

How to find the speed, distance or time of any moving object.

The Why Behind the What

Calculating the speed, distance or time of something or someone can be useful in everyday life. For example:

- How long it will take to travel to a holiday destination by car, train or plane.
- Comparing the speeds of vehicles.
- The police use speed radars to check people are sticking to the speed limit!
- Exercise programmes - can you improve your time every day for the distance and speed you are running?

What You Need to Know

Speed tells us how fast something or someone is travelling.

Not everything moves at the same speed all the time, so we need to find an average. You can find the average speed of an object if you know the distance travelled and the time it took.

Technical Vocabulary
If you had to explain these mathematical terms to someone else, what would you say? Write your definitions of these mathematical terms. You may want to add a diagram to some of your definitions. Check online if you're not sure.

Speed:

Distance:

Time:

Average:

Variable:

Equation:

Handy Hint: Don't forget to add the units of speed to your answer. Without this, your answer isn't actually showing the speed of an object. it's just a number!

The Formula

The formula for calculating speed is:

$$
\text { Speed }(S)=\text { Distance }(D) \div \text { Time }(T)
$$

To work out what the units are for speed, you need to know the units for distance and time.

Example: An athlete ran 150 metres in 25 seconds.
In this example, distance is in metres (m) and time is in seconds (s), so the units will be in metres per second (m / s).

$$
\text { Speed }=\text { Distance } \div \text { Time }
$$

$$
=150 \text { metres } \div 25 \text { seconds }
$$

$$
\text { Speed }=6 \text { metres per second or } 6 \mathrm{~m} / \mathrm{s}
$$

Rearranging the Formula

The formula Speed $=$ Distance \div Time can be rearranged, just like any other equation.

To calculate one of the variables (speed, distance or time) you need the other two. For example, to find the time taken to make a journey, you need the length of the journey (distance) and the speed of travel.

- Speed $=$ Distance \div Time

- Distance $=$ Speed \times Time

- Time $=$ Distance \div Speed

- How does speed work in space?
- How is speed measured in space?

Installing the Formula

DIY
MATHS

Practical Project
You will need:

- 6 friends
- Stopwatch
- Long measuring tape

Measure out a 100 m distance with the long measuring tape or use an existing running track you may have at your school.

Using your stopwatch, time each of your friends. Make sure they run the 100 m distance one at a time.

Name	Distance	Actual Time (seconds)	Average Speed (m/s)
	100 m		

Here are the world record times for the men's and women's 100 m race. Calculate the average speed then answer the questions.

Name	Distance	Year Record Set	Actual Time (seconds)	Average Speed (m/s) *Round to 2 decimal places.
Usain Bolt	100 m	2009	9.58	
Florence Griffith-Joyner	100 m	1988	10.49	
Which of your friends has the closest average speed to Usain Bolt?				

