WALT read compass bearings
 Success Criteria I know the directions and understand that the full rotation is 360°

Video

Plotting a course for a ship or an aircraft requires accurate directions. These directions are usually given in the form of bearings. The agreed convention is that the direction of travel is measured by a clockwise rotation from the true north direction. The bearing of A from O is the measure of the angle between the line $O A$ and the line through O in the true north direction. The angles are always written using three digits.

This angle is the bearing of A from O. It is written as $115^{\circ} \mathrm{T}$.

Bearings are sometimes given using the compass rose. In this case the bearings are given with respect to north, south, east and west. For example, NNE is shown.

Video 2

EXAMPLE 1

Write the bearing of A from O as shown in each diagram.
a

b

c

	Solve	Think	Apply
a	The bearing is $152^{\circ} \mathrm{T}$.	Clockwise 152°.	There must be three digits in the bearing. The bearing is the clockwise turning from north.
b	The bearing is $312^{\circ} \mathrm{T}$.	Clockwise 312°.	
c	The bearing is $048^{\circ} \mathrm{T}$.	Clockwise 048°.	

Video 3

Video on How to calculate distance using bearings and Trigonometry
1 Write the bearings of A from O for each of the following.
a

b

c

d

e

f

EXAMPLE 2

Write the bearing of A from O.
a

b

c

| Solve | Think | Apply |
| :--- | :--- | :--- | :--- |
| | Bearing is $90^{\circ}+34^{\circ}=124^{\circ} \mathrm{T}$. | The angle $N O E$ is 90°.
 The a clockwise direction
 must be found for the |
| bearing. Add or subtract as | | |
| required. | | |
| Bearings will never be | | |
| greater than 360°. | | |

2 Write the bearing of A from O shown below.
a

b

c

d

e

f

i

j

g

h

k

1

EXAMPLE 3

Draw a diagram to represent the position of A from O for each of the following compass bearings.
a $110^{\circ} \mathrm{T}$
b $048^{\circ} \mathrm{T}$
c $328^{\circ} \mathrm{T}$

3 Draw a diagram to represent the position of A from O for each of these compass bearings.
a $128^{\circ} \mathrm{T}$
b $022^{\circ} \mathrm{T}$
c $312^{\circ} \mathrm{T}$
d $231^{\circ} \mathrm{T}$
e $005^{\circ} \mathrm{T}$
f $285^{\circ} \mathrm{T}$
g $185^{\circ} \mathrm{T}$
h $300^{\circ} \mathrm{T}$
i $073^{\circ} \mathrm{T}$
j $355^{\circ} \mathrm{T}$
k $133^{\circ} \mathrm{T}$
l $099^{\circ} \mathrm{T}$

EXAMPLE 4

i Write the compass bearing shown in each diagram.
ii Find $\angle N O A$.
iii Write as a true bearing.

Solve			
a i	Think	Apply	
	The bearing is SE.	OA is in the middle of south and east.	Each of the main compass points is 90°. The bearing
divides the angle into two			
angles of 45°.			

	Solve	Think	Apply
b i	The bearing is NNW.	$A O$ is between NW and N .	The angle between these dividers is 22.5°.
ii	$\begin{aligned} \angle N O A & =90^{\circ}+90^{\circ}+90^{\circ}+45^{\circ}+22.5^{\circ} \\ & =337.5^{\circ} \end{aligned}$	A is close to north, so the bearing is close to 360°.	
iii	$337.5^{\circ} \mathrm{T}$	The angle from north.	

4 Here is a compass rose.
a Find the angle between:
i N and E
ii S and $S W$
iii W and NW
iv E and ESE
v SW and WSW
vi W and NNW
b Write each of these compass bearings as true bearings.
i NNE
iii SE
v SSW
vii WNW
ii ENE
iv SSE
vi WSW
viii NW

Always put the north or south part of the bearing first.

Check your answers

1 a $165^{\circ} \mathrm{T}$
d $038^{\circ} \mathrm{T}$
2 a $141^{\circ} \mathrm{T}$
d $245^{\circ} \mathrm{T}$
b $210^{\circ} \mathrm{T}$
e $285^{\circ} \mathrm{T}$
b $242^{\circ} \mathrm{T}$
e $306^{\circ} \mathrm{T}$
c $348^{\circ} \mathrm{T}$
f $008^{\circ} \mathrm{T}$
c $333^{\circ} \mathrm{T}$
f $223^{\circ} \mathrm{T}$

4 a i 90°
iv $22 \frac{1}{2}^{\circ}$
b i $022.5^{\circ} \mathrm{T}$
ii 45°
v $22 \frac{1}{2}^{\circ}$
iv $157.5^{\circ} \mathrm{T}$
ii $067.5^{\circ} \mathrm{T}$
iii 45°
v $202.5^{\circ} \mathrm{T}$
vii $292.5^{\circ} \mathrm{T}$ viii $315^{\circ} \mathrm{T}$

