WALT Success Criteria

6.6 Surface area of prisms

Three-dimensional objects or solids have outside surfaces that together form the total surface area. Nets are very helpful for determining the number and shape of the surfaces of a three-dimensional object.

For this section we will deal with right prisms. A right prism has a uniform cross-section with two identical ends and the remaining sides are rectangles.

Right triangular prism

The Flatiron Building in New York City is the shape of a triangular prism.

- A right prism is a solid with a uniform cross-section and with remaining sides as rectangles.
 - Prisms are named by the shape of their cross-section.
- The nets for a rectangular prism (cuboid) and triangular prism are shown here.

Right prism
A solid with a
uniform crosssection, and
remaining sides
are rectangles

Solid	Net	TSA
Rectangular prism h l		TSA = 2(Iw) + 2(Ih) + 2(hw)
Triangular prism		TSA = $l_1 w_1 + l_2 w_2 + l_3 w_3 + 2 \times \frac{1}{2} bh$

Exercise 6F

- 1 How many faces do the following solids have?
 - a rectangular prism
- **b** cube
- c triangular prism
- 2 Draw a suitable net for these prisms and name each solid.

C

3 Copy and complete the working to find the surface area of these solids.

$$TSA = 2 \times (8 \times 7) + 2 \times (8 \times _) + 2 \times (_ \times _)$$

= ___ + ___ + ___
= __ m²

$$TSA = 2 \times (8 \times 7) + 2 \times (8 \times _) + 2 \times (_ \times _)$$
 $TSA = 2 \times \frac{1}{2} \times 4 \times _ + 5 \times 7 + 4 \times _ + _ \times _$
= $_ + _ + _ + _$
= $_ m^2$ = $_ cm^2$

Example 14 Finding a total surface area of a rectangular prism

Find the total surface area of this rectangular prism.

Solution

Explanation

$$TSA = 2 \times (5 \times 3) + 2 \times (5 \times 2) + 2 \times (2 \times 3)$$

= 30 + 20 + 12
= 62 cm²

- **9 a** 90 cm^2 **b** 15 m^2 $c 9 m^2$ **d** 7.51 cm^2 **e** 7.95 m^2 **f** 180.03 cm^2
- $\mathbf{g} \ 8.74 \ \mathrm{mm}^2 \ \mathbf{h} \ 21.99 \ \mathrm{cm}^2 \ \mathbf{i} \ 23.83 \ \mathrm{mm}^2$
- **10 a** 17 cm^2 **b** 3.5 cm^2 **c** 21.74 cm^2
- **11 a** 37.70 m, 92.55 m² **b** 20.57 mm, 16 mm²
 - **c** 18.00 cm, 11.61 cm² **d** 12.57 m, 6.28 m²
 - **e** 25.71 cm, 23.14 cm² **f** 33.56 m, 83.90 m²

Exercise 6F

b 6 **c** 5

Cube

Rectangular prism

3 a $TSA = 2 \times 8 \times 7 + 2 \times 8 \times 3 + 2 \times 7 \times 3$

$$= 112 + 48 + 42$$

$$= 202 \text{ m}^2$$

b TSA = $2 \times \frac{1}{2} \times 4 \times 3 + 5 \times 7 + 4 \times 7 + 3 \times 7$

$$= 12 + 35 + 28 + 21$$

 $= 96 \text{ cm}^2$

4 a 52 m^2 **b** 242 cm^2 **c** 76 m^2

d 192 cm^2 **e** 68.16 m^2 **f** 85.76 m^2

5 a 96 cm²

b 240 m² **c** 199.8 cm² **d** 238 cm²

6 6 m²

7 14.54 m²

8 34 000 cm²

 $\textbf{9 a} \ 44.4 \ m^2 \qquad \textbf{b} \ 4.44 \ L$

10 a [6, 10, 14, 18, 22, 26, 30, 34, 38]

b S = 4n + 2

c 402

11 a 39 mm^2 **b** 224 cm^2 **c** 9.01 m^2