
Micro:bits

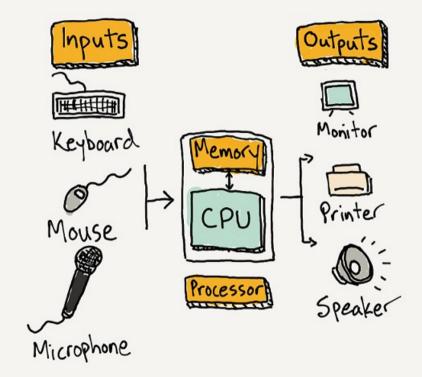
Background info

- Developed in the UK so all students would have access to a tool to learn about computer science
 - Computer science → the study of **how users can actually use a computer**
 - <u>Clip</u> to see how they are used

Need for Computer Science

- Computers are important to everyone's lives in the current world
- Computer examples

• Can we use them effectively until we know how they communicate with the user?

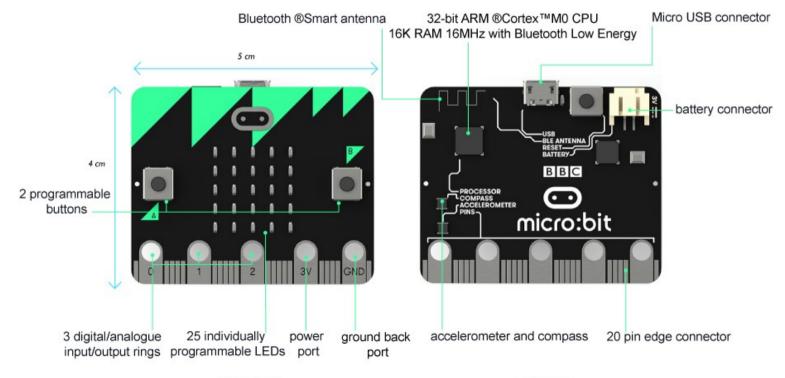

Computers

All computers have four parts:

- Input
- Processor
- Output
- Memory

How do these compare to humans?

- Input Senses
- Output Speech / Blushing
- Processor and Memory Brain


Micro:bit components

Can you locate these parts on the Micro:bit?

- Processor
- Inputs → buttons, pins, accelerometer, compass, light sensor
- Outputs \rightarrow LED lights, pins, Bluetooth

(Memory is 16K RAM)

Micro:bit components

FRONT

BACK

Computer Science: Algorithms

Computers use **algorithms** to <u>process</u> the information in the form of instructions.

- Precise set of **ordered** instructions.
- Goal is to solve the problem presented.
- Usually accurate (or no point using it).

Example:

Input: Start with 6.

Process (algorithm): Multiply by 5.

<u>Output:</u>30

Second example:

Input: Spaghetti.

<u>Algorithm:</u>

Open tin. Put spaghetti into bowl. Place bowl in microwave. Close microwave door. Press 30 seconds.

Output: Warm spaghetti.

Algorithms

Algorithms can be:

- Finite (yes / no)
- Conditional (and, or, and/or)

Examples:

When the light turns red, you stop.

If a student is well behaved and wearing something purple, they get a cookie.

A doctor prescribes antibiotics if a patient has swollen tonsils but could also prescribe them if the patient had an earache too.

Algorithms activity

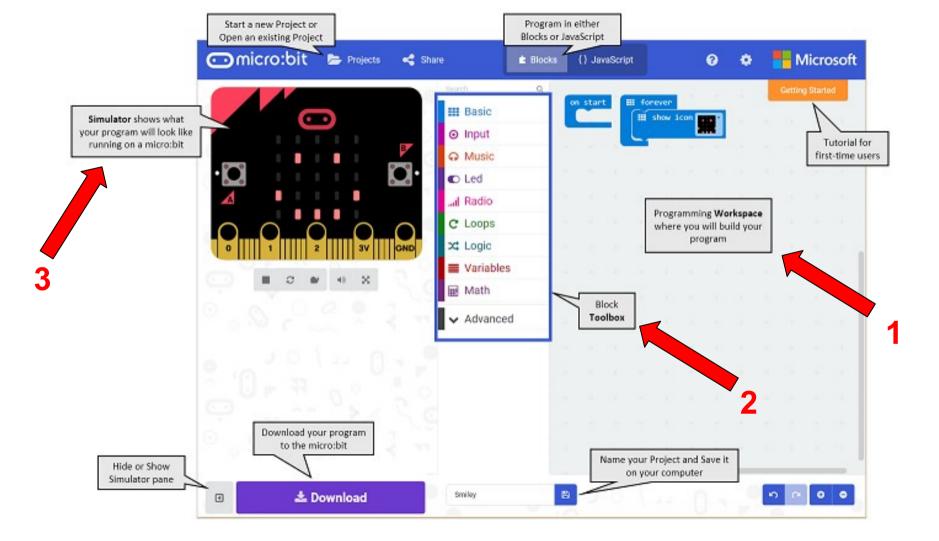
Step #1: In groups of 3-4, you'll be given a series of "If" statements.

For example, "If I were hungry..." or "If my cat escaped for the day..."

You need to complete the statement. One answer per blank piece of paper.

Step #2: Shuffle up your answer statements and turn them face down.

Step #3: One "If" statement will be read out. Select the statement at the top of your pile to complete the sentence.


Does this make any sense?? No - which is why algorithms make sure this doesn't happen.

Using the micro:bits coding site

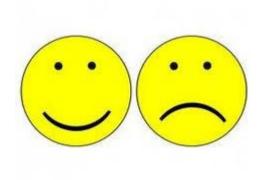
Coding is done online at https://makecode.microbit.org

Three main parts:

- 1. Workspace where the code is written
- 2. Toolbox what you use to write the code
- 3. Simulator what the code does to the micro:bit (lets you see what happens before you download the code)

Using the micro:bit

Tools you will <u>commonly</u> use to start with:


- Basic
 - Starting command (if click spacebar, tab, etc)
 - Shows LED pad
- Input
 - Uses the inputs to collect info
- LED
 - Using specific LED lights on the screen
- Loops
 - Do you want things to happen once, twice, forever
- Logic
 - Conditional algorithms (if ... then ...)

	Basic
0	Input
ନ	Music
O	Led
al	Radio
С	Loops
∞	Logic
≡	Variables
■	Math
~	Advanced

Using the micro:bit - Happy face, Sad face Happy and sad faces

- 1) Write out what you want the micro:bit to do in basic terms
 - a) Blank screen
 - b) Press button A to get a happy face
 - c) Press button B to get a sad face

- 2) Use the tools to "solve the problem"
 - a) What command do you need to start with?
 - b) How can you make the faces with the LED lights?

Using the micro:bit - Happy face, Sad face The LED screen is a table format, similar to a multiplication table.

01234

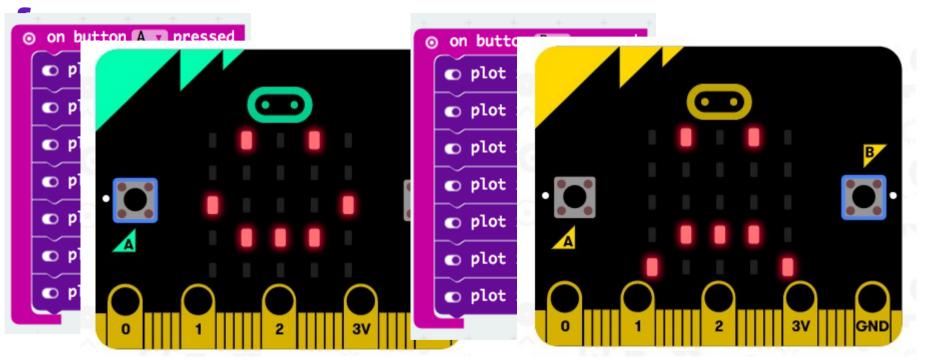
01234

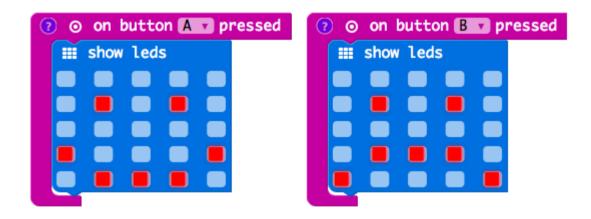
01234

01234

You need to enter the correct grid sequence.

Using the micro:bit - Happy face, Sad face The LED screen is a table format, similar to a multiplication table.


01234

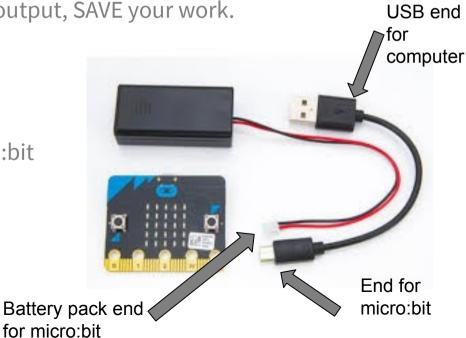

Now complete for the happy faces!

What are the plotted points needed for this example?

Using the micro:bit - Happy face, Sad

Using the micro:bit - Happy face, Sad face To make it easier to view the LEDs, you could also use the following:

If you want the screen cleared, you have to include that in your code:


Loading the info to the micro:bit

Previewing in the simulator lets you see what happens before you download.

When the simulator shows your desired output, SAVE your work.

To get the programme on the micro:bit:

- Plug the micro:bit in using the USB
- Attach the battery pack to the micro:bit
- Click "Download"

Code your Micro:bit so that it reads out your name when you click on the "A" button and your partner's name when you click the "B" button.

For something harder (using variables):

Aim to use the "shake" feature, when it randomly selects either of your names when it is shaken.

Computer Science: Use of variables

Similar to when working through a science experiment you have variables.

- **Constant:** something that does not change
- Variables: something that does change

Examples:

The weather goes from sunny to rainy.

There are 24 hours in a day.

The value of pi is 3.14.

Types of variables

Number -- numerical like a temperature or score

Boolean -- true or false

String -- alphanumeric like a password

Sprite -- represents a dot on a screen with two grid point references

Examples of using variables

Play either Rock Paper Scissors.

What variables are involved?

What about Bingo? Higher/Lower?

Using the micro:bit - Rock Paper Scissors We are going to design a program to record the Rock Paper Scissors score.

What variables do we need?

1.

2.

3.

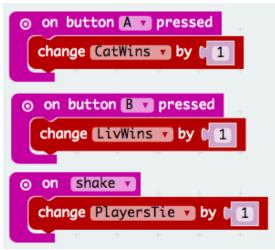
What should we call the variables?

What values of the variables can we have?

Using the micro:bit - Rock Paper Scissors We are going to design a program to record the Rock Paper Scissors score.

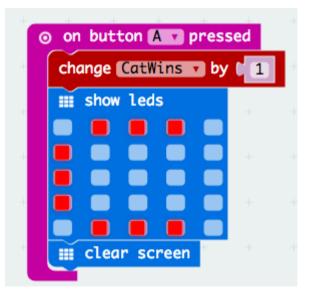
What variables do we need?

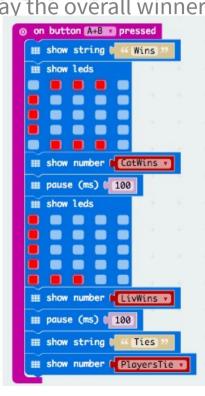
- 1. How many times Player A wins
- 2. How many times Player A wins
- 3. How many times they tie


What should we call the variables? PlayerAWins, PlayerBWins, PlayersTie

What values of the variables can we have? 0, 1, 2, 3 ... (up to the number of rounds)

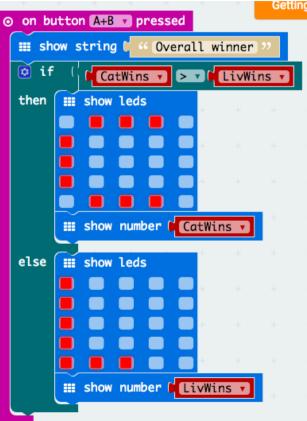
Using the micro:bit - Rock Paper Scissors What to consider:


- We are all starting at zero (no one has played yet)
- Each entry will only increase **<u>one</u>** of the variables
 - In maths that's like x+1



Using the micro:bit - Rock Paper Scissors - Add in an LED screen for each sequence to show the letter for the player's first

- initial.
- Clear the screen after each variable is displayed



Using the micro:bit - Rock Paper Scissors To display the overall winner:

MORE ADVANCED

→

Micro:bot activity

Design something that you can use the micro:bit **to count**. You may need to modify the micro:bit's appearance for this.

Examples:

- Basketball (counts 2 and 3 pointers for each team)
- Pedometer (number of steps)
- Marks of the class (WT, A, M, E)