WALT Identify sides of a right angle triangle
Success Criteria - I can identify hypotenuse and read the sign theta I am able to list the rules for Sine, Cosine and Tangent

1 For each triangle below, name the:
i hypotenuse
ii side opposite the angle marked θ
iii side adjacent to the angle marked θ.

d

e

g

h

k

2 For the triangle shown, name the side:
a opposite the angle marked $\theta \quad \mathbf{b}$ opposite the angle marked ϕ
c adjacent to the angle marked $\theta \quad$ d adjacent to the angle marked ϕ

EXAMPLE 2

Using the given triangle, write expressions to complete the table for θ.

$\frac{\text { opposite }}{\text { adjacent }}$	$\frac{\text { opposite }}{\text { hypotenuse }}$	$\frac{\text { adjacent }}{\text { hypotenuse }}$

Solve		
$\frac{\text { opposite }}{\text { adjacent }}$	$\frac{\text { opposite }}{\text { hypotenuse }}$	$\frac{\text { adjacent }}{\text { hypotenuse }}$
$\frac{q}{p}$	$\frac{q}{r}$	$\frac{p}{r}$

Think
The hypotenuse is r, the side opposite the angle marked θ is q, and the side adjacent to θ is p.

Apply
The opposite and the adjacent sides are relative to the nonright angle chosen.

3 Complete this table for θ for each of the triangles in question 1.

$\frac{\text { opposite }}{\text { adjacent }}$	$\frac{\text { opposite }}{\text { hypotenuse }}$	$\frac{\text { adjacent }}{\text { hypotenuse }}$

The trigonometric ratios

The ratios from Example 2 are given names.

- The ratio $\frac{\text { opposite }}{\text { adjacent }}$ is the tangent of the angle marked θ.

This is written as $\boldsymbol{\operatorname { t a n }} \theta=\frac{\text { opposite }}{\text { adjacent }}$.

- The ratio $\frac{\text { opposite }}{\text { hypotenuse }}$ is the sine of the angle marked θ.

This is written as $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$.

- The ratio $\frac{\text { adjacent }}{\text { hypotenuse }}$ is the cosine of the angle marked θ.

This is written as $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$.

The trigonometric ratios can be remembered using a mnemonic: SOH CAH TOA.

$$
\begin{array}{ll}
\text { SOH } & \operatorname{Sin} \theta=\frac{\text { Opposite }}{\text { Hypotenuse }} \\
\text { CAH } & \operatorname{Cos} \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }} \\
\text { TOA } & \operatorname{Tan} \theta=\frac{\text { Opposite }}{\text { Adjacent }} \\
\hline
\end{array}
$$

EXAMPLE 3

In triangle $A B C$, find expressions for $\tan \theta, \cos \theta$, and $\sin \theta$.

Solve	Think	Apply		
$\tan \theta=\frac{B C}{A C}$	$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$	Locate the hypotenuse opposite the right angle. Identify the opposite and adjacent sides relative to the chosen angle.		
$\sin \theta=\frac{B C}{A B}$	$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$	$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$	\quad	cos $\theta=\frac{A C}{A B}$
:---				

4 For each triangle, find an expression for:
i $\tan \theta$
a
ii $\sin \theta$
b

iiii $\cos \theta$

c

e

f

g

h

5 For each triangle, find an expression for:
i $\sin A$

ii $\cos A$

iiii $\tan A$

Check your answers

1	a	i $A B$	ii $B C$
	iiii $A C$		
b	i $R Q$	ii $P R$	iii $P Q$
c	i $X Z$	ii $X Y$	iii $Z Y$
d	i r	ii p	iii q
e	i n	ii m	iiii l
f	i $E F$	ii $E D$	iiii $F D$
g	i y	ii x	iii z
h	i $U V$	ii $T V$	iii $U T$
i	i $T U$	ii $S U$	iiii $S T$
j	i g	ii h	iiii k
k	i v	ii u	iii w
l	i m	ii k	iiii l

2 a b
b a
c a
d b
3

	opposite adjacent	opposite hypotenuse	$\frac{\text { adjacent }}{\text { hypotenuse }}$
a	$\frac{B C}{A C}$	$\frac{B C}{A B}$	$\frac{A C}{A B}$
b	$\frac{P R}{P Q}$	$\frac{P R}{R Q}$	$\frac{P Q}{R Q}$
c	$\frac{X Y}{Z Y}$	$\frac{X Y}{X Z}$	$\frac{Z Y}{X Z}$
d	$\frac{p}{q}$	$\frac{p}{r}$	$\frac{q}{r}$
f	$\frac{m}{l}$	$\frac{m}{n}$	$\frac{l}{n}$
g	$\frac{E D}{F D}$	$\frac{E D}{E F}$	$\frac{F D}{E F}$
h	$\frac{x}{z}$	$\frac{x}{y}$	$\frac{z}{y}$
i	$\frac{T V}{U T}$	$\frac{T V}{U V}$	$\frac{U T}{U V}$
j	$\frac{S U}{k}$	$\frac{S U}{T U}$	$\frac{S T}{T U}$
k	$\frac{h}{g}$	$\frac{k}{g}$	
\mathbf{l}	$\frac{u}{w}$	$\frac{u}{v}$	$\frac{w}{v}$
	$\frac{k}{m}$	$\frac{l}{m}$	

4 a i $\frac{U T}{T S}$
b i $\frac{E D}{D F}$
ii $\frac{U T}{U S}$
iii $\frac{T S}{U S}$

- $M N$
ii $\frac{E D}{E F}$
iii $\frac{D F}{E F}$
c i $\frac{M N}{M L}$
ii $\frac{M N}{L N}$
iii $\frac{L M}{L N}$
d $\mathbf{i} \frac{a}{b}$
e $\mathrm{i} \frac{t}{s}$
ii $\frac{a}{c}$
iii $\frac{b}{c}$
f $i \frac{x}{z}$
ii $\frac{x}{y}$
iii $\frac{s}{u}$
g i $\frac{X Y}{X Z}$
ii $\frac{X Y}{Y Z}$
iii $\frac{z}{y}$
h i $\frac{h}{j}$
ii $\frac{h}{i}$
iii $\frac{X Z}{Y Z}$
i $i \frac{R T}{S T}$
ii $\frac{R T}{R S}$
iii $\frac{j}{i}$
i
5 a i $\frac{B C}{C A}$
ii $\frac{B A}{A C}$
iii $\frac{S T}{R S}$
b i $\frac{T V}{A V}$
ii $\frac{A T}{A V}$
iii $\frac{C B}{B A}$
c i $\frac{P R}{A P}$
ii $\frac{A R}{A P}$
iii $\frac{T V}{T A}$
iii $\frac{P R}{A R}$

