WALT write numbers as significant figures
Success Criteria I know that all digits that are not a zero, are significant figures. The first significant figure in a number is the first digit that is not a zero(reading from left to right) Zeros at the end of a number may or may not be significant.

Significant figures rules

EXAMPLE 1

Write down the first significant figure in each of these numbers.
a 3790
b 4.0625
c 0.00286

Solve/Think	Apply	
	The first digit that is not a zero is the 3.	The first significant figure in a number is the first
	The first digit that is not a zero is the 4.	non-zero digit.
c	The first digit that is not a zero is the 2.	

1 Write down the first significant figure in each of the following numbers.
a 2876
b 5069836
c 1.0035
d 0.0791
e 0.000802

Worked example

Round 63.75091 correct to the following number of significant figures.
a 1
b 2
c 3
d 4
e 5

	Solve	Think	Apply
a	$63.75091 \approx 60$	The first significant figure is 6 , which is in the tens column. So we round to the nearest 10 . $63.75091 \approx 60$ correct to 1 significant figure.	If rounding to n significant figures, find the nth significant figure and determine the place value of the digits in this column (hundreds, tens, 2 decimal places). Round to this place value. The standard abbreviation for writing significant figures is s.f.
b	$63.75091 \approx 64$	The second significant figure is 3 , which is in the units column. So we round to the nearest 1 (whole number). $63.75091 \approx 64$ correct to 2 significant figures.	
c	$63.75091 \approx 63.8$	The third significant figure is 7 , which is in the first place after the decimal point. So we round to 1 decimal place. $63.75091 \approx 63.8$ correct to 3 significant figures.	
d	$63.75091 \approx 63.75$	The fourth significant figure is 5 , which is in the second place after the decimal point. So we round to 2 decimal places. $63.75091 \approx 63.75$ correct to 4 significant figures.	
e	$63.75091 \approx 63.751$	The fifth significant figure is 0 , which is in the third place after the decimal point. So we round to 3 decimal places. $63.75091 \approx 63.751$ correct to 5 significant figures.	

2 Round each number below to:
i 1 s.f.
a 428.3 b 6238
f 725600
g 0.03926
ii 2 s.f.
iii 3 s.f.
c 7.819
d 0.5273
e 53689
h 0.005072
i 6103
j 2005

EXAMPLE 3

Write each of the following correct to 3 significant figures.
a 249700
b 629.51
c 0.001896
d 6.998

	Solve	Think	Apply
a	$249700 \approx 250000$	The third significant figure is 9 in the 1000s column. So we round to the nearest 1000 . $249700 \approx 250000$ correct to 3 s.f.	Find the nth significant figure and determine the place value of the digit in this column (hundreds, tens, 2 decimal places). Round to this place value. In parts \mathbf{c} and \mathbf{d} the zeros at the end are there to indicate the level of accuracy of the answer.
b	$629.51 \approx 630$	The third significant figure is 9 in the units column. So we round to the nearest whole number. $629.51 \approx 630 \text { correct to } 3 \text { s.f. }$	
c	$0.001896 \approx 0.00190$	The third significant figure is 9 in the fifth place after the decimal point. So we round to 5 decimal places. $0.001896 \approx 0.00190$ correct to 3 s.f.	
d	$6.998 \approx 7.00$	The third significant figure is 9 in the second place after the decimal point. So we round to 2 decimal places. $6.998 \approx 7.00 \text { correct to } 3 \text { s.f. }$	

3 Write each of the following correct to 3 significant figures.

EXAMPLE 4

When a number was rounded to 2 significant figures, the answer was:
a 430
b 3.7
i What is the smallest the number could have been?
ii What is the largest the number could have been?
iii Write a mathematical statement that shows the range of possible numbers.

	Solve	Think	Apply
a i	425	The second significant figure is in the tens column, hence the number has been rounded to the nearest 10 . Although 425 is halfway between 420 and 430 , it is rounded up to 430 . This is the smallest the number could have been.	Find the place value of the nth significant figure. This indicates how the number has been rounded (to the nearest $100,10, \ldots$, 2 decimal places). Complete as for Example 7 in Section 4E.
ii	<435	We cannot specify the largest number, but we know that it has to be less than 435 , as 435 would be rounded up to 440 .	
iii	$425 \leqslant$ number <435	The number could be equal to 425 or between 425 and 435.	
b i	3.65	The second significant figure is in the first column after the decimal point, hence the number has been rounded to 1 decimal place. Although 3.65 is halfway between 3.6 and 3.7, it is rounded to 3.7. This is the smallest the number could have been.	
ii	<3.75	We cannot specify the largest number, but we do know that it has to be less than 3.75 , as 3.75 would be rounded up to 3.8 .	
iii	$3.65 \leqslant$ number <3.75	The number could be equal to 3.65 or between 3.65 and 3.75 .	

4 When a number was rounded to 2 significant figures the answer was:
a 560
b 8.2
c 48
d 0.72
e 37000
f 0.084
i What is the smallest the number could have been?
ii What is the largest the number could have been?
iii Write a mathematical statement that shows the range of possible numbers.

5 When a number was rounded to 3 significant figures the answer was:
a 483
b 3.86
c 14500
d 0.128
e 56.9
f 3210

Write a mathematical statement that shows the range of possible numbers in each case.
6 Write a mathematical statement that shows the range of possible numbers if each of the following numbers was rounded to the given number of significant figures.
a 2 s.f. the answer is 300
b 2 s.f. the answer is 3000
c 3 s.f. the answer is 6000
d 3 s.f. the answer is 24000
e 3 s.f. the answer is 500000
f 2 s.f. the answer is 0.80

EXAMPLE 5

State the number of significant figures in each of the following numbers.
a 294
b 0.3
c 4.20
d 0.0017
e 56000

	Solve	Think	Apply
a	3	There are 3 digits in the number 294.	For decimal numbers, zeros in front of the first non-zero digit are not significant, zeros after the first non-zero digit are significant. For integers (whole numbers), zeros on the end of the number may or may not be significant.
b	1	The first significant figure in 0.3 is the first non-zero digit. Hence the first zero is not significant.	
c	3	The zero on the end of this number indicates it has been rounded to 2 decimal places. Hence the zero in 4.20 is significant.	
d	2	The first significant figure in 0.0017 is the first non-zero digit. Hence the first three zeros are not significant.	
e	Cannot tell precisely.	The zeros on the end may or may not be significant. 56300 rounded to the nearest $1000 \approx 56000$. 55970 rounded to the nearest $100 \approx 56000$. 56003 rounded to the nearest $10 \approx 56000$. 55999.6 rounded to the nearest whole number ≈ 56000. Hence there could be 2, 3, 4 or 5 significant figures.	

7 How many significant figures are there in each of the following numbers?
a 38
b 0.49
c 2896
d 0.075
e 0.40
k 23000
f 1.800
g 0.0053
h 0.060
i 400
j 7000
l 8000000

Check your answers

c $14450 \leqslant$ number <14550
d $0.1275 \leqslant$ number <0.1285
e $56.85 \leqslant$ number <56.95
f $3205 \leqslant$ number <3215
6 a $295 \leqslant$ number <305
b $2950 \leqslant$ number <3050
c $5995 \leqslant$ number <6005
d $23950 \leqslant$ number <24050
e $499500 \leqslant$ number <500500
f $0.795 \leqslant$ number <0.805
7
a 2
b 2
c 4
d 2
e 2
f 4
g 2
h 2
i 1,2 or 3
j $1,2,3$ or $4 \quad$ k $2,3,4$ or $5 \quad 1 \quad 1,2,3,4,5,6$ or 7

