example:

main:
input B.1 ; make pin input
reverse B.1 ; make pin output
reverse B.1 ; make pin input
output B.1 ; make pin output

!"
!"#

!"#$

))
))
))

'"#$
))

))
))
))

$"&$

))
))

(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

196

196

www.picaxe.com

rfin
Syntax:
rfin pin, variable, variable, variable, variable, variable, variable, variable, variable
- pin is a variable/constant which specifies the i/o pin to use
- variables are 8 individual byte variables to receive the 8 bytes of data

Function:
Receive 8 bytes of Manchester encoded radio data transmitted by a NKM2401
encoder or PICAXE rfout command over a wireless link. Note that the rfin
command always receives exactly 8 bytes of data, so exactly 8 data variables are
required within this command syntax.

Information:
The rfin command decodes and receives 8 bytes of data transmitter over a radio
link from a NKM2401 encoder or rfout command from another PICAXE chip.
This provides much more reliable radio communication than using serin
commands with low cost RF modules.

Note this command is blocking, no other commands will process whilst the rfin
command is waiting for RF data to be received. If a system that can process other
commands whilst waiting for data to be received is required, the NKM2401
should be used as a dedicated slave receiver alongside the PICAXE chip. This
allows the NKM2401 to receive and store the data at any time, so that the PICAXE
chip can then read the data as and when it is ready to do so.

The NKM2401 decoder can be used with all PICAXE chips, even those that do not
support the rfin command (as it uses the serin command). For futher details
about how to use the NKM2401 decoder please see the AXE213 datasheet at:

www.rev-ed.co.uk/docs/axe213.pdf

This datasheet also explains in detail how to use low cost RF modules.

Using rfin command Using serin command with NKM2401
(blocking) (non-blocking)

))
))
))

))
))
))

'"#$
))

))
'(#$

))
$!#$

))

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,

;5

35

X
4/

1
?

G

5.

35

5.

35 N
[

=
9<

30

5.

35

6
'K

'"
W'

#

;5

35

X
4/

1
?

G

5.

35

5.

35

6
'K

'"
W'

#



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

197

197

www.picaxe.com

Example W iring Connection:
The data pin of the receiver module (e.g. part
RFA001) is connected to the input pin of the
PICAXE chip.

Note that a suitable aerial (antenna) must be
connected and that there must be at least 1m
distance between transmitter and receiver.

Effect of increased clock speed:
This command only functions at 4MHz. M2
and X2 parts automatically use the internal
4MHz resonator for this command.

Example:
main:

rfin C.0, b0,b1,b2,b3,b4,b5,b6,b7
debug
goto main



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

198

198

www.picaxe.com

rfout
Syntax:
rfout pin, (data, data, data, data, data, data, data, data)
- pin is a variable/constant which specifies the i/o pin to use
- data is a constant/variable specifying the byte data

Function:
Send 8 bytes of Manchester encoded radio data to a NKM2401 decoder or a
PICAXE rfin command over a wireless link. Note that the rfout command always
sends 8 bytes of data, so exactly 8 data variables are required within this
command syntax.

Information:
The rfout command encodes and transmits 8 bytes of data over a radio link to a
NKM2401 decoder or another PICAXE chip. This provides much more reliable
radio communication than using serout commands with low cost RF modules.

This command is equivalent to using an NKM2401 encoder to transmit the data.
Therefore if using a PICAXE chip that does not support this command, simply
use a NKM2401 encoder instead.

The NKM2401 encoder can be used with all PICAXE chips, even those that do not
support the rfout command. For futher details about how to use the NKM2401
decoder please see the AXE213 datasheet at:

www.rev-ed.co.uk/docs/axe213.pdf

This datasheet also explains in detail how to use low cost RF modules.

Using rfout command Using serout command with NKM2401

))
))
))

))
))
))

'"#$
))

))
'(#$

))
$!#$

))

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,

;5

35

X
4/

1
?

G

5.

35

5.

35N
[

=
9<

30

5.

35V#
&F

@$
"AA

'#V?7GN

V?

;5

35

X
4/

1
?

G

5.

35

5.

35V#
&F

@$
"AA

'#



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

199

199

www.picaxe.com

Example W iring Connection:
The data pin of the transmitter module (e.g.
part RFA001) is connected to the output pin
(TX) of the PICAXE chip. A second output
pin (TXEN) is also used to power on the
transmitter when required. This circuit only
supports transmitters that require under
20mA current, for higher power units  use a
transistor switching circuit to power the
transmitter instead.

Do not leave the transmitter permanently
powered.

Do not connect to the Darlington driver ‘buffered’ outputs on a project board, as
the data signal must be connected directly to the PICAXE output pin.

Effect of increased clock speed:
This command only functions at 4MHz. M2 and X2 parts automatically use the
internal 4MHz resonator for this command.

Example:
main:

readtemp C.1, b7 ; read temperature into variable b7
bintoascii b7,b8,b9,b10 ; separate into 3 ASCII characters
high b.1 ; switch radio module on (TXEN)
rfout b.0,(“Temp=”,b8,b9,b10) ; send data (TX)
low b.1 ; switch radio module off (TXEN)
pause 2000 ; wait 2 seconds
goto main ; loop forever



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

200

200

www.picaxe.com

run
Syntax:
RUN  slot
- slot is a variable/constant which specifies which program to run

Function:
Run another program slot.

Information:
The  28X2/40X2 parts have four completely separate internal program slots. By
default program 0 runs whenever the part is reset.  The 20X2 only supports slot 0.

A new program is downloaded into any slot via the #slot directive, which is
added as a line to the program. It is only possible to download one program to
one slot at a time. The other programs are not affected by the download.

To run the second program (after downloading with a #slot 1 directive) use the
command ‘run 1’. This command stops the current program and starts the second
program running immediately. Variables and pin conditions are not reset, so can
be shared between the programs. However all other system functions, such as the
gosub/return stack, are reset when the second program starts. Therefore slot 1
program can only be considered as a a ‘goto’ from the slot 0 program, not a
‘gosub’.

When in program 1 you can also use ‘run 0’ to restart the first program. If you
wish to also reset the variables you must use a ‘reset’ command instead to restart
program 0.  This is equivalent to ‘run 0’ + variable reset.

Note that when carrying out a new program download the download is into the
first program slot by default. If you wish to download into the  second program
slot you must use the ‘#slot 1’ directive within the program.

All X2 parts also support running programs from external i2c EEPROM chips.
These are known as program slots 4 to 7 (on an EEPROM with address 000).
As up to 8 possible external EEPROM addresses may be used, that gives a
theoretical total of 32 (8x4) external programs. When using an EEPROM not at
address 000, bits 7-5 of the slot number are used as the EEPROM address, e.g. for
an EEPROM with address pins A2 low, A1 high and A0 high, running slot 5
would be

run %011xx101 (where x = 0 or 1, don’t care)

When running a program from an external EEPROM chip certain restrictions
apply:
1) the i2c SDA and SCL pins are reserved, and so the i2c bus cannot be used for

other commands
2) program operation will be marginally slower, as retrieving data from an

external EEPROM is slower than retrieving data from the internal program
memory.

Also see the ‘booti2c’ command, which may be  preferable to using slots 4-7.

))
))
))

))
))
))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

201

201

www.picaxe.com

Additional Information - Understanding Program Slots

The X2 range have up to 4 internal program slots, numbered 0 to 3. Each slot is
completely independent of the other slots. When the microcontroller is reset the
program in slot 0 automatically starts running. The other programs can then be
started by using a ‘run’ command.

A new program download is, by default, into slot 0. To download into another
program slot the #slot directive must be used in the program, .e.g.

#slot 1

will download the program into slot 1 instead of slot 0. All other slots are
unaffected.

Note that when the download is complete the program will always start running
from slot 0, not the slot just downloaded. If you wish to instantly test, for
instance, a program downloaded into slot 1, the command ‘run 1’ must have
been previously downloaded into slot 0.

As the microcontroller only has one internal EEPROM data area (used by the
EEPROM, read and write commands) any download into any internal memory
slot will always update the same EEPROM memory. To disable this update it is
possible to use a #no_data directive in the downloaded program. This prevents
the EEPROM data area being updated (i.e. any EEPROM command data is
ignored).

The usual way to make use of the program slots is to test an input (e.g. jumper
link) upon reset, and then run the different program according to the input
condition e.g.

#slot 0

if pinC.1 = 1 then
run 1

endif
if pinC.2 = 1 then

run 2
endif

However program slots can be combined into one ‘long program’ as long as the
following points are noted:
1) No gosubs (including the interrupt) can be shared between program slots
2) The gosub/return stack is reset when moving from one slot to another
3) Outputs and variables/scratchpad are not reset
4)  The ‘run X’ command should be regarded as ‘goto to the start of program X’

Note that ‘run 0’ is not the same as the ‘reset’ command, as the reset command
will also reset all variables and convert all pins back to inputs.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

202

202

www.picaxe.com

External Program Slots

As well as the internal memory slots, 4 additional slots can be used by connecting
an external i2c EEPROM chip (part 24LC128). As up to 8 different 24LC128
chips could be used on the same I2C bus, this gives a theoretical 32 (8x4)
additional program slots.

For an 24LC128 at address 0 (ie pins A0, A1, A2 all connected to 0V) the i2c
program slots are simply numbered 4 to 7. For other 24LC128 addresses the run
(and #slot) number must be calculated as follows

Bit7 24LC128 address pin A2
Bit6 24LC128 address pin A1
Bit5 24LC128 address pin A0
Bit4 reserved for future use, use 0
Bit3 reserved for future use, use 0
Bit2 1 = I2C, 0 = internal
Bit1, 0 4 possible slot numbers

Running a program from external i2c has some restrictions
1) The i2c bus is reserved exclusively for the program reading
2) The i2c pins cannot be used for any other purpose
3) Any hardware i2c/spi commands are completely ignored
4) Program execution speed is reduced, due to the relatively slow speed of

reading data from the external 24LC128
The external 24LC128 only stores the program memory space. Any download
data memory information (ie from the EEPROM command) is not stored
externally. Read and write commands continue to act on the internal PICAXE
EEPROM data memory space.

Example:

#slot 0
init:

if pinC.1 =1 then main ‘ test an input pin upon reset
run 1 ‘ input is low so run slot 1 program

main: high B.1 ‘ this is normal program (slot 1)
etc...



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

203

203

www.picaxe.com

select case \  case \  else \  endselect
Syntax:
SELECT VAR
CASE VALUE
{code}
CASE VALUE, VALUE...
{code}
CASE VALUE TO VALUE
{code}
CASE ?? value
{code}
ELSE
{code}
ENDSELECT

- Var is the value to test.
- Value is a variable/constant.

?? can be any of the following conditions
= equal to
is equal to
<> not equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Function:
Compare a variable value and conditionally execute sections of code.

Information:
The multiple select \  case \  else \endselect command is used to test a variable for
certain conditions. If these conditions are met that section of the program code is
executed, and then program flow jumps to the endselect position. If the
condition is not met program flows jumps directly to the next case or else
command.

The ‘else’ section of code is only executed if none of the case conditions have
been true.

Example:
select case b1
case 1

high 1
case 2,3

low 1
case 4 to 6

high 2
else

low 2
endselect

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

204

204

www.picaxe.com

serin
Syntax:
SERIN  pin,baudmode,(qualifier,qualifier...)
SERIN  pin,baudmode,(qualifier,qualifier...) ,{#}variable,{#}variable...
SERIN  pin,baudmode,{#}variable,{#}variable...

Additional optional timeout syntax options for M2, X1 and X2 parts:
SERIN  [timeout], pin,baudmode,(qualifier...)
SERIN  [timeout], pin,baudmode,(qualifier...) ,{#}variable,{#}variable
SERIN  [timeout], pin,baudmode,{#}variable,{#}variable
SERIN  [timeout,address], pin,baudmode,(qualifier...)
SERIN  [timeout,address], pin,baudmode,(qualifier...) ,{#}variable,{#}variable
SERIN  [timeout,address], pin,baudmode,{#}variable,{#}variable

- Pin is a variable/constant which specifies the i/o pin to use.

- Baudmode is a variable/constant (0-7) which specifies the mode:

Txxx give a true output (idle high)
Nxxx give an inverted output (idle low)

        for older 08 / 08M / 18 / 18A / 28 / 28A parts
4MHz 8MHz 16MHz
T300_4 T600_8 T1200_16
T600_4 T1200_8 T2400_16
T1200_4 T2400_8 T4800_16
T2400_4 T4800_8 T9600_16
N300_4 N600_8 N1200_16
N600_4 N1200_8 N2400_16
N1200_4 N2400_8 N4800_16
N2400_4 N4800_8 N9600_16

       for all other parts (e.g. all X1, X2, M2 parts)

4MHz 8MHz 16MHz
T600_4 T1200_8 T2400_16
T1200_4 T2400_8 T4800_16
T2400_4 T4800_8 T9600_16
T4800_4 T9600_8 T19200_16
N600_4 N1200_8 N2400_16
N1200_4 N2400_8 N4800_16
N2400_4 N4800_8 N9600_16
N4800_4 N9600_8 N19200_16
32MHz 64MHz
T4800_32 T9600_64
T9600_32 T19200_64
T19200_32 T38400_64
T38400_32 T76800_64
N4800_32 N9600_64
N9600_32 N19200_64
N19200_32 N38400_64
N38400_32 N76800_64

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

205

205

www.picaxe.com

- Qualifiers are optional variables/constants (0-255) which must be received in
exact order before subsequent bytes can be received and stored in variables.

- Variable(s) receive the result(s) (0-255).  Optional #’s are for inputting ASCII
decimal numbers into variables, rather than raw characters.

- Timeout  is an optional variables/constants which sets the timeout period in
milliseconds

- Address is a label which specifies where to go if a timeout occurs.

Function:
Serial input with optional qualifiers (8 data, no parity, 1 stop).

Information:
The serin command is used to receive serial data into an input pin of the
microcontroller. It cannot be used with the serial download input pin, which
requires use of the serrxd command instead.

Pin specifies the input pin to be used. Baud mode specifies the baud rate and
polarity of the signal. When using simple resistor interface, use N (inverted)
signals. When using a MAX232 type interface use T (true) signals. The protocol is
fixed at N,8,1 (no parity, 8 data bits, 1 stop bit).
Note that the 4800 baud rate is available on the M, X, X1 and X2 parts. Note that
the microcontroller may not be able to keep up with processing complicated
datagrams at higher speeds - in this case it is recommended that the transmitting
device leaves a short delay (e.g. 2ms) between each byte.

Qualifiers are used to specify a ‘marker’ byte or sequence. The command
serin 1,N2400,(“ABC”),b1

requires to receive the string “ABC” before the next byte read is put into byte b1

Without qualifiers
serin 1,N2400,b1

the first byte received will be put into b1 regardless.

All processing stops until the new serial data byte  is received. This command
cannot be interrupted by the setint command. The following example simply
waits until the sequence “go” is received.

serin 1,N2400,(“go”)

IMPORTANT!
It is a very common mistake to accidentally use a qualifier by mistake like this:

serin 1,N2400,(b1)
If you do not want a qualifier do not use brackets!

serin 1,N2400, b1

The M2, X1 and X2 parts  can take an optional timeout value and address at the
start of the command. The timeout value, set in milliseconds, is the length of
time the serin command will wait for a serial command to be detected. After the
timeout period , if no signal is detected, program flow will jump to the time out
address.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

206

206

www.picaxe.com

After using this command you may have to perform a ‘hard reset’ to download a
new program to the microcontroller. See the Serial Download section for more
details.

A maximum of 4800 baud is recommended for complicated serial transactions at
8MHz. Internal resonators are not as accurate as external resonators, so in high
accuracy applications an external resonator device is recommended. However
microcontrollers with an internal resonator may be used successfully in most
applications, and may also be calibrated using the calibfreq command if required.

Example Computer Interface Circuit:

All 8 and 14 pin - Due to the internal structure of input3 (C.3) on these chips, a
1N4148 diode is required between the pin and V+ for serin to work on this
particular pin (‘bar’ end of diode to V+) with this circuit. All other pins have an
internal diode.
All 20 pin - Due to the internal structure of input6 (C.6) on this chip, a 1N4148
diode is required between the pin and V+ for serin to work on this particular pin
(‘bar’ end of diode to V+) with this circuit. All other pins have an internal diode.

Example:

main: for b0 = 0 to 63 ; start a loop
serin 6,N2400,b1 ; receive serial value
write b0,b1 ; write value into b1

next b0 ; next loop

35

03H

99H
4FBUA7X"F

0D36
]UABUA7X"F

/E$BUA'#7357^B"F7;_

/E$BUA'#7V?7^B"F7,_

/E$BUA'#76?7^B"F79_

VE
KE$BUA'# VE7X4/1?G



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

207

207

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

!"#$

))
))

'"#
'"#$

))

serrxd
Syntax:
SERRXD  (qualifier,qualifier...)
SERRXD  (qualifier,qualifier...) ,{#}variable,{#}variable...
SERRXD {#}variable,{#}variable...

Additional optional timeout syntax options for M2, X1 and X2 parts:
SERRXD [timeout], (qualifier...)
SERRXD [timeout], (qualifier...) ,{#}variable,{#}variable
SERRXD [timeout], {#}variable,{#}variable
SERRXD [timeout,address], (qualifier...)
SERRXD [timeout,address], (qualifier...) ,{#}variable,{#}variable
SERRXD [timeout,address], {#}variable,{#}variable

- Qualifiers are optional variables/constants (0-255) which must be received in
exact order before subsequent bytes can be received and stored in variables.

- Variable(s) receive the result(s) (0-255).  Optional #’s are for inputting ASCII
decimal numbers into variables, rather than raw characters.

- Timeout  is an optional variables/constants which sets the timeout period in
milliseconds (not available on M parts).

- Address is a label which specifies where to go if a timeout occurs.

Function:
Serial input via the serial input programming pin (at fixed baud rate 4800 (9600
on X2 parts), 8 data, no parity, 1 stop).

Information:
The serrxd command is similar to the serin command, but acts via the serial input
pin rather than a general input pin. This allows data to be received from the
computer via the programming cable.

The PICAXE chip normally constantly scans the serial download pin to see if a
computer is trying to initialise a new program download. However when it is
desired to use  serrxd it is necessary to disable this scanning. This is automatic,
and is effectively the same as issuing a ‘disconnect’ command.

After disconnect is used it will not be possible to download a new program until:
1) the reconnect command is issued
2) a reset command is issued
3) a hardware reset  is carried out
Remember that is always possible to carry out a new download by carrying out
the ‘hard-reset’ procedure (described in the PICAXE manual part 1).

Effect of Increased Clock Speed:
Increasing the clock speed increases the serial baud rate as shown below.

4MHz 8MHz 16MHz 32MHz
4800 9600 19200 38400

Example:
disconnect
serrxd [1000, timeout],@ptrinc,@ptrinc,@ptr
reconnect

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

208

208

www.picaxe.com

serout
Syntax:
SEROUT  pin,baudmode,({#}data,{#}data...)
- Pin is a variable/constant which specifies the i/o pin to use.

- Baudmode is a variable/constant (0-7) which specifies the mode:

Txxx give a true output (idle high)
Nxxx give an inverted output (idle low)

     for 08 / 08M / 18 / 18A / 28 / 28A parts
4MHz 8MHz 16MHz
T300_4 T600_8 T1200_16
T600_4 T1200_8 T2400_16
T1200_4 T2400_8 T4800_16
T2400_4 T4800_8 T9600_16
N300_4 N600_8 N1200_16
N600_4 N1200_8 N2400_16
N1200_4 N2400_8 N4800_16
N2400_4 N4800_8 N9600_16

      for all other parts (e.g. all X1, X2, M2 parts)

4MHz 8MHz 16MHz
T600_4 T1200_8 T2400_16
T1200_4 T2400_8 T4800_16
T2400_4 T4800_8 T9600_16
T4800_4 T9600_8 T19200_16
N600_4 N1200_8 N2400_16
N1200_4 N2400_8 N4800_16
N2400_4 N4800_8 N9600_16
N4800_4 N9600_8 N19200_16
32MHz 64MHz
T4800_32 T9600_64
T9600_32 T19200_64
T19200_32 T38400_64
T38400_32 T76800_64
N4800_32 N9600_64
N9600_32 N19200_64
N19200_32 N38400_64
N38400_32 N76800_64

- Data are variables/constants (0-255) which provide the data to be output.
Optional #’s are for outputting ASCII decimal numbers, rather than raw
characters. Text can be enclosed in speech marks (“Hello”)

Function:
Transmit serial data output (8 data bits, no parity, 1 stop bit).

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

209

209

www.picaxe.com

Information:
The serout command is used to transmit serial data from an output pin of the
microcontroller. It cannot be used with the serial download output pin - use the
sertxd command in this case.

Pin specifies the output pin to be used. Baud mode specifies the baud rate and
polarity of the signal. When using simple resistor interface, use N (inverted)
signals. When using a MAX232 type interface use T (true) signals. The protocol is
fixed at N,8,1 (no parity, 8 data bits, 1 stop bit).

A ‘N’ baud rate idles low, with data pulse going high.
A ‘T’ baud rate idles high, with data pulses going low. When using a T baud rate
the very first byte may become corrupt if the output pin was low before the serout
command (the pin will be automatically left high after the serout command). To
avoid this issue place the line high (via  a’high’ command’) a few milliseconds
before the very first serout command.

The # symbol allows ASCII output. Therefore #b1, when b1 contains the data
126, will output the ascii characters “1” ”2” ”6” rather than the raw data 126.

Please also see the interfacing circuits , affect of resonator clock speed, and
explanation notes of the ‘serin’ command, as all of these notes also apply to the
serout command.

Example:

main:
for b0 = 0 to 63 ; start a loop

read b0,b1 ; read value into b1
serout 7,N2400,(b1) ; transmit value to serial LCD

next b0 ; next loop



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

210

210

www.picaxe.com

sertxd
Syntax:
SERTXD ({#}data,{#}data...)
- Data are variables/constants (0-255) which provide the data to be output.

Function:
Serial output via the serout programming pin (baud 4800, 8 data, no parity, 1
stop).

Information:
The sertxd command is similar to the serout command, but acts via the serial
output pin rather than a general output pin. This allows data to be sent back to
the computer via the programming cable. This can be useful whilst debugging
data - view the uploaded data in the PICAXE>Terminal window. There is an
option within View>Options>Options to automatically open the Terminal
windows after a download.

The baud rate is fixed at 4800,n,8,1 (9600,n,8,1 on X2 parts)

Effect of Increased Clock Speed:
Increasing the clock speed increases the serial baud rate as shown below.

4MHz 8MHz 16MHz 32MHz 64MHz
4800 9600 19200 38400 76800

Example:

main:
for b1 = 0 to 63 ; start a loop

sertxd(“The value of b1 is ”,#b1,13,10)
pause 1000

next b1 ; next loop

))
'"%
'"#

'"#$
'"&

))
!"#

!"#$

))
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

211

211

www.picaxe.com

servo
Syntax:
SERVO  pin,pulse
SERVO  [preload],pin,pulse   (X2 only)
- Pin is a variable/constant which specifies the i/o pin to use.
- Pulse is variable/constant (75-225) which specifies the servo position
- Preload is an optional timing constant (X2 parts only).

Function:
Pulse an output pin continuously to drive a radio-control style servo.
On M2 and X2 parts the servo commands only function on portB  (B.0 to B.7)

Information:
Servos, as commonly found in radio control toys, are a very accurate motor/
gearbox assembly that can be repeatedly moved to the same position due to their
internal position sensor. Generally servos  require a pulse of 0.75 to 2.25ms every
20ms, and this pulse must be constantly repeated every 20ms. Once the pulse is
lost the servo will lose its position. The servo command starts a pin pulsing high
for length of time pulse (x0.01 ms) every 20ms. This command is different to
most other BASIC commands in that the pulsing mode continues until another
servo, high or low command is executed. High and low commands stop the
pulsing immediately. Servo commands adjust the pulse length to the new pulse
value, hence moving the servo. Servo cannot be used at the same time as timer or
pwmout/hpwm as they share a common
internal timer resource.

The ‘servo’ command initialises the pin for
servo operation and starts the timer. Once a
pin has been initialised, it is recommended to
use the ‘servopos’ command to adjust
position. This prevents resetting of the timer,
which could cause ‘jitter’

Do not generally use a pulse value less than 75 or greater than 225, as this may
cause the servo to malfunction. Due to tolerances in servo manufacture all values
are approximate and will require fine-tuning by experimentation (e.g. 60 to 200).
Always use a separate 6V  (e.g 4x AA cells) power supply for the servo, as they
generate a lot of electrical noise. Note that the overhead processing time required
for processing the servo commands every 20ms causes the other commands to be
slightly extended i.e. a pause command will take slightly longer than expected.
The servo pulses are also temporarily disabled during timing sensitive commands
like serin, serout, sertxd, debug etc.

On X2 parts servo will only function at 8MHz or 32MHz.
On M2 and X1 parts servo will only function at 4MHz or 16MHz.
On all other parts servo will only function at 4MHz.

On X2 parts it is possible to change the 20ms delay between pulses. This is
achieved via the ‘preload’ value, which is the number to preload into timer 1
before  it starts counting. On X2 parts timer 1 increments every 0.5us, so for a
delay of 20ms (20,000us) we  need 40,000 increments.  Therefore the preload
value is 65,536 - 40,000 = 25,536.

X"F
,,36

f

6

*

LG65]

:57L>XXM\

59.

:5 35

))
'"%
'"#

'"#$
'"&

))
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

212

212

www.picaxe.com

As an example, for digital servos, you may wish to increase the pulse frequency to
every 10ms (note the delay must be longer than the total of all pulses to all
servos, so 10ms is only suitable for up to 4 servos (maximum delay for 4 servos is
when pulse length is 2.25ms, so 4x2.25 = 9ms).

10ms = 10,000 us = 20,000 steps
65536-20,000 = 45536

So the command is
servo [45536],1,75

Effect of increased clock speed:
The servo command will function correctly at 4MHz on all parts (except X2 parts,
which only function at 8 or 32MHz).  16MHz is also additionally supported on
M2 and X1 parts. No other frequency will work correctly.

Example:
init: servo 4,75 ; initialise servo
main: servopos 4,75 ; move servo to one end

pause 2000 ; wait 2 seconds
servopos 4,225 ; move servo to other end
pause 2000 ; wait 2 seconds
goto main ; loop back to start



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

213

213

www.picaxe.com

servopos
Syntax:
SERVOPOS  pin,pulse
SERVOPOS  pin,OFF
- Pin is a constant  which specifies the i/o pin to use.
- Pulse is variable/constant (75-225) which specifies the servo position

Function:
Adjust the pulse length applied to a radio-control style servo to change its
position. A servo command on the same pin number must have been previously
issued.

Information:
Servos, as commonly found in radio control toys, are a very accurate motor/
gearbox assembly that can be repeatedly moved to the same position due to their
internal position sensor. Generally servos  require a pulse of 0.75 to 2.25ms every
20ms, and this pulse must be constantly repeated every 20ms. Once the pulse is
lost the servo will lose its position. The ‘servo’ command starts a pin pulsing high
for length of time pulse (x0.01 ms) every 20ms. The ‘servopos’ adjusts the length
of this pulse.

The ‘servo’ command initialises the pin for servo operation and starts the timer.
Once a pin has been initialised, it is recommended to use the ‘servopos’
command to adjust position. This prevents resetting of the timer, which could
cause ‘jitter’

Do not use a pulse value less than 75 or greater than 225, as this may cause the
servo to malfunction. Due to tolerances in servo manufacture all values are
approximate and will require fine-tuning by experimentation. Always use a
separate 6V  (e.g 4x AA cells) power supply for the servo, as they generate a lot of
electrical noise. Note that the overhead processing time required for processing
the servo commands every 20ms causes the other commands to be slightly
extended i.e. a pause command will take slightly longer than expected. The servo
pulses are also temporarily disabled during timing sensitive serin, serout, sertxd
and debug commands.

Effect of increased clock speed:
The servo command will function correctly at 4 or 16MHz (M2/X1 parts)

8 or 32Mhz (X2 parts)
4MHz (all other)

No other frequency will work correctly.

Example:
init: servo B.4,75 ; initialise servo
main: servopos B.4,75 ; move servo to one end

pause 2000 ; wait 2 seconds
servopos B.4,225 ; move servo to other end
pause 2000 ; wait 2 seconds
goto main ; loop back to start

))
'"%
'"#

'"#$
'"&

))
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

214

214

www.picaxe.com

setbit
Syntax:
SETBIT var, bit
- var is the target variable.
- bit is the target bit (0-7 for byte variables, 0-15 for word variables)

Function:
Set a specific bit in the variable.

Information:
This command sets (sets to 1) a specific bit in the target variable.

Example:
setbit b6, 0
setbit w4, 15

))
))
))
))
))

))
))
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

215

215

www.picaxe.com

setint
Syntax:
SETINT OFF
SETINT  input,mask (AND condition)
SETINT AND input,mask (AND condition)

Additional options for M2, X1 and X2 parts:
SETINT OR    input,mask (OR Condition)
SETINT NOT  input,mask (NOT the AND Condition)

Additional options for X2 parts:
SETINT input,mask,port
SETINT NOT input,mask,port

- input is a variable/constant (0-255) which specifies input condition.
- mask is variable/constant (0-255) which specifies the mask
- port is the X2 port (A,B,C,D)

Function:
Interrupt on a certain inputs condition.
X1 and X2 parts can also alternately interrupt on a certain ‘flags’ byte condition -
see setintflags command.

Information:
The setint command causes a polled interrupt on a certain input pin condition.
This can be a combination of pins on the default input port (portC). X2 parts can
also be redirected to look at a different port if required.

The default condition is a logical AND of the selected input pins.
On some parts it is also possible to take the NOT of this AND condition.
On some parts it is also possible to take a logical OR of the selected input pins.

A polled interrupt is a quicker way of reacting to a particular input  combination.
It is the only type of interrupt available in the PICAXE system. The inputs port is
checked between execution of each command line in the program, between each
note of a tune command, and continuously during any pause command. If the
particular inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is
executed immediately. When the sub-procedure has been carried out, program
execution continues from the main program.

The interrupt inputs condition is any pattern of ‘0’s and ‘1’s on the input port,
masked by the byte ‘mask’. Therefore any bits masked by a ‘0’ in byte mask will be
ignored.

to interrupt on input1 high only
setint %00000010,%00000010

to interrupt on input1 low only
setint %00000000,%00000010

to interrupt on input0 high, input1 high and input 2 low
setint %00000011,%00000111

etc.

))
'"%
'"#

'"#$
'"&

))
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

216

216

www.picaxe.com

Only one input pattern is allowed at any time. To disable the interrupt execute a
SETINT OFF command. The M2, X1, X2 parts also support the NOT condition,
where the interrupt occurs when the pattern is NOT as the port/mask define..
They can also use the ‘flags’ byte (instead of the input port) to generate the
interrupt condition.

Restrictions.
Due to internal port configuration on some of the chips there is a limitation on
which pins can be used. The default input port is portC.
14M/14M2 only inputs 0,1,2 may be used
20M only inputs 1-5 may be used
20M2/20X2 only portC may be used, and only C.1 to C.5 on portC
40X2 when using portA, only A.0 to A.3 may be used

Notes:
1) Every program which uses the SETINT command must have a corresponding

interrupt: sub-procedure (terminated with a return command) at the bottom
of the program.

2) When the interrupt occurs, the interrupt is permanently disabled. Therefore to
re-enable the interrupt (if desired) a SETINT command must be used within
the interrupt: sub-procedure itself. The interrupt will not be enabled until the
‘return’ command is executed.

3) If the interrupt is re-enabled and the interrupt condition is not cleared within
the sub-procedure, a second interrupt may occur immediately upon the return
command.

4) After the interrupt code has executed, program execution continues at the
next program line in the main program. In the case of the interrupted pause,
wait, play or tune command, any remaining time delay is ignored and the
program continues with the next program line.

More detailed SETINT explanation.
The SETINT must be followed by two numbers - a ‘compare with value’ (input)
and an ‘input mask’ (mask) in that order. It is normal to display these numbers in
binary format, as it makes it more clear which pins are ‘active’. In binary format
input7 is on the left and input0 is on the right.

The second number, the ‘input mask’, defines which pins are to be checked to see
if an interrupt is to be generated ...
- %00000001 will check input pin 0
- %00000010 will check input pin 1
- %01000000 will check input pin 6
- %10000000 will check input pin 7
- etc

These can also be combined to check a number of input pins at the same time...
- %00000011 will check input pins 1 and 0
- %10000100 will check input pins 7 and 2

Having decided which pins you want to use for the interrupt, the first number
(inputs value) states whether you want the interrupt to occur when those
particular inputs are on (1) or off (0).



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

217

217

www.picaxe.com

Once a SETINT is active, the PICAXE monitors the pins you have specified in
‘input mask’ where a ‘1’ is present, ignoring the other pins.

An input mask of %10000100 will check pins 7 and 2 and create a value of
%a0000b00 where bit ‘a’ will be 1 if pin 7 is high and 0 if low, and bit ‘b’ will be
1 if pin 2 is high and 0 if low.

The ‘compare with value’, the first argument of the SETINT command, is what
this created value is compared with, and if the two match, then the interrupt will
occur, if they don’t match then the interrupt won’t occur.

If the ‘input mask’ is %10000100, pins 7 and 2, then the valid ‘compare with
value’ can be one of the following ...

- %00000000 Pin 7 = 0 and pin 2 = 0
- %00000100 Pin 7 = 0 and pin 2 = 1
- %10000000 Pin 7 = 1 and pin 2 = 0
- %10000100 Pin 7 = 1 and pin 2 = 1

So, if you want to generate an interrupt whenever Pin 7 is high and Pin 2 is low,
the ‘input mask’ is %10000100 and the ‘compare with value’ is %10000000,
giving a SETINT command of ...

- SETINT %10000000,%10000100

The interrupt will then occur when, and only when, pin 7 is high and pin 2 is
low. If pin 7 is low or pin 2 is high the interrupt will not happen as two pins are
‘looked at’ in the mask.
Example:

setint %10000000,%10000000
; activate interrupt when pin7 only goes high

main:
low 1 ; switch output 1 off
pause 2000 ; wait 2 seconds
goto main ; loop back to start

interrupt:
high 1 ; switch output 1 on
if pin7 = 1 then interrupt ; loop here until the

; interrupt cleared
pause 2000 ; wait 2 seconds
setint %10000000,%10000000 ; re-activate interrupt
return ; return from sub



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

218

218

www.picaxe.com

In this example an LED on output 1 will light immediately the input is switched
high. With a standard if pin7 =1 then.... type statement the program could take
up to two seconds to light the LED as the if statement is not processed during the
pause 2000 delay time in the main program loop (standard program shown
below for comparison).

main:
low 1 ; switch output 1 off
pause 2000 ; wait 2 seconds
if pin7 = 1 then sw_on
goto main ; loop back to start

sw_on:
high 1 ; switch output 1 on
if pin7 = 1 then sw_on

; loop here until the condition is cleared
pause 2000 ; wait 2 seconds
goto main ; back to main loop



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

219

219

www.picaxe.com

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))
))
))
))

))
))

setintflags
Syntax:
SETINTFLAGS OFF
SETINTFLAGS flags,mask
SETINTFLAGS AND flags,mask
SETINTFLAGS OR flags,mask
 SETINTFLAGS NOT  flags,mask
- flagsis a variable/constant (0-255) which specifies flags byte condition.
- mask is variable/constant (0-255) which specifies the mask

Function:
Interrupt on a certain ‘flags’ byte condition.
Please also see the detailed usage notes under the ‘setint’ command, which also
apply to the ‘setintflags’ command. Only one interrupt can be active at any time.

Information:
The setintflags command causes a polled interrupt on a certain flags condition.
A polled interrupt is a quicker way of reacting to a particular event. It is the only
type of interrupt available in the PICAXE system. The flags byte is checked
between execution of each command line in the program, between each note of a
tune command, and continuously during any pause command. If the particular
inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is executed
immediately. When the sub-procedure has been carried out, program execution
continues from the main program.

The interrupt inputs condition is any pattern of ‘0’s and ‘1’s on the flags byte
masked by the byte ‘mask’. Therefore any bits masked by a ‘0’ in byte mask will be
ignored.

The system ‘flags’ byte is broken down into individual bit variables. See the
appropriate command for more specific details about each flag.

Name Special function Command
flag0 hint0flag X2 parts - interrupt on INT0 hintsetup
flag1 hint1flag X2 parts - interrupt on INT1 hintsetup
flag2 hint2flag X2 parts - interrupt on INT2 hintsetup
flag3 hintflag X2 parts - interrupt on any pin 0,1,2 hintsetup
flag4 compflag X2 parts - comparator flag compsetup
flag5 hserflag hserial background receive has occurred hsersetup
flag6 hi2cflag hi2c write has occurred (slave mode) hi2csetup
flag7 toflag timer overflow flag settimer

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

220

220

www.picaxe.com

to interrupt on timer 0 overflow
setintflags %10000000,%10000000

to interrupt on hi2c write (slave mode)
setintflags %01000000,%01000000

to interrupt on background hardware serial receive
setintflags %00100000,%00100000

Only one input pattern is allowed at any time. To disable the interrupt execute a
‘setintflags off’ command.

For more information about the various setintflags options (AND / OR /  NOT)
please see the setint command.

Example:
setintflags %10000000,%10000000 ;set timer 0 to interrupt



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

221

221

www.picaxe.com

setfreq
Syntax:
setfreq  freq
- freq is the keyword that selects the appropriate frequency

08M, 14M, 20M internal m4, m8
18A, 18M, 18X internal m4, m8
All M2 parts internal k31, k250, k500, m1, m2, m4, m8,m16,m32
20X2 internal k31, k250, k500, m1, m2, m4, m8,

m16, m32 ,m64
28X1, 40X1 internal k31,k125,k250,k500,m1, m2, m4, m8

external em4, em8, em10, em16, em20
28X2, 40X2 internal k31, k250, k500,m1, m2, m4, m8, m16

external  em16, em32, em40, em64
28X2-5V, 40X2-5V internal k31, k250, k500,m1, m2, m4, m8

external  em16, em32,em40
28X2-3V, 40X2-3V internal k31, k250, k500,m1, m2, m4, m8, m16

external  em16, em32, em40, em64

where k31 = 31kHz internal resonator
m4 = 4MHz internal resonator
em16 = 16MHz external resonator etc.

Function:
Set the internal clock frequency for microcontrollers with internal resonator  to
8MHz  (m8) or  some other value.
The default value on X2 parts is 8MHz internal. The default value on all other
parts is 4MHz internal.

Information:
The setfreq command can be used to change the speed of operation of the
microcontroller from 4MHz to 8MHz (or some other value). However note that
this speed increase affects many commands, by, for instance, changing their
properties (e.g. all pause commands are half the length at 8MHz).

Note that the X2parts have an internal x4 PLL inside the chip. This multiplies the
external resonator speed by 4. Therefore  the external resonator value to be used
is 1/4 of the desired final speed (ie in mode em40 use an external 10MHz
resonator, for em16 use a 4MHz resonator).

The change occurs immediately. All programs default to m4  (4MHz) if a setfreq
command is not used (default is increased to m8, 8MHz on X2 parts).

Note that the Programming Editor only supports certain  frequencies for new
program downloads. If your chip is running at a different frequency the M2, X1
and X2 parts will automatically switch back to internal 4MHz /8MHz default
speed to complete the download.

On M2 ‘multi-tasking’ programs the setfreq command may not be used, as the
oscillator speed is under control of the PICAXE firmware for task processing.

))
'"%
'"#

'"#$
'"&

))
!"#

!"#$

))
))

$"&'
$"&$

))
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

222

222

www.picaxe.com

The internal resonator frequencies are factory preset to the most accurate settings.
However advanced users may use the calibfreq command to adjust these factory
preset settings.

Some commands such as readtemp will only work at 4MHz. In these cases
change back to 4MHz temporarily to operate these commands (on M2, X1 and
X2 parts this is automatic).

Note that a temporary change in frequency (either programmed or automatic)
will have a direct effect on background frequency dependant tasks such as
pwmout /  hpwm.

Example:
setfreq em32 ; setfreq to external 32MHz
pause 4000 ; NB not 4 seconds as overclocked
setfreq m4 ; setfreq to 4MHz
readtemp 1,b1 ; do command at 4MHz
setfreq em32 ; set freq back to 32MHz



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

223

223

www.picaxe.com

settimer
Syntax:
SETTIMER  OFF
SETTIMER  preload
SETTIMER  COUNT preload
- preload is the constant/variable that selects the appropriate timing. For

convenience timer 1s value constants are predefined in the compiler.

t1s_4 (preload value 49910 - 1 second at 4MHz)
t1s_8 (preload value 34286 - 1 second at 8MHz)
t1s_16 (preload value 3036 - 1 second at 16MHz)

Function:
Configure and start the internal timer /  counter.

Information:
The settimer command is used to configure the hardware timer /  counter
function. The timer function can be used in two way - as an internal timer or as
an external counter (input 0 (C.0) only).

Note that the ‘debug’ command temporarily disables the timer (during the actual
variables transmission). Therefore use of the debug command at the same time as
the timer will cause false readings.

External Counter (not available on 20X2)
In external counter mode an internal counter register (not accessible to the end
user) is incremented on every positive going edge detected on input 0. This pulse
counting occurs in the background, so the PICAXE program can perform other
tasks at the same time as it is counting (unlike the count command, which stops
other processing during the count command time period). When the internal
counter register overflows from 65535 to 0, the special ‘timer’ variable is
automatically incremented.

Therefore to increment the timer variable on every 10 external pulses set the
preload value to 65536 - 10 = 65526.  After ten pulses the counter register will
overflow and hence increment the ‘timer’ variable. To increment the ‘timer’
variable on every external pulse simply set the preload value to 65535.

If the timer word variable overflows (ie from 65535 to 0) the timer overflow flag
(toflag) is set. The toflag is automatically cleared upon the settimer command,
but can also be cleared manually in software via ‘let toflag = 0’. If desired an
interrupt can be set to detect this overflow by use of the setintflags command.

Example:

settimer count 65535 ‘ settimer to count mode
main:

pause 10000 ‘ wait 10 seconds, counting pulses
debug ‘ display timer value
goto main ‘ loop

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))
))
))
))

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

224

224

www.picaxe.com

Internal Timer

In internal timer mode the time elapsed is stored in the word variable ‘timer’
which can be accessed as if was a normal variable e.g.

if timer > 200 then skip

When the timer word variable overflows (ie from 65535 to 0) the timer overflow
flag (toflag) is set . The toflag is automatically cleared upon the settimer
command, but can also be cleared manually via ‘let toflag = 0’. If desired an
interrupt can be set to detect this overflow by use of the setintflags command.

The period of the timer can be used defined.  The timer operates with ‘minor
ticks’ and ‘major ticks’. A minor tick occurs every 1/(clock freq /  256) seconds.
With a 4MHz resonator this means a minor tick occurs every 64us (32us at
8MHz, 16us at 16MHz, 8us at 32MHz, 4us at 64MHz). When the minor tick
word variable (not accessible by the end user) overflows (from 65535 to 0) a
major tick occurs.  The major tick increments the timer variable, and so the
number of major ticks passed can be determined by reading the ‘timer’ variable.

The preload value is used to preload the minor tick variable after it overflows.
This means it is not always necessary to wait the full 65536 minor ticks, for
instance, if the preload value is set to 60000 you then only have to wait 5536
minor ticks before the major tick occurs.

As an example, assume you wish the timer to increment every second at 4MHz.
We know that at 4MHz each minor tick takes 64us and 1 second is equivalent to
1000000 us. Therefore we require 15625 (1000000 /  64) minor ticks to give us a
1 second delay.  Finally 65536 - 15625 = 49910, so our preload value become
49910.

Timer cannot be used at the same time as the servo command, as the servo
command requires sole use of the timer to calculate the servo pulse intervals.

Example:

settimer t1s_4 ‘ settimer to 1 second ticks at 4MHz
main:

pause 10000 ‘ wait 10 seconds
debug ‘ display timer value
goto main ‘ loop



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

225

225

www.picaxe.com

shiftin (spiin)
Syntax:
SPIIN  sclk,sdata,mode,(variable {/  bits} {, variable {/  bits}, ...})
- sclk is a variable/constant which specifies the i/o pin to use as clock.

- sdata is a variable/constant which specifies the i/o pin to use as data.

 - Mode is a variable/constant (0-7) which specifies the mode:

0 MSBPre_L (MSB first, sample before clock, idles low)
1 LSBPre_L (LSB first, sample before clock, idles low)
2 MSBPost_L (MSB first, sample after clock, idles low)
3 LSBPost_L (LSB first, sample after clock, idles low)
4 MSBPre _H (MSB first, sample before clock, idles high)
5 LSBPre_H (LSB first, sample before clock, idles high)
6 MSBPost_H (MSB first, sample after clock, idles high)
7 LSBPost _H (LSB first, sample after clock, idles high)

- Variable receives the data.
- Bits  is the optional number of bits to transmit. If omitted the default is 8.

Information:
The spiin (shiftin also accepted by the compiler) command is a ‘bit-bang’ method
of SPI communication on the X1 and X2 parts ONLY. All other parts must use the
sample program included overleaf to duplicate this behaviour.
For a hardware solution for X1/X2 parts see the ‘hshin’ command.

By default 8 bits are shifted into the variable. A different number of bits (1 to 8)
can be defined via the optional /  bits. Therefore, for instance, if you require to
shift in 12 bits, do this as two bytes, one byte shifting 8 bits and the second byte
shifting 4 bits. Note that if you are using the LSB first method, the bits are shifted
right (in from the left) and so shifting just 4 bits would leave them located in bits
7-4 (not 3-0). With the MSB method the bits are shifted left (in from the right).

When connected SPI devices (e.g. EEPROM) remember that the data-in of the
EEPROM connects to the data-out of the PICAXE, and vice versa.

Other PICAXE microcontrollers do not have a direct spiin (shiftin) command.
However the same functionality  found in other products can be achieved by
using the sub procedures listed overleaf.

Effect of increased clock speed:
Increasing the clock speed increases the SPI clock frequency.

Example:

spiin 2,1,LSB_Pre_H, (b1 / 8) ‘ clock 8 bits into b1

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

226

226

www.picaxe.com

shiftin/shiftout on PICAXE chips without native commands:
Some PICAXE microcontrollers do not have a shiftin command. However the
same functionality  found in other products can be achieved by using the sub
procedures provided below. These sub-procedures are also saved in the file called
shiftin_out.bas in the \samples folder of the Programming Editor software.

To use, simply copy the symbol definitions to the top of your program  and copy
the appropriate shiftin sub procedures to the bottom of your program.

Do not copy all options as this will waste memory space.
It is presumed that the data and clock outputs (sdata and sclk)  are in the low
condition before the gosub is used.

BASIC line
“shiftin sclk, sdata,mode, (var_in(\bits)) “

 becomes
gosub shiftin_LSB_Pre (for mode LSBPre)
gosub shiftin_MSB_Pre (for mode MSBPre)
gosub shiftin_LSB_Post (for mode LSBPost)
gosub shiftin_MSB_Post (for mode MSBPost) ‘

‘ ~~~~~ SYMBOL DEFINITIONS ~~~~~
‘ Required for all routines. Change pin numbers/bits as required.
‘ Uses variables b7-b13 (i.e. b7,w4,w5,w6). If only using 8 bits
‘ all the word variables can be safely changed to byte variables.
‘

‘***** Sample symbol definitions *****
symbol sclk = 5 ‘ clock (output pin)
symbol sdata = 7 ‘ data (output pin for shiftout)
symbol serdata = input7 ‘ data (input pin for shiftin, note input7
symbol counter = b7 ‘ variable used during loop
symbol mask = w4 ‘ bit masking variable
symbol var_in = w5 ‘ data variable used durig shiftin
symbol var_out = w6 ‘ data variable used during shiftout
symbol bits = 8 ‘ number of bits
symbol MSBvalue = 128 ‘ MSBvalue

‘(=128 for 8 bits, 512 for 10 bits, 2048 for 12 bits)



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

227

227

www.picaxe.com

‘========================================================================
‘ ~~~~~ SHIFTIN ROUTINES ~~~~~
‘ Only one of these 4 is required - see your IC requirements
‘ It is recommended you delete the others to save space
‘========================================================================
‘ ***** Shiftin LSB first, Data Pre-Clock *****
shiftin_LSB_Pre:

let var_in = 0
for counter = 1 to bits ‘ number of bits
var_in = var_in / 2 ‘ shift right as LSB first
if serdata = 0 then skipLSBPre
var_in = var_in + MSBValue ‘ set MSB if serdata = 1

skipLSBPre: pulsout sclk,1 ‘ pulse clock to get next data bit
next counter
return

‘========================================================================
‘ ***** Shiftin MSB first, Data Pre-Clock *****
shiftin_MSB_Pre:

let var_in = 0
for counter = 1 to bits ‘ number of bits
var_in = var_in * 2 ‘ shift left as MSB first
if serdata = 0 then skipMSBPre
var_in = var_in + 1 ‘ set LSB if serdata = 1

skipMSBPre: pulsout sclk,1 ‘ pulse clock to get next data bit
next counter
return

‘========================================================================
‘ ***** Shiftin LSB first, Data Post-Clock ***** ‘
shiftin_LSB_Post: let var_in = 0

for counter = 1 to bits ‘ number of bits
var_in = var_in / 2 ‘ shift right as LSB first
pulsout sclk,1 ‘ pulse clock to get next data bit
if serdata = 0 then skipLSBPost
var_in = var_in + MSBValue ‘ set MSB if serdata = 1

skipLSBPost: next counter
return

‘========================================================================
‘ ***** Shiftin MSB first, Data Post-Clock *****
shiftin_MSB_Post: let var_in = 0

for counter = 1 to bits ‘ number of bits
var_in = var_in * 2 ‘ shift left as MSB first
pulsout sclk,1 ‘ pulse clock to get next data bit
if serdata = 0 then skipMSBPost
var_in = var_in + 1 ‘ set LSB if serdata = 1

skipMSBPost: next counter
return

‘========================================================================



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

228

228

www.picaxe.com

shiftout (spiout)
Syntax:
SPIOUT  sclk,sdata,mode,(data{/  bits}, {data{/  bits},...})
- sclk is a variable/constant which specifies the i/o pin to use as clock.

- sdata is a variable/constant which specifies the i/o pin to use as data.

 - Mode is a variable/constant (0-3) which specifies the mode:

0 LSBFirst_L (LSB first, idles low)
1 MSBFirst_L (MSB first, idles low)
4 LSBFirst_H (LSB first, idles high)
5 MSBFirst_H (MSB first, idles high)

- Data is a variable/constant that contains the data to send.
- Bits (optional) is the number of bits to transmit.  If omitted the default

number of bits is automatically set to 8.

Information:
The spiout (shiftout is also accepted by the compiler) command is a bit-bang of
SPI communication on the X1 and X2 parts ONLY. All other parts must use the
sample program included overleaf to duplicate this behaviour.
For a hardware solution for X1/X2 parts see the ‘hspiout’ command

By default 8 bits are shifted out. A different number of bits (1 to 8) can be
defined via the optional /  bits. Therefore, for instance, if you require to shift out
12 bits, do this as two bytes, one byte shifting 8 bits and the second byte shifting
4 bits. Note that if you are using the MSB first method, the bits are shifted left
(out from the left) and so when shifting just 4 bits they must be located in bits 7-
4 (not 3-0). With the LSB method the bits are shifted out from the right.

When connected SPI devices (e.g. EEPROM) remember that the data-in of the
EEPROM connects to the data-out of the PICAXE, and vice versa.

Some PICAXE microcontrollers do not have a shiftout command. However the
same functionality  found in other products can be achieved by using the sub
procedures listed below.

Effect of increased clock speed:
Increasing the clock speed increases the SPI clock frequency.

Example:

spiout 1,2,LSB_First, (b1 / 8) ‘ clock 8 bits from b1

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

229

229

www.picaxe.com

shiftin/shiftout on PICAXE chips without native commands:
Some PICAXE microcontrollers do not have a shiftin command. However the
same functionality  found in other products can be achieved by using the sub
procedures provided below. These sub-procedures are also saved in the file called
shiftin_out.bas in the \samples folder of the Programming Editor software.

To use, simply copy the symbol definitions (listed within the shiftin command)
to the top of your program and copy the appropriate shiftout sub procedures
below to the bottom of your program.

Do not copy both options as this will waste memory space.
It is presumed that the data and clock outputs (sdata and sclk)  are in the low
condition before the gosub is used.
BASIC line

“shiftout sclk, sdata,mode, (var_out(\bits))”
becomes

gosub shiftout_LSBFirst (for mode LSBFirst)
gosub shiftout_MSBFirst (for mode MSBFirst)

Note the symbol definitions listed in the ‘shiftin’ command must also be used.

‘========================================================================
‘ ***** Shiftout LSB first *****
shiftout_LSBFirst:

for counter = 1 to bits ‘ number of bits
mask = var_out & 1 ‘ mask LSB
low sdata ‘ data low
if mask = 0 then skipLSB
high sdata ‘ data high

skipLSB: pulsout sclk,1 ‘ pulse clock for 10us
var_out = var_out / 2 ‘ shift variable right for LSB
next counter
return

‘========================================================================
‘ ***** Shiftout MSB first *****
shiftout_MSBFirst:

for counter = 1 to bits ‘ number of bits
mask = var_out & MSBValue ‘ mask MSB
high sdata ‘ data high
if mask = 0 then skipMSB
low sdata ‘ data low

skipMSB: pulsout sclk,1 ‘ pulse clock for 10us
var_out = var_out * 2 ‘ shift variable left for MSB
next counter
return

‘========================================================================



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

230

230

www.picaxe.com

sleep
Syntax:
SLEEP  period
- Period is a variable/constant which specifies the duration of sleep in multiples

of 2.3 seconds (1-65535).

Function:
Sleep for some period (multiples of approximately 2.3s (2.1s on X1/X2 parts)).

Information:
The sleep command puts the microcontroller into low power mode for a period
of time. When in low power mode all timers are switched off and so the pwmout
and servo commands will cease to function. The nominal period is 2.3s, so sleep
10 will be approximately 23 seconds.  The sleep command is not regulated and so
due to tolerances in the microcontrollers internal timers, this time is subject to -
50 to +100% tolerance. The external temperature affects these tolerances and so
no design that requires an accurate time base should use this command.

Shorter ‘sleeps’ are possible with the ‘nap’ command (where supported).

Some PICAXE chips support the disablebod (enablebod) command to disable
the brown-out detect function. Use of this command prior to a sleep will
considerably reduce the current drawn during the sleep command.

On non-X2 parts the command ‘sleep 0’ is ignored.
On X2 parts ‘sleep 0’ puts the microcontroller into permanent sleep - it does not
wake every 2.1 seconds. The microcontroller is only woken by a hardware
interrupt (e.g. hint pin change) or hard-reset. The chip will not respond to new
program downloads when in permanent sleep.

Effect of increased clock speed:
The sleep command uses the internal watchdog timer which is not affected by
changes in resonator clock speed.

Example:

main: high 1 ‘ switch on output 1
sleep 10 ‘ sleep for 23 seconds
low 1 ‘ switch off output 1
sleep 100 ‘ sleep for 230 seconds
goto main ‘ loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

231

231

www.picaxe.com

sound
Syntax:
SOUND  pin,(note,duration,note,duration...)
- Pin is a variable/constant which specifies the i/o pin to use.
- Note(s) are variables/constants (0-255) which specify type and frequency.

Note 0 is silent for the duration.  Notes 1-127 are ascending tones.  Notes
128-255 are ascending white noises.

- Duration(s) are variables/constants (0-255) which specify duration
(multiples of  approx 10ms).

Function:
Play sound ‘beep’ noises.

Information:
This command is designed to make audible ‘beeps’ for games and keypads etc. To
play music use the play or tune command instead. Note and duration must be
used in ‘pairs’ within the command.

See the tune command for suitable piezo /  speaker circuits.

Effect of Increased Clock Speed:
The length of the note is halved at 8MHz and quartered at 16MHz.

Example:

main: let b0 = b0 + 1 ; increment b0
sound B.7,(b0,50) ; make a sound
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

232

232

www.picaxe.com

srlatch
Syntax:
SRLATCH  config1, config2
- Config1 is a variable/constant which specifies the latch configuration

Bit 7 = 1 SR Latch is active
= 0 SR Latch is not used

Bit 6-4 SR Clock Divider Bits - sets latch clock frequency
654 Divider 16MHz 8MHz 4MHz
000 1/4 0.25us 0.5us 1us
001 1/8 0.5 1 2
010 1/16 1 2 4
011 1/32 2 4 8
100 1/64 4 8 16
101 1/128 8 16 32
110 1/256 16 32 64
111 1/512 32 64 128

Bit 3 = 1 Q is present on pin SRQ (when an output)
= 0 Pin SRQ is not used by the SR Latch module

Bit 2 = 1 NOT Q is present on pin SRNQ (when an output)
= 0 Pin SRNQ is not used by the SR Latch module

Bit 1 = 0 Not used, leave as 0
Bit 0 = 0 Not used, leave as 0

Note that not all parts have both SRQ and SRNQ pins. Some parts have just SRQ and
some have just SRNQ. See the pin out diagrams for the PICAXE chip in use.
Note also that as SRNQ on the 28X2/40X2 parts is the sertxd programming pin ‘debug’
and ‘sertxd’ commands will not function when SRNQ is set active (via bit 2) .

-  Config2 is a variable/constant which specifies the set/reset configuration.
When the bit is low the feature has no effect on the SR latch.

For 20X2 part:
Bit 7 = 1 HINT1 sets latch (see hintsetup)
Bit 6 = 1 Latch set pin is pulsed by clock (see above)
Bit 5 = 1 C2 comparator sets latch (see compsetup)
Bit 4 = 1 C1 comparator sets latch (see compsetup)
Bit 3 = 1 HINT1 resets latch (see hintsetup)
Bit 2 = 1 Latch reset pin is pulsed by clock (see above)
Bit 1 = 1 C2 comparator resets latch (see compsetup)
Bit 0 = 1 C1 comparator resets latch (see compsetup)

For 28X2/40X2 parts:
Bit 7 = 1 SRI pin high sets latch
Bit 6 = 1 Latch set pin is pulsed by clock (see above)
Bit 5 = 1 C2 comparator sets latch (see compsetup)
Bit 4 = 1 C1 comparator sets latch (see compsetup)
Bit 3 = 1 SRI pin high resets latch
Bit 2 = 1 Latch reset pin is pulsed by clock (see above)
Bit 1 = 1 C2 comparator resets latch (see compsetup)
Bit 0 = 1 C1 comparator resets latch (see compsetup)

Note that on 28X2/40X2 parts the SRI pin can act as either a set or reset pin by setting
bit 3 or bit 7. Do not set both bits at the same time!

))
))
))

'"#$
))

))
))

!"#$

))
'(#$

))
$!#$
$!&$

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

233

233

www.picaxe.com

For M2 parts:
Bit 7 = 1 SRI pin high sets latch
Bit 6 = 1 Latch set pin is pulsed by clock (see above)
Bit 5 = 0 Not used, leave as 0
Bit 4 = 0 Not used, leave as 0
Bit 3 = 1 SRI pin high resets latch
Bit 2 = 1 Latch reset pin is pulsed by clock (see above)
Bit 1 = 0 Not used, leave as 0
Bit 0 = 0 Not used, leave as 0

Note that on M2 parts the SRI pin can act as either a set or reset pin by setting bit 3 or
bit 7. Do not set both bits at the same time!

Function:
Setup the internal hardware SR latch. The latch can be set by the SRSET
command, or one of the peripherals listed above. Similarly the latch can be reset
by the SRRESET command or one of the peripherals. If both SET and RESET
signals are present the latch goes to the RESET state.

Information:
Some PICAXE microcontrollers have an internal hardware SR latch. This latch can
be used independently of the PICAXE program, so that, for instance, an output
can be INSTANTLY controlled directly via the latch.
The SR latch also contains an internal clock source. This means the SR latch can
be optionally configured to act like a ‘555 timer’.
The output (Q) of the latch can be made available on pin SRQ (if present). The
inverse of the output (NOT Q) can be made available on pin SRNQ (if present).
The srlatch command does not automatically configure these pins as outputs, this
must be carried out by the user program before use.

Example for 20X2:

init: low B.1
high C.4
srlatch %10001100, %00000000

main: srset ; set the latch
pause 5000
srreset ; reset the latch
pause 5000
goto main ; loop back to start

LGV L

6 L
6

M1
V/

c g

g6GLGV

L6g

L6Ng



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

234

234

www.picaxe.com

srset /  srreset
Syntax:
SRSET
SRRESET

Function:
Set or reset the hardware SR latch.

Information:
These two commands can set or reset the SR latch via the PICAXE program. Note
that the SR latch can also be configured to be set or reset by hardware peripherals
- see the SRLATCH command for more details.

Example for 20X2:

init: low B.1
high C.4
srlatch %10001100, %00000000

main: srset
pause 5000
srreset
pause 5000
goto main ; loop back to start

))
))
))

'"#$
))

))
))

!"#$

))
'(#$

))
$!#$
$!&$

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,

LGV L

6 L
6

M1
V/

c g

g6GLGV

L6g

L6Ng



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

235

235

www.picaxe.com

stop
Syntax:
STOP

Function:
Enter a permanent stop loop until the power cycles (program re-runs) or the PC
connects for a new download.

Information:
The stop command places the microcontroller into a permanent loop at the end
of a program. Unlike the end command the stop command does not put the
microcontroller into low power mode after a program has finished.

The stop command does not switch off internal timers, and so commands such as
servo and pwmout that require these timers will continue to function.

Example:

main:
pwmout C.1,120,400
stop

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

236

236

www.picaxe.com

suspend
Syntax:
suspend  task
- task is a variable/constant which indicates which task to suspend

Function:
Suspend (pause) a task.

Information:
M2 parts can process a number of tasks in parallel. The suspend command is
used to pause a task. All other tasks continue as normal. If the task is already
running the command is ignored. If your program requires the task to be
suspended as the chip resets, use a suspend command as the first command in
that task. It will then suspend itself as soon at the chip resets.
Do not suspend all tasks at the same time!

Example:

start0:
high B.0 ; B.0 high
pause 100 ; wait for 0.1 second
low B.0 ; B.0 low
pause 100 ; wait for 0.1 second
goto start0 ; loop

start1:
pause 5000 ; wait 5 seconds
suspend 0 ; suspend task 0
pause 5000 ; wait 5 seconds
resume 0 ; resume task 0
goto start1 ; loop

))
))

!"#$

))
))
))

'"#$
))

))
))
))
))

))
))
))

))
'(#$

))
$!#$

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

237

237

www.picaxe.com

swap
Syntax:
SWAP  variable1, variable2

Function:
Swap the values between two variables.

Information:
The swap command simply exchanges values between two variables.

Example:

b1 = 5
b2 = 10

main:
swap b1,b2
debug
pause 1000
goto main

))
))
))

'"#$
))

))
))

!"#$

))
))

$"&'
$"&$

))
(!&'
(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

238

238

www.picaxe.com

switch on/ off
Syntax:
SWITCH ON pin, pin, pin...
SWITCHON pin, pin, pin...
SWITCH OFF pin, pin, pin...
SWITCHOFF pin, pin, pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:
Make pin output high /  low.

Information:
This is a ‘pseudo’ command designed for use by younger students It is actually
equivalent to ‘high’ or ‘low’, ie the software outputs a high or low command as
appropriate.

Example:

main: switch on 7 ‘ switch on output 7
wait 5 ‘ wait 5 seconds
switch off 7 ‘ switch off output 7
wait 5 ‘ wait 5 seconds
goto main ‘ loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

239

239

www.picaxe.com

symbol
Syntax:
SYMBOL  symbolname = value
SYMBOL  symbolname = value ?? constant
- Symbolname is a text string which must begin with an alpha-character or ‘_’.

After the first character, it can also contains number characters (‘0’-’9').
- Value is a variable or constant which is being given an alternate symbolname.
- ?? can be any supported mathematical function e.g. + - * /   etc.

Function:
Assign a value to a new symbol name.
Mathematical operators can also be used on constants (not variables)

Information:
Symbols are used to rename constants or variables to make them easier to
remember during a program. Symbols have no effect on program length as they
are converted back into ‘numbers’ before the download.

Symbols can contain numeric characters, but must not start with a numeric
character.  Naturally symbol names cannot be command names or reserved words
such as input, step, etc. See the list of reserved words at the end of this section.

When using input and output pin definitions take care to use the term ‘pin0’ not
‘0’ when describing input variables to be used within if...then statements.

Example:

symbol RED_LED = B.7 ; define a output pin
symbol PUSH_SW = pinC.1 ; define a input switch
symbol DELAY = b0 ; define a variable symbol

let DELAY = 200 ; preload counter with 200
main: high RED_LED ; switch on output 7

pause DELAY ; wait 0.2 seconds
low RED_LED ; switch off output 7
pause DELAY ; wait 0.2 seconds
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

240

240

www.picaxe.com

table
Syntax:
TABLE  {location},(data,data...)
- Location is an optional constant which specifies where to begin storing the

data in the program memory table.  If no location is specified, storage
continues from where it last left off.  If no location was initially specified,
storage begins at 0.

- Data are byte constants (0-255) which will be stored in the table.

Function:
Preload a lookup table for embedding in the downloaded program.
M2 parts have 512 locations (0-511). Other parts have 256 (0-255)

Information:
This is not an instruction, but a method of pre-loading the microcontroller’s
program memory lookup table. The data can then be read via the readtable
comannd (the data is fixed, cannot be altered apart from at program download).
The tablecopy command may be used to copy the table data to RAM in sections.

Example:

TABLE 0,(“Hello World”) ; save values in table

main:
for b0 = 0 to 10 ; start a loop
   readtable b0,b1 ; read value from table
   serout 7,N2400,(b1) ; transmit to serial LCD module
next b0 ; next character

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))
))

))
))
))

'"#$
))

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

241

241

www.picaxe.com

tablecopy
Syntax:
TABLECOPY  start_location,block_size
- Start_location is the start address of the block to be copied (0-511)
- Block_size is the number of bytes to be copied to RAM (1-512)

Function:
Copy the lookup table to RAM. Each address is copied directly, i.e. table address 0
is copied to RAM address 0 (which is also byte variable b0).

Information:
The tablecopy command may be used to rapidly copy the table data to RAM in
user defined ‘blocks’. This is useful, for instance, to preload string data into RAM.
Each copy is made to exactly the same address in RAM, so that it can then be
accessed via peek or @bptr.

The copy will cease if the maximum address of the table (511) is exceeded.

Note that the lower bytes of RAM are always shared with the byte variables.
Therefore copying locations 0,1,2 etc. will overwrite b0,b1,b2 etc.

Example:

TABLE 0,(“Hello World”) ; save values in table

main:
tablecopy 0,5 ; copy addresses 0,1,2,3,4
debug ; show b0-b4 on screen
goto main ; loop

))
))
))
))

))
))
))

))
))
))

))
))
))

'"#$
))

))
'(#$

))
$!#$

))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

242

242

www.picaxe.com

tmr3setup
Syntax:
TMR3SETUP  config
- config is a constant/variable that configures timer3.

config is defined as (20X2, 28X2-5V, 28X2-3V, 40X2-3V, 40X2-5V)
Bit 7 Must be set (1)
Bit 6 Must be clear (0)
Bit 5, 4 1 : 8 Prescale (11)

1 : 4 Prescale (10)
1 : 2 Prescale (01)
1 : 1 Prescale (00)

Bit 3 Must be clear (0)
Bit 2 Must be clear (0)
Bit 1 Must be clear (0)
Bit 0 Timer 3 Enable (1= on, 0 = off)

config is defined as (28X2, 40X2)
Bit 7 Must be clear (0)
Bit 6 Must be clear (0)
Bit 5, 4 1 : 8 Prescale (11)

1 : 4 Prescale (10)
1 : 2 Prescale (01)
1 : 1 Prescale (00)

Bit 3 Must be clear (0)
Bit 2 Must be clear (0)
Bit 1 Must be set (1)
Bit 0 Timer 3 Enable (1= on, 0 = off)

Function:
Configure the internal timer3 on X2 parts.

Information:
The tmr3setup command configures the internal timer3 on X2 parts. This is a free
running timer that can be used for user background timing purposes.

The internal timer counts, when enabled, at a rate of (1/resonator speed) * 4.
This means, for instance, at 8MHz the internal timer increment occurs every
0.5us. This value can be optionally scaled by the prescale value (set via bits 5:4) ,
so with a 1: 8 prescale the increment will occur every 4us (8 x 0.5us).

The PICAXE word variable ‘timer3’ increments on every overflow of the internal
timer, ie 65536 x the increment delay. So at 8MHz with 1:8 prescalar the timer3
value will increment every 262144us  (262ms).

‘timer3’ is a word length variable

))
))
))

$"&$

))
))

(!&$

))
))
))

))
))
))
))
))

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

243

243

www.picaxe.com

Example ( for 28X2):

tmr3setup %00110011 ; timer3 on, 1:8 prescalar

main: pause 500 ; short delay
debug ; display timer3 value
goto main

Example ( for 28X2-5V or 28X2-3V):

tmr3setup %10110001 ; timer3 on, 1:8 prescalar

main: pause 500 ; short delay
debug ; display timer3 value
goto main

Example (code suitable to automatically select 28X2, 28X2-3V, or 28X2-5V):

readsilicon b1 ; get chip silicon type
b1 = b1 & %11100000 ; mask out type bits

if b1 = %10000000 then  ; chip is 28X2
  tmr3setup %00110011 ; timer3 on, 1:8 prescalar
else ; other type of chip
  tmr3setup %10110001 ; timer3 on, 1:8 prescalar
endif

main: pause 500 ; short delay
debug ; display timer3 value
goto main



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

244

244

www.picaxe.com

toggle
Syntax:
TOGGLE  pin,pin,pin...
- Pin is a variable/constant which specifies the i/o pin to use.

Function:
Make pin output and toggle state.

Information:
The high command inverts an output (high if currently low and vice versa)
On microcontrollers with configurable input/output pins (e.g. PICAXE-08) this
command also automatically configures the pin as an output.

Example:

main:
toggle B.7 ; toggle output 7
pause 1000 ; wait 1 second
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

245

245

www.picaxe.com

togglebit
Syntax:
TOGGLEBIT var, bit
- var is the target variable.
- bit is the target bit (0-7 for byte variables, 0-15 for word variables)

Function:
Toggle (invert) a specific bit in the variable.

Information:
This command toggles (inverts) a specific bit in the target variable.

Examples:
togglebit b6, 0
togglebit w4, 15

))
))
))
))
))

))
))
))

))
))

$"&'
$"&$

))
(!&'
(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

246

246

www.picaxe.com

touch
Syntax:
TOUCH  channel, variable

- Channel is a variable/constant specifying the ADC pin
- Variable receives the byte touch reading

Function:
Read the  touch sensor on the ADC channel and save reading into byte variable.
This command automatically configures the pin as an ADC and as a touch sensor.

Note that the touch command is a ‘pseudo’ command that actually processes a
‘touch16’ command and then scales the 16 bit result to fit in a byte (to give a
byte reading 0-255). This makes byte mathematics easier in simple programs but
does mean that the touch sensor accuracy is reducing by the scaling process.

When possible it is recommended that a ‘touch16’ command with a word
variable is used instead. This will maintain the highest possible accuracy.

Please note that the touch reading can be affected by long serial cables connected
to the project PCB (e.g. the older AXE026 download cable).  Therefore it is not
recommended that the older AXE026 serial cable (or AXE026/USB adapter
combination) is used when trying to calibrate the touch command as it can affect
the readings, only use the AXE027 USB cable for this calibration.

Due to the design of the silicon inside the microcontroller each pin will give
slightly different readings. Therefore each pin must be calibrated separately.

See the ‘touch16’ command description for more details about using touch
sensors.

Affect of increased clock speed:
The clock speed will affect the count rate and so the result will change for each
clock speed. Therefore the touch command must be calibrated at the actual clock
speed in use.

Example:

main:
  touch C.1,b0 ; read value into b0
  if b0 > 100 then

high b.2 ; output B.2 on
  else

low b.2 ; output b.2 off
  endif
  goto main ; else loop back to start

))
))

!"#$

))
))
))

'"#$
))

))
'(#$

))
$!#$

))

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

247

247

www.picaxe.com

touch16
Syntax:
TOUCH16  channel, wordvariable
TOUCH16  [config], channel, wordvariable

- Channel is a variable/constant specifying the ADC pin
- Wordvariable receives the 16 bit touch reading (10 bit on X2 parts)
- Config is an optional variable/constant specifying a configuration value

Function:
Read the  touch sensor on the ADC channel and save reading into word variable.
This command automatically configures the pin as an ADC and as a touch sensor.

Information:
The touch16 command is used to read the touch sensor value from the
microcontroller touch pin. Note that not all inputs have internal ADC /  touch
functionality - check the pinout diagrams for the PICAXE chip you are using.
Note that touch16 requires use of a word variable (e.g. w1 not b1), use the touch
command for a byte variable.

IMPORTANT - Never ‘directly touch’ a touch sensor (e.g. a piece of bare wire)! A
touch sensor must be electrically isolated from the end user. On a commercial
PCB this can be as simple as the ‘solder resist’ lacquer layer printed over the pad,
or on a home made PCB this can be achieved by placing a small piece of 2mm
plastic over the PCB pad (the copper pad should be at least 15mm in diameter).
The top of a plastic project box makes an ideal insulator. Simply stick the PCB to
the inside of the box and place a ‘sticker’ as a target on the outside of the box.

Note touch sensor pads must NOT have any other electrical connection than the
connection to the PICAXE pin (e.g. touch sensor pads must not include a 10k pull
up or pull down resistor as found on many project boards).

Please note that the touch16 reading can be affected by long serial cables
connected to the project PCB (e.g. the older AXE026 download cable).  Therefore
it is not recommended that the older AXE026 serial cable (or AXE026/USB
adapter combination) is used when trying to calibrate the touch16 command as
it can affect the readings, only use the AXE027 USB cable for this purpose.

Due to the design of the silicon inside the microcontroller each pin will give
slightly different readings. Therefore each pin must be calibrated separately.

In simple terms a touch sensor works by detecting the change in capacitance
when a finger is placed near the touch sensor pad. This capacitance affects the
frequency of an internal oscillating signal. By measuring the time it takes for a set
number of oscillations, the relative capacitance can be calculated. This value will
change when the finger is placed nearby - the finger increases the total
capacitance which then decreases the oscillation speed, and so the time taken
(value) of the touch16 command increases.

Touch sensors do not work when wet, they must be kept dry.

))
))

!"#$

))
))
))

'"#$
))

))
'(#$

))
$!#$

))

))
))
))

$"&$

))
))

(!&$

!"#$%&#'()*+,



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

248

248

www.picaxe.com

A touch sensor pad is made from an area of copper pour on a PCB, approximately
15mm - 20mm in diameter.  It can be any shape. When designing multiple
sensors close by each other consider the width of a human finger and that user
finger placement will not always be that accurate. Where possible print visual
‘targets’ above the pad and leave as large as space as possible between pads.

The AXE181 ‘18M2 touch sensor demo board’ is the suggested low cost
development board for trying out touch sensors.

Note that M2 and X2 parts have different internal silicon methods of measuring
capacitance change. The X2 method is faster, but gives a 10 bit (0-1023) value
instead of a 16 bit value.

Effect of increased clock speed:
The clock speed will effect the count rate and so the result will change for each
clock speed. Therefore the touch16 command must be calibrated at the actual
clock speed in use.

Example:

main:
  touch16 C.1,w0 ; read value into w0
  if w0 > 3000 then

high B.2 ; output B.2 on
  else

low B.2 ; output B.2 off
  endif
  goto main ; else loop back to start



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

249

249

www.picaxe.com

Configuration Byte - M2 parts

Normally the default configuration is recommended, so the optional config byte
is not required within the touch16 command. However the optional ‘config’ byte
can be used to fine tune the touch16 command operation if desired.

Config byte is broken down into 8 bits for M2 parts as follows:
bit7, 6, 5 = Counter preload value (bits 7-5), e.g.

= 000 Oscillation count required = 256
= 010 Oscillation count required = 192
= 100 Oscillation count required = 128
= 110 Oscillation count required = 64
= 111 Oscillation count required = 32

bit4,3 = 00 Touch sensor oscillator is off
= 01 Low range (0.1uA)
= 10 Medium range (1.2uA)
= 11 High Range (18uA)

bit 2,1,0 = Counter Prescalar (divide by 2 up to 256) e.g.
= 001 Prescalar divide by 4

The default value for M2 parts is %000 01 001

Configuration Byte - X2 parts

Normally the default configuration is recommended, so the optional config byte
is not required within the touch16 command. However the optional ‘config’ byte
can be used to fine tune the touch16 command operation if desired.

Config byte is broken down into 8 bits for X2 parts as follows:
bit7, 6, = Not used
bit5,4 = 00 Touch sensor oscillator is off

= 01 Nominal charge current
= 10 Medium current (10 x Nominal)
= 11 High current (100 x Nominal)

bit 3,2,1,0 = Charge Time in multiples of 2us (1-15)

The default value for X2 parts is %0011 0010
(High current, charge time length multiple 2)



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

250

250

www.picaxe.com

tune
Syntax:
TUNE  pin, speed, (note, note, note...)
TUNE  pin, speed, LED_mask, (note, note, note...) (M2 parts only)
TUNE  LED_option, speed, (note, note, note...) (8 pin only)
- pin is a variable/constant which specifies the i/o pin to use (not available on

8 pin devices, which are fixed to output 2).
- speed is a variable/constant (1-15) which specifies the tempo of the tune.
- notes are the actual tune data generated by the Tune Wizard.
- LED_mask (M2 parts only) is a variable/constant which specifies if other

PICAXE outputs (on the same port as the piezo) flash at the same time as the
tune is being played. For example use %00000011 to flash output 0 and 1.

- LED_option (08M/08M2 only) is a variable/constant (0 -3) which specifies if
other 8pin PICAXE outputs flash at the same time as the tune is being played.

0 - No outputs
1 - Output 0 flashes on and off
2 - Output 4 flashes on and off
3 - Output 0 and 4 flash alternately

Function:
Plays a user defined musical tune .

Information:
The tune command allows musical ‘tunes’ to be played.
Playing music on a microcontroller with limited memory will never have the
quality of commercial playback devices, but the tune command performs
remarkably well. Music can be played on economical piezo sounders (as found in
musical birthday cards) or on better quality speakers.

The following information gives technical details of the note encoding process.
However most users will use the ‘Tune Wizard’ to automatically generate the tune
command, by either manually sequentially entering notes or by importing a
mobile phone ring tone. Therefore the technical details are only provided for
information only – they are not required to use the Tune Wizard.

Note that the tune command compresses the data, but the longer the tune the
more memory that will be used. The ‘play’ command does not use up memory in
the same way, but is limited to the 4 internal preset tunes.

All tunes play on a piezo sounder or speaker, connected to the output pin (must
be output 2 (leg 5) of the 8 pin devices). Some sample circuits are shown later in
this section.

On all 8 pin and all M2 parts other outputs can be enabled to cause them to
‘flash’ in time to the music. The LEDs ‘toggle’ on/off at the end of every note.

))
!"#

!"#$

))
))

'"#
'"#$

))

))
))

$"&'
$"&$

))
(!&'
(!&$

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

251

251

www.picaxe.com

Speed:
The speed of music is normally called ‘tempo’ and is
the number of ‘quarter beats per minute’ (BPM).
This is defined within the PICAXE system by
allocating a value of 1-15 to the speed  setting.

The sound duration of a quarter beat within the
PICAXE is as follows:

sound duration = speed x 65.64 ms

Each quarter beat is also followed by a silence
duration as follows,

silence duration = speed x 8.20 ms

Therefore the total duration of a quarter beat is:
total duration = (speed x 65.64)

         + (speed x 8.20)
= speed x 73.84 ms

Therefore the approximate number of beats per
minute (bpm) are:

bpm = 60 000 /  (speed x 73.84)

A table of different speed values are shown here.
This gives a good range for most popular tunes.

Note that within electronic music a note normally plays for 7/8 of the total note
time, with silence for 1/8. With the PICAXE the ratio is slightly different (8/9)
due to memory and mathematical limitations of the microcontroller.

Speed BPM

1 812

2 406

3 270

4 203

5 162

6 135

7 116

8 101

9 90

10 81

11 73

12 67

13 62

14 58

15 54



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

252

252

www.picaxe.com

. 

Musical note Byte.017 6 5 4 3 2

Note (0 - 12)

Octave (0 - 2)

Duration (0 - 3)

Note Bytes:
Each note byte is encoded into 8 bits as shown. The encoding is optimised to
ensure the most common values (1/4 beat and octave 6) both have a value of 00.
Note that as the PICAXE also performs further optimisation on the whole tune,
the length of the tune will not be exactly the same length as the number of note
bytes. 1/16, 1/32 and ‘dotted’ notes are not supported.

76 = Duration 54 = Octave 3210 = Note

00 = 1/4 00 = Middle Octave (6) 0000 = C

01 = 1/8 01 = High Octave (7) 0001 = C#

10 = 1 10 = Low Octave (5) 0010 = D

11 = 1/2 11 = not used 0011 = D#

0100 = E

0101 = F

0110 = F#

0111 = G

1000 = G#

1001 = A

1010 = A#

1011 = B

11xx = Pause

 C5         D5         E5         F5       G5         A5        B5

 C5#       D5#                   F5#       G5#       A5#

 C6         D6          E6         F6        G6         A6        B6

 C6#      D6#                    F6#       G6#       A6#

 C7         D7         E7         F7        G7         A7       B7

 C7#      D7#                    F7#       G7#      A7#

Piano Representation of Note Frequency

C5   = 262 Hz
C5# = 277 Hz
D5   = 294 Hz
D5# = 311 Hz
E5   = 330 Hz
F5   = 349 Hz
F5# = 370 Hz
G5  =  392 Hz
G5# = 415 Hz
A5   = 440 Hz
A5# = 466 Hz
B5   = 494 Hz

C6   = 523 Hz ("Middle C")
C6# = 554 Hz
D6   = 587 Hz
D6# = 622 Hz
E6   = 659 Hz
F6   = 698 Hz
F6# = 740 Hz
G6   = 784 Hz
G6# = 831 Hz
A6   = 880 Hz
A6# = 932 Hz
B6   = 988 Hz

C7   = 1047 Hz
C7# = 1109 Hz
D7   = 1175 Hz
D7# = 1245 Hz
E7   = 1318 Hz
F7   = 1396 Hz
F7# = 1480 Hz
G7   = 1568 Hz
G7# = 1661 Hz
A7   = 1760 Hz
A7# = 1865 Hz
B7   = 1975 Hz

Octave 5 Octave 6 Octave 7



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

253

253

www.picaxe.com

PICAXE Tune W izard

The Tune Wizard allows musical
tunes to be created for the
PICAXE. Tunes can be entered
manually using the drop-down
boxes if desired, but most users
will prefer to automatically import
a mobile phone monophonic
ringtone. These ringtones are
widely available on the internet in
RTTTL format (used on most
Nokia phones). Note the PICAXE
can only play one note at a time
(monophonic), and so cannot use
multiple note (polyphonic)
ringtones.

There are approximately 1000 tunes for free download on the software page of
the www.picaxe.co.uk website.

To start the Tune Wizard click  the PICAXE>Wizard>Tune Wizard menu.

The easiest way to import a ringtone from the internet is to find the tune on a
web page. Highlight the RTTTL version of the ringtone in the web browser and
then click Edit>Copy.  Move back to the Tune Wizard and then click Edit>Paste
Ringtone.

To import a ringtone from a saved text file, click File>Import Ringtone.

Once the tune has been generated, select whether you want outputs 0 and 4 to
flash as the tune plays (from the options within the ‘Outputs’ section).

The tune can then be tested on the computer by clicking the ‘Play’ menu (if your
computer is fitted with soundcard and speakers).  The tune played will give a
rough idea of how the tune will sound on the PICAXE, but will differ slightly due
to the different ways that the computer and PICAXE generate and playback
sounds. On older computers the tune generation may take a couple of seconds as
generating the tune is very memory intensive.

Once your tune is complete click the ’Copy’ button to copy the tune command to
the Windows clipboard. The tune can then be pasted into your main program.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

254

254

www.picaxe.com

Tune W izard menu items:

File New Start a new tune
Open Open a previously saved tune
Save As Save the current tune
Import Ringtone Open a ringtone from a text file
Export Ringtone Save tune as a ringtone text file
Export Wave Save tune as a Windows .wav sound file
Close Close the Wizard

Edit Insert Line Insert a line in the tune
Delete Line Delete the current line
Copy BASIC Copy the tune command to Windows clipboard
Copy Ringtone Copy tune as a ringtone to Windows clipboard
Paste BASIC Paste tune command into Wizard
Paste Ringtone Paste ringtone into Wizard

Play Play the current tune on the computer’s speaker
Help Help Start this help file.

Ring Tone Tips & Tricks:
1. After generating the tune, try adjusting the tempo by increasing or decreasing

the speed value by 1 and listening to which ‘speed’ sounds best.
2. If your ringtone does not import, make sure the song title at the start of the

line is less than 50 characters long and that all the text is saved on a single
line.

3. Ringtones that contain the instruction ‘d=16’ after the description, or that
contain many notes starting with 16 or 32 (the odd one or two doesn’t
matter) will not play correctly at normal speed on the PICAXE. However they
may sound better if you double the PICAXE processor speed by using a
‘setfreq m8’ command before the tune command.

4. The PICAXE import filters ‘round-down’ dotted notes (notes ending with ‘.’).
You may wish to change these notes into longer notes after importing.



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

255

255

www.picaxe.com

Sound Circuits for use with the play or tune command.

The simplest, most economical, way to play the tunes is to use a piezo
sounder. These are simply connected between the output pin ( e.g. pin
2 (leg 5) of the PICAXE-08M2) and 0V (see circuits below).

The best piezo sound comes from the ’plastic cased’ variants. Uncased
piezos are also often used in schools due to their low cost, but the
‘copper’ side will need fixing to a suitable sound-board (piece of card,
polystyrene cup or even the PCB itself) with double sided tape to
amplify the sound.

For richer sounds a speaker should be used. Once again the quality of
the sound-box the speaker is placed in is the most significant factor for
quality of sound.  Speakers can be driven directly (using a series
capacitor) or via a simply push-pull transistor amplifier.

A 40 or 80 ohm speaker can be connected with two capacitors as shown. For an 8
ohm speaker use a combination of the speaker and a 33R resistor in series (to
generate a total resistance of 41R).

The output can also be connected (via a simple RC filter) to an audio amplifier
such as the TBA820M.

The sample .wav sound files in the \music sub-folder of the Programming Editor
software are real-life recordings of tunes played (via a speaker) from the
microcontroller chip.

X"F79

35

X"F79

35

.

<37E#7D3
ET$7@B'&H'#

03U!

.
03U!

X"F79

35

VE71UR"E
1$BJ"S"'#033F! 03F!

0H 0H

X"'dE



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

256

256

www.picaxe.com

 Ringing Tones Text Transfer Language (RTTTL) file format specification

<name> <sep> [<defaults>] <sep> <note-command>+
<name> := <char>+ ; max length 10 characters PICAXE accepts up to 50
<sep> := “:”
<defaults> :=
<def-note-duration> | <def-note-scale> | <def-beats>
<def-note-duration> := “d=” <duration>
<def-note-octave> := “o=” <octave>
<def-beats> := “b=” <beats-per-minute>

; If not specified, defaults are
; duration = 4 (quarter note)
; octave = 6
; beats-per-minute = 63 (decimal value) PICAXE defaults to 62

<note-command> :=
[<duration>] <note> [<octave>] [<special-duration>] <delimiter>

<duration> :=
”1" | ; Full 1/1 note
”2" | ; 1/2 note
”4" | ; 1/4 note
”8" | ; 1/8 note
”16" | ; 1/16 note Not used – PICAXE changes to 8
”32" | ; 1/32 note Not used – PICAXE changes to 8

<note> :=
”C” |
”C#” |
”D” |
”D#” |
”E” |
”F” |
”F#” |
”G” |
”G#” |
”A” |
”A#” |
”B” | ; “H” can also be used PICAXE exports using B
“P” ;  pause

<octave> :=
”5" | ; Note A is 440Hz
”6" | ; Note A is 880Hz
”7" | ; Note A is 1.76 kHz
”8" ; Note A is 3.52 kHz Not used - PICAXE uses octave 7

<special-duration> :=
”.” ; Dotted note Not used - PICAXE rounds down

<delimiter> := “,”



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

257

257

www.picaxe.com

uniin
Syntax:
UNIIN  pin, device, command, (var, var...)
UNIIN  pin, device, command, address, address, (var, var...)
- pin is a variable/constant which specifies the i/o pin to use.
- device is the UNI/O type, %10100000 for EEPROM devices
- command is the read type command, either

UNI_READ Read from specified address
UNI_CRRD Read from current address
UNI_RDSR Read status byte

- address is the optional 2 byte address, only used by UNI_READ
- variable receives the data.

e.g.
uniin C.3, %10100000, UNI_RDSR, (b1)
uniin C.3, %10100000, UNI_CRRD, (b1,b2,b3)
uniin C.3, %10100000, UNI_READ, 0, 1, (b1,b2,b3)

Function:
Read data from the UNI/O device into the PICAXE variable.

Information:
The ‘uniin’ command allows data to be read in from an external UNI/O part such
as the 11LCxxx series EEPROM chips. UNI/O parts only require one i/o pin to
connect to the PICAXE microcontroller. A 4k7 pullup resistor is not required by
the UNI/O specification, but is highly recommended.

This command cannot be used on the following pins due to silicon restrictions:
20X2 C.6 = fixed input

Example:

Please see the uniout command overleaf.

))
))
))
))
))

))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

))
))

$!&$

;5

35

X
4/

1
?

G

<HI

5.

35

5.

35

>
N

47-
4]



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

258

258

www.picaxe.com

uniout
Syntax:
UNIOUT  pin, device, command
UNIOUT  pin, device, command, (data)
UNIOUT  pin, device, command, address, address, (data, data...)
- pin is a variable/constant which specifies the i/o pin to use.
- device is the UNI/O type, %10100000 for EEPROM devices
- command is the write type command, either

UNI_WRITE write
UNI_WREN write enable
UNI_WRDI write disable
UNI_WRSR write status
UNI_ERAL erase all
UNI_SETAL set all

- address is the 2 byte address required by UNI_WRITE
- data is the information to write

e.g.
uniout C.3, %10100000, UNI_ERAL
uniout C.3, %10100000, UNI_SETAL
uniout C.3, %10100000, UNI_WREN
uniout C.3, %10100000, UNI_WRSR, (%0011)
uniout C.3, %10100000, UNI_WRITE, 0, 1, (b1)
uniout C.3, %10100000, UNI_WRDI

Function:
Write data to the UNI/O device. Note that the UNI/O parts have a 16 byte page
boundary. A single write cannot go over a page boundary (ie a multiple of 16).
This means, for instance, you may write 10 bytes in one UNI_WRITE command
from address 0 up, but not 10 bytes from address 10 upwards, as this would
overlap a page boundary (byte 16).

Information:
The ‘uniout’ command allows data to be written to an external UNI/O part such
as the 11LCxxx series EEPROM chips. UNI/O parts only require one i/o pin to
connect to the PICAXE microcontroller.

A 4k7 pullup resistor is not technically required by the UNI/O specification, but
is highly recommended.

Note that when first powered up (after a power-on or brown out reset) the
UNI/O device is in a special low-power standby mode. It is necessary to ‘wake’
the device, via a rising edge pulse (using the pulsout command),  before the uniin
/  uniout commands will function correctly.

This command cannot be used on the following pins due to silicon restrictions:
20X2 C.6 = fixed input

))
))
))
))
))

))
))
))

))
))
))

$"&$

))
))

(!&$

))
))

))
))

$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

259

259

www.picaxe.com

Example:

reset_uni:
pulsout C.3, 1 ; ESSENTIAL - enable device

; via a rising edge pulse

main:
inc b1
uniout C.3, %10100000, UNI_WRSR, (0) ; clear status
uniout C.3, %10100000, UNI_WREN ; write enable
uniout C.3, %10100000, UNI_WRITE, 0, 1, (b1) ; write
pause 10 ; wait for write
uniout C.3, %10100000, UNI_WRDI ; write disable
pause 1000 ; wait
uniin C.3, %10100000, UNI_READ, 0, 1, (b2) ; read
debug ; display
goto main ; loop

;5

35

X
4/

1
?

G

<HI

5.

35

5.

35

>
N

47-
4]



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

260

260

www.picaxe.com

wait
Syntax:
WAIT  seconds
- Seconds is a constant (1-65) which specifies how many seconds to pause.

Function:
Pause for some time in whole seconds.

Information:
This is a ‘pseudo’ command designed for use by younger students It is actually
equivalent to ‘pause * 1000’, ie the software outputs a pause command with a
value 1000 greater than the wait value. Therefore this command cannot be used
with variables. This command is not normally used outside the classroom.

Example:

main:
switch on B.7 ; switch on output B.7
wait 5 ; wait 5 seconds
switch off B.7 ; switch off output B.7
wait 5 ; wait 5 seconds
goto main ; loop back to start

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

261

261

www.picaxe.com

write
Syntax:
WRITE  location,data ,data, WORD wordvariable...
- Location is a variable/constant specifying a byte-wise address (0-255).
- Data is a variable/constant which provides the data byte to be written. To use a

word variable the keyword WORD must be used before the wordvariable.

Function:
Write byte data content into data memory.

Information:
The write command allows byte data to be written into the microcontrollers data
memory. The contents of this memory is not lost when the power is removed.
However the data is updated (with the EEPROM command specified data) upon
a new download. To read the data during a program use the read command.

With the PICAXE-08, 08M, 08M2, 14M, 18, 18M and 18M2 the data memory is
shared with program memory. Therefore only unused bytes may be used within a
program. To establish the length of the program use ‘Check Syntax’ from the
PICAXE menu. This will report the length of program. See the EEPROM
command for more details.

When word variables are used (with the keyword WORD) the two bytes of the
word are saved/retrieved in a little endian manner (ie low byte at address, high
byte at address + 1)

Example:

main:
for b0 = 0 to 63 ; start a loop

serin C.6,N2400,b1 ; receive serial value
write b0,b1 ; write value of b1 into b0

next b0 ; next loop

!"
!"#

!"#$

$"%
$"&
$"&'
$"&$

(!&
(!&'
(!&$

'"
'"%
'"#

'"#$
'"&

'(#
'(#$

$!#
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

262

262

www.picaxe.com

writemem
Syntax:
WRITEMEM  location,data
- Location is a variable/constant specifying a byte-wise address (0-255).
- Data is a variable/constant which provides the data byte to be written.

Function:
Write FLASH program memory byte data into location.

Information:
The data memory on the PICAXE-28A is limited to only 64 bytes. Therefore the
writemem command provides an additional 256 bytes storage in a second data
memory area. This second data area is not reset during a download.

This command is not available on the PICAXE-28X as a larger i2c external
EEPROM can be used.

The writemem command is byte wide, so to write a word variable two separate
byte write commands will be required, one for each of the two bytes that makes
the word (e.g. for w0, read both b0 and b1).

Example:

main:
for b0 = 0 to 255 ; start a loop

serin 6,N2400,b1 ; receive serial value
writemem b0,b1 ; write value of b1 into b0

next b0 ; next loop

))
))
))
))
))

))
))
))

$"%
))
))
))

))
))
))

))
))

))
))
))



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

263

263

www.picaxe.com

writei2c
This command is deprecated, please consider using the hi2cout command instead.

Syntax:
WRITEI2C  location,(variable,...)
WRITEI2C  (variable,...)
- Location is a variable/constant specifying a byte or word address.
- Variable(s) contains the data byte(s) to be written.

Function:
The writei2c (i2cwrite also accepted by the compiler) command writes variable
data to the i2c location.

Information:
Use of i2c parts is covered in more detail in the separate ‘i2c Tutorial’ datasheet.

This command is used to  write byte data to an i2c device. Location defines the
start address of the data to be written, although it is also possible to write more
than one byte sequentially (if the i2c device supports sequential writes).

Location must be a byte or word as defined within the i2cslave command. An
i2cslave command must have been issued before this command is used.

Example:

; Example of how to use DS1307 Time Clock
; Note the data is sent/received in BCD format.
; Note that seconds, mins etc are variables that need
; defining e.g. symbol seconds = b0 etc.

; set DS1307 slave address
i2cslave %11010000, i2cslow, i2cbyte

;write time and date e.g. to 11:59:00 on Thurs 25/12/03
start_clock:

let seconds = $00 ; 00 Note all BCD format
let mins    = $59 ; 59 Note all BCD format
let hour    = $11 ; 11 Note all BCD format
let day     = $03 ; 03 Note all BCD format
let date    = $25 ; 25 Note all BCD format
let month   = $12 ; 12 Note all BCD format
let year    = $03 ; 03 Note all BCD format
let control = %00010000 ' Enable output at 1Hz

writei2c 0,(seconds,mins,hour,day,date,month,year,control)
 end

))
))
))

))
))
))

'"#$
'"&

))
$"&
$"&'
$"&$

(!&
(!&'
(!&$

))
'(#$

))
$!#$
$!&$



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

264

264

www.picaxe.com

Appendix 1 - Commands
adcconfig
backward, bcdtoascii, bcdtobin, bintoascii, bintobcd, booti2c, branch, button
calibadc, calibadc10, calibfreq, call, case, clearbit, compsetup, count
daclevel, dacsetup, data, debug, dec, disablebod, disabletime, disconnect, do,
doze
eeprom, else, elseif, enablebod, enabletime, end, endif, endselect, exit
for, forward, fvrsetup
get, gosub, goto
halt, hi2cin, hi2cout, hi2csetup, hibernate, high, hintsetup, hpwm, hpwmduty,
hpwmout, hserin, hserout, hsersetup, hshin, hshout, hspiin, hspiout, hspisetup
i2cread, i2cslave, i2cwrite, if, inc, infrain, infrain2, infraout, input, inputtype, irin,
irout
kbin, kbled, keyin, keyled
let, lookdown, lookup, loop, low
nap, next
on, output, owin, owout
pause, pauseus, peek, peeksfr, play, poke, pokesfr, pullup, pulsin, pulsout, put,
pwm, pwmduty, pwmout
random, read, readadc, readadc10, readdac, readdac10, readfirmware, readi2c,
readinternaltemp, readmem, readoutputs, readowclk, readowsn, readpinsc,
readportc, readrevision, readsilicon, readtable, readtemp, readtemp12, reconnect,
reset, resetowclk, restart, resume, return, reverse, rfin, rfout, run
select, sensor, serin, serout, serrxd, sertxd, servo, servopos, setbit, setfreq, setint,
setintflags, settimer, shiftin, shiftout, shin, shout, sleep, sound, spiin, spiout,
srlatch, srreset, srset, step, stop, suspend, swap, switch, switchoff, switchon,
symbol
table, tablecopy, tmr3setup, toggle, togglebit, touch, touch16, tune
uniin, uniout, until
wait, while, write, writei2c, writemem



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

265

265

www.picaxe.com

Appendix 2 - Additional (non-command)  reserved words
a, a.0-a.7, adcsetup, adcsetup2, and, andnot, atan
b, b.0-b.7, b0-b55, b300_4, b300_8, b300_16, b300_20, b300_32, b300_40,
b300_64, b600_4, b600_8, b600_16, b600_20, b600_32, b600_40, b600_64,
b1200_4, b1200_8, b1200_16, b1200_20, b1200_32, b1200_40, b1200_64,
b2400_4, b2400_8, b2400_16, b2400_20, b2400_32, b2400_40, b2400_64,
b4800_4, b4800_8, b4800_16, b4800_20, b4800_32, b4800_40, b4800_64,
b9600_4, b9600_8, b9600_16, b9600_20, b9600_32, b9600_40, b9600_64,
b14400_4, b14400_8, b14400_16, b14400_20, b14400_32, b14400_40,
b14400_64, b19200_4, b19200_8, b19200_16, b19200_20, b19200_32,
b19200_40, b19200_64, b28800_4, b28800_8, b28800_16, b28800_20,
b28800_32, b28800_40, b28800_64, b31250_4, b31250_8, b31250_16,
b31250_20, b31250_32, b31250_40, b31250_64, b38400_4, b38400_8,
b38400_16, b38400_20, b38400_32, b38400_40, b38400_64, b57600_4,
b57600_8, b57600_16, b57600_20, b57600_32, b57600_40, b57600_64,
b76800_4, b76800_8, b76800_16, b76800_20, b76800_32, b76800_40,
b76800_64, b115200_4, b115200_8, b115200_16, b115200_20, b115200_32,
b115200_40, b115200_64, bit, bit0-bit31, bptr, bptr0-bptr7, @bptr, @bptrdec,
@bptrinc
c, c.0-c.7, clear, cls, compflag, compvalue, cos, cr
d, d.0-d.7, dcd, dig, dir0-dir7, dira.0-dira.7, dirb.0-dirb.7, dirc.0-dirc.7, dird.0-
dird.7, dirs, dirsa, dirsb, dirsc, dirsd
em4, em8, em16, em20, em32, em40, em64
flag0-flag15, flags, flagsh, flagsl, fvr1024, fvr2048, fvr4096
hi2cflag, hi2clast, hint0flag, hint1flag, hint2flag, hintflag, hserflag, hserinflag,
hserinptr, hserptr
i2cbyte, i2cfast, i2cfast_4, i2cfast_8, i2cfast_16, i2cfast_20, i2cfast_32, i2cfast_40,
i2cfast_64, i2cfast4, i2cfast8, i2cfast16, i2cfast20, i2cfast32, i2cfast40, i2cfast64,
i2cmaster, i2cslow, i2cslow_4, i2cslow_8, i2cslow_16, i2cslow_20, i2cslow_32,
i2cslow_40, i2cslow_64, i2cslow4, i2cslow8, i2cslow16, i2cslow20, i2cslow32,
i2cslow40, i2cslow64, i2cword, infra, input0-input7, inv, is, it_5v0, it_4v5,
it_4v0, it_3v5, it_3v3, ir_3v0, ir_raw_h, it_raw_l
k31, k62, k125, k250, k500, keyvalue
lf, lsbfirst, lsbfirst_h, lsbfirst_l, lsbpost, lsbpost_h, lsbpost_l, lsbpre, lsbpre_h,
lsbpre_l
m1, m2, m4, m8, m16, m32, m64, max, min, mod, msbfirst, msbfirst_h,
msbfirst_l, msbpost, msbpost_h, msbpost_l, msbpre, msbpre_h, msbpre_l
n300, n300_4, n600, n600_4, n600_8, n1200, n1200_4, n1200_8, n2400,
n2400_4, n2400_8, n2400_16, n4800, n4800_4, n4800_8, n4800_16,
n4800_32, n9600, n9600_8, n9600_16, n9600_32, n9600_64, n19200,
n19200_16, n19200_32, n19200_64, n38400, n38400_32, n38400_64, n76800,
n76800_64, nand, ncd, nob, nor, not
off, or, ornot, outpin0-outpin7, outpina.0-outpina.7, outpinb.0-outpinb.7,
outpinc.0-outpinc.7, outpind.0-outpind.7, outpins, outpinsa, outpinsb, outpinsc,
outpinsd, output0-output7, ownoreset, ownoreset_bit, owresetafter,
owresetafter_bit, owresetbefore, owresetbefore_bit, owresetboth,
owresetboth_bit, owresetfirst, owresetfirst_bit
pin0-pin7, pina.0-pina.7, pinb.0-pinb.7, pinc.0-pinc.7, pind.0-pind.7, pins,
pinsa, pinsb, pinsc, pinsd, port, porta, portb, portc, portd, pot, ptr, ptr0-ptr15,
ptrh, ptrl, @ptr, @ptrdec, @ptrincpwmdiv16, pwmdiv4, pwmdiv64, pwmfull_f,
pwmfull_r, pwmhalf, pwmhhhh, pwmhlhl, pwmlhlh, pwmllll, pwmsingle



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

266

266

www.picaxe.com

rev
s_w0-s_w7, sensor, set, sin, spifast, spimedium, spimode00, spimode00e,
spimode01, spimode01e, spimode10, spimode10e, spimode11, spimode11e,
spislow, sqr, step
t300, t300_4, t600, t600_4, t600_8, t1200, t1200_4, t1200_8, t2400, t2400_4,
t2400_8, t2400_16, t4800, t4800_4, t4800_8, t4800_16, t4800_32, t9600,
t9600_8, t9600_16, t9600_32, t9600_64, t19200, t19200_16, t19200_32,
t19200_64, t38400, t38400_32, t38400_64, t76800, t76800_64, t1s_4, t1s_8,
t1s_16, t1s_20, t1s_32, t1s_40, t1s_64, task, then, time, timer, timer3, to, toflag,
trisc
uni_crrd, uni_eral, uni_rdsr, uni_read, uni_setal, uni_wrdi, uni_wren, uni_write,
uni_wrsr, until
w0-w27, while, word
xnor, xor, xornot

Appendix 3 - Reserved Labels
The following labels have special meanings and are reserved for use with that
specific purpose only:

interrupt: (interrupts - see setint command)
start0:, start1:, start2:, start3:
start4:, start5:, start6:, start7: (parallel tasks - see restart command)



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

267

267

www.picaxe.com

Appendix 4 - Possible Conflicting Commands

Internal Interrupt Driven Event Tasks
Task: Internal Interrupt: Command:
Background serial receive Serial interrupt hsersetup
Background I2C slave mode I2C interrupt hi2csetup
Timer Timer 1 interrupt settimer
Servo Timer 1 & 2 interrupts servo
Timer 3 Timer 3 interrupt tmr3setup
Hardware pin interrupt Hardware pin interrupt hintsetup
Comparator Comparator interrupt compsetup

The PICAXE functions above make use of internal event based interrupt tasks to
process correctly.  Internal event tasks temporarily ‘pause’ the main program
processing to process the task as and when it occurs. This is not normally noticed
by the end user as the tasks are fully automated and very quickly processed.

However this system can cause potential issues on timing sensitive commands
such as those using serial or one-wire communication. If the event were to occur
during the timing sensitive command, the command would become corrupt as
the timing would be altered and hence incorrect data would be sent in/out of the
PICAXE chips. Therefore the following commands must temporarily disable all
interrupts whilst processing:

Serial: serin, serout, serrxd, sertxd, debug
One-wire: owin, owout, readtemp, readtemp12, readowsn
UNI/O: uniin, uniout
Infra-red: infraout, irout

Note that other timing commands (e.g. count, pulsin, pulsout etc.) do not
disable the interrupts, but, if active, the hardware interrupt processing time may
affect the accuracy of these commands when they are processed.

The user program must work around this limitation of the microcontroller.

Frequency Dependent Internal Background Tasks
Task: Internal Module: Commands:
PWM Timer 2 & pwm pwmout /  hpwm
Background serial receive Serial receive hsersetup
Background I2C slave mode I2C receive hi2csetup
Servo Timer 1 & 2 servo
Timer Timer 1 settimer
Timer 3 Timer 3 tmr3setup

Note that these background tasks are frequency dependent.  This has two main
considerations:
1) Servo command cannot be used at the same time as pwm/hpwm/timer, as it

also requires timers 1 and 2.
2) Some M2, X1 and X2 commands such as ‘readtemp’ automatically

temporarily drop to the internal 4MHz resonator to process (to ensure correct
operation of the timing sensitive command). When this occurs the
background tasks may be affected - e.g. a pwmout waveform may temporarily
change to a 4MHz waveform (if still enabled).



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

268

268

www.picaxe.com

Appendix 5 - X2 Variations
Most X2 commands are supported on all of the parts in the X2 range.
However different variants of the PICAXE-X2 range have slightly different features
and memory size. This is due to variants in the base PIC microcontroller used to
generate the PICAXE chip. It is not possible for the PICAXE firmware to change
these differences as they are physical hardware features of the PIC silicon design.

* 32MHz (8MHz resonator with x4 PLL) is recommended for programs using
serial commands as 40MHz is not an even multiple of 8 and so does not produce
valid serial baud rates.

Feature PICAXE
Command 20X2 28X2 28X2

-5V
28X2
-3V 40X2 40X2

-5V
40X2
-3V

Base PIC micro
(PIC18F series) 14K22 25K22 2520 25K20 45K22 4520 45K20

Voltage Range (V) 1.8-
5.5

2.1-
5.5

4.5-
5.5

1.8-
3.6

2.1-
5.5

4.5-
5.5

1.8-
3.6

PICAXE Firmware
Version Range C.0+ B.3+ B.0-B.2 B.A-B.C B.3+ B.0-B.2 B.A-B.C

Current (still in
production) part Yes Yes No No Yes No No

Max Internal Freq (MHz)
Max External Freq (MHz) setfreq 64

n/a
16
64

8
40*

16
64

16
64

8
40*

16
64

Touch Sensor Support touch No Yes No No Yes No No

ADC Setup
seq. or individual. adcsetup ind. ind. seq. ind. ind. seq. ind.

Internal ADC reference
(V) calibadc 1.024 1.024 No 1.2 1.024 No 1.2

Variables RAM
(bytes)

peek, poke
@bptr 128 256 256 256 256 256 256

Scratchpad RAM
(bytes)

put, get
@ptr 128 1024 1024 1024 1024 1024 1024

Internal Program slots
External Program slots run 1

32
4

32
4

32
4

32
4

32
4

32
4

32

Hardware Interrupt pins hintsetup 2 3 3 3 3 3 3

Pwmout channels pwmout 1 4 2 2 2 2 2

hpwm support hpwm Yes Yes No Yes Yes Yes Yes

power steering mode
within hpwm hpwm Yes Yes No Yes Yes No Yes

pullups individually
controller pullup Yes Yes No Yes Yes No Yes

SRlatch, FVR and DAC
modules

srlatch, fvrsetup
dacsetup Yes Yes No No Yes No No



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

269

269

www.picaxe.com

Appendix 6 - M2 Variations
Most M2 commands are supported on all of the parts in the M2 range.
However different variants of the PICAXE-M2 range have slightly different
features and memory size as shown below. This is due to variants in the base PIC
microcontroller used to generate the PICAXE chip. It is not possible for the
PICAXE firmware to change these differences as they are physical hardware
features of the PIC silicon design.

Feature PICAXE
Command 08M2 18M2 18M2+ 14M2 20M2

Voltage Range (V) 2.3-
5.5

1.8-
5.5

1.8-
5.5

1.8-
5.5

1.8-
5.5

Memory Capacity (bytes) 2048 2048 2048 2048 2048

Parallel Tasks (starts) resume,
suspend 4 4 8 8 8

Max Internal Freq (MHz) setfreq 32 32 32 32 32

Variables RAM
(bytes)

peek, poke
@bptr 128 256 512 512 512

Table data
(bytes)

table, readtable
tablecopy - - 512 512 512

I2C master support hi2cin, hi2cout
hi2csetup Yes Yes Yes Yes Yes

Pwmout channels pwmout 1 2 2 4 4

Hpwm support hpwm No No No Yes Yes

Keyboard support kbin, kbled No No Yes Yes Yes

RF radio support rfin, rfout No No Yes Yes Yes

Internal temp. sensor readinternal-
temp Yes No Yes Yes Yes

Configurable input type inputtype No No No Yes Yes



Section 2
BASIC COMMANDS

revolution (c) Revolution Education Ltd. Web: www.picaxe.com
All rights reserved. Version 7.9 02/2012

270

270

www.picaxe.com

Manufacturer Website:
Main website: www.picaxe.com
Forum: www.picaxeforum.co.uk
VSM Simulator: www.picaxevsm.com

PICAXE products are developed and distributed by
Revolution Education Ltd
http:/ /www.rev-ed.co.uk/

Trademark:
PICAXE® is a registered trademark licensed by Microchip Technology Inc.
Revolution Education is not an agent or representative of Microchip
and has no authority to bind Microchip in any way.

Acknowledgements:
Revolution Education would like to thank the following:

Clive Seager
John Bown
LTScotland
Higher Still Development Unit
UKOOA
Mike Meakin of Nikam Electronics who kindly donated the firmware for the
NKM2401 which is used within the rfin and rfout commands and the AXE213
project kit.


