WALT Success Criteria ## 6.6 Surface area of prisms Three-dimensional objects or solids have outside surfaces that together form the total surface area. Nets are very helpful for determining the number and shape of the surfaces of a three-dimensional object. For this section we will deal with right prisms. A right prism has a uniform cross-section with two identical ends and the remaining sides are rectangles. Right triangular prism The Flatiron Building in New York City is the shape of a triangular prism. - A right prism is a solid with a uniform cross-section and with remaining sides as rectangles. - Prisms are named by the shape of their cross-section. - The nets for a rectangular prism (cuboid) and triangular prism are shown here. Right prism A solid with a uniform crosssection, and remaining sides are rectangles | Solid | Net | TSA | |-------------------------|-----|---| | Rectangular prism h l | | TSA = 2(Iw) + 2(Ih) + 2(hw) | | Triangular prism | | TSA = $l_1 w_1 + l_2 w_2 + l_3 w_3 + 2 \times \frac{1}{2} bh$ | # Exercise 6F - 1 How many faces do the following solids have? - a rectangular prism - **b** cube - c triangular prism - 2 Draw a suitable net for these prisms and name each solid. C 3 Copy and complete the working to find the surface area of these solids. $$TSA = 2 \times (8 \times 7) + 2 \times (8 \times _) + 2 \times (_ \times _)$$ = ___ + ___ + ___ = __ m² $$TSA = 2 \times (8 \times 7) + 2 \times (8 \times _) + 2 \times (_ \times _)$$ $TSA = 2 \times \frac{1}{2} \times 4 \times _ + 5 \times 7 + 4 \times _ + _ \times _$ = $_ + _ + _ + _$ = $_ m^2$ = $_ cm^2$ ## Example 14 Finding a total surface area of a rectangular prism Find the total surface area of this rectangular prism. ### **Solution** ## **Explanation** $$TSA = 2 \times (5 \times 3) + 2 \times (5 \times 2) + 2 \times (2 \times 3)$$ = 30 + 20 + 12 = 62 cm² - **9 a** 90 cm^2 **b** 15 m^2 $c 9 m^2$ **d** 7.51 cm^2 **e** 7.95 m^2 **f** 180.03 cm^2 - $\mathbf{g} \ 8.74 \ \mathrm{mm}^2 \ \mathbf{h} \ 21.99 \ \mathrm{cm}^2 \ \mathbf{i} \ 23.83 \ \mathrm{mm}^2$ - **10 a** 17 cm^2 **b** 3.5 cm^2 **c** 21.74 cm^2 - **11 a** 37.70 m, 92.55 m² **b** 20.57 mm, 16 mm² - **c** 18.00 cm, 11.61 cm² **d** 12.57 m, 6.28 m² - **e** 25.71 cm, 23.14 cm² **f** 33.56 m, 83.90 m² ## **Exercise 6F** **b** 6 **c** 5 Cube Rectangular prism **3 a** $TSA = 2 \times 8 \times 7 + 2 \times 8 \times 3 + 2 \times 7 \times 3$ $$= 112 + 48 + 42$$ $$= 202 \text{ m}^2$$ **b** TSA = $2 \times \frac{1}{2} \times 4 \times 3 + 5 \times 7 + 4 \times 7 + 3 \times 7$ $$= 12 + 35 + 28 + 21$$ $= 96 \text{ cm}^2$ **4 a** 52 m^2 **b** 242 cm^2 **c** 76 m^2 **d** 192 cm^2 **e** 68.16 m^2 **f** 85.76 m^2 **5 a** 96 cm² **b** 240 m² **c** 199.8 cm² **d** 238 cm² **6** 6 m² **7** 14.54 m² **8** 34 000 cm² $\textbf{9 a} \ 44.4 \ m^2 \qquad \textbf{b} \ 4.44 \ L$ **10 a** [6, 10, 14, 18, 22, 26, 30, 34, 38] **b** S = 4n + 2 **c** 402 **11 a** 39 mm^2 **b** 224 cm^2 **c** 9.01 m^2