Do now

Expand and simplify:

$$(x+1)^2$$

b
$$(x+3)^2$$

$$(x-2)^2$$

$$(x-5)^2$$

$$(2+x)^2$$

b
$$(x+3)^2$$

f $(2-x)^2$

$$(2x+1)^2$$

h
$$(2x-1)^2$$

$$(3x+2)^2$$

$$(3x-2)^2$$

$$(x+y)^2$$

$$(x-y)^2$$

Expand and simplify:

$$(x-1)(x+1)$$

b
$$(x+4)(x-4)$$

$$(x+5)(x-5)$$

$$(2x+1)(2x-1)$$

$$(4-x)(4+x)$$

$$(x-1)(x+1)$$
 b $(x+4)(x-4)$ **c** $(x+5)(x-5)$ $(2x+1)(2x-1)$ **e** $(4-x)(4+x)$ **f** $(3-2x)(3+2x)$

Why did the x-terms disappear in the expansions of question 6?

WALT: Factorise algebraic expressions

Success Criteria: I know in expansions we have to remove brackets whereas in factorisation we have to insert brackets

Video Dr Frost

1 Copy and complete:

$$3x + 6 = 3(x + ...)$$

b
$$4a - 12 = 4(a - ...)$$

$$20 - 5p = 5(... - p)$$

d
$$16x + 12 = 4(... + 3)$$

$$3x^2 - 9x = 3x(x - ...)$$

2 Copy and complete:

$$4x + 12 = 4(... + ...)$$

b
$$9+3d=3(...+...)$$

$$3c-3=3(...-..)$$

$$d \quad cd + de = d(\dots \quad \dots)$$

$$6a + 8ab = \dots (3 + 4b)$$

d
$$cd + de = d(... ...)$$

f $4x - 2x^2 = ...(2 - x)$

$$4ab-4a=...(b-1)$$

h
$$4ab - 6bc = ...(2a - 3c)$$

3 Fully factorise:

$$5a+5b$$

b
$$2x-4$$

$$7d + 14$$

$$c$$
 $7d + 14$

d
$$21 - 14x$$

$$6x - 12$$

$$c 7a + 14$$

$$6x - 12$$

$$12 + 3x$$

$$ac+bc$$

h
$$12y - 6a$$

$$2a + ab$$

$$\sqrt{2}x - xa$$

$$xy + y$$

$$\begin{array}{cc} & bc - 3cd \\ \mathbf{m} & a + ab \end{array}$$

$$\mathbf{k}$$
 $2x - xy$

$$2an + ab$$

$$ab-a$$

$$\begin{array}{cc} \mathbf{n} & ab - bc \\ \mathbf{q} & ab + bc \end{array}$$

$$2x + xy - 4$$

Remember to check your factorisations by expanding back out!

Factorising Quadratics - Challenge

Example 17

Factorise: $x^2 + 11x + 24$

We need to find two numbers which have sum = 11, product = 24. Pairs of factors of 24:

Factor product	1×24	2×12	3×8	4×6
Factor sum	25	14	11	10

this one

The numbers we want are 3 and 8.

So,
$$x^2 + 11x + 24$$

= $(x+3)(x+8)$

Most of the time we can find these two numbers mentally.

Note: Only the last two lines of this example need to be shown in your working.

2 Factorise:

$$x^2 + 4x + 3$$

b
$$x^2 + 11x + 24$$

$$x^2 + 10x + 21$$

$$x^2 + 15x + 54$$

$$x^2 + 9x + 20$$

$$x^2 + 8x + 15$$

$$x^2 + 10x + 24$$

h
$$x^2 + 9x + 14$$

$$x^2 + 6x + 8$$

$$x^2 + 11x + 18$$

$$x^2 + 9x + 18$$

$$x^2 + 13x + 42$$

$$x^2 + 11x + 24$$

$$x^2 + 15x + 26$$

•
$$x^2 + 29x + 100$$

Example 15

Fully factorise: -2a + 6ab

$$-2a + 6ab$$

= $6ab - 2a$ {Rewrite with $6ab$ first. Why?}
= $2 \times 3 \times a \times b - 2 \times a$
= $2a(3b-1)$ {as $2a$ is the HCF}

5 Fully factorise:

- a -2a + 2b
- -3+6b
- -4a + 8b

- -3c+cd
- a a + ab
- $-7x^2 + 14x$

- $-6x + 12x^2$
- $-4b^2 + 2ab$
- $-a + a^2$

Example 16

Fully factorise: $-2x^2 - 4x$

$$-2x^{2} - 4x$$

$$= -2 \times x \times x + -2 \times 2 \times x$$

$$= -2x(x+2)$$
 {as HCF is $-2x$ }

6 Fully factorise:

- -3a 3b
- -4 8x
- -3y 6b

- -5c-cd
- -x-xy
- $-5x^2 10x$

- $-4y 12y^2$
- h $-6a^2 3ab$
- $-8x^2 24x$

Example 18

 $x^2 - 7x + 12$ Factorise:

sum = -7 and product = 12

 \therefore numbers are $^-3$ and $^-4$

So,
$$x^2 - 7x + 12$$

= $(x-3)(x-4)$

As the sum is negative but the product is positive, both numbers must be negative.

3 Factorise:

$$x^2 - 3x + 2$$

b
$$x^2 - 4x + 3$$

$$x^2 - 5x + 6$$

$$x^2 - 14x + 33$$

$$x^2 - 16x + 39$$

$$x^2 - 19x + 48$$

$$x^2 - 11x + 28$$

h
$$x^2 - 14x + 24$$

$$x^2 - 20x + 36$$

$$x^2 - 7x + 12$$

$$x^2 - 17x + 30$$

$$x^2 - 11x + 30$$

$$x^2 - 13x + 36$$

$$x^2 - 13x + 42$$

•
$$x^2 - 17x + 60$$

Example 19

Factorise:

a
$$x^2 - 2x - 15$$
 b $x^2 + x - 6$

$$x^2 + x - 6$$

$$= -2$$
 and product $= -15$

 \therefore numbers are -5 and 3

So,
$$x^2 - 2x - 15$$

$$= (x-5)(x+3)$$

sum = 1 and product = $^{-}6$

 \therefore numbers are 3 and -2

So,
$$x^2 + x - 6$$

$$=(x+3)(x-2)$$

Notice that as the product is negative, the numbers are opposite in sign.

4 Factorise:

$$x^2 - 7x - 8$$

b
$$x^2 + 4x - 21$$

$$x^2 - x - 2$$

d
$$x^2 - 2x - 8$$

$$x^2 + 5x - 24$$

$$x^2 - 3x - 10$$

$$x^2 + 3x - 54$$

h
$$x^2 + x - 72$$

$$x^2 - 4x - 21$$

$$x^2 - x - 6$$

$$x^2 - 7x - 60$$

$$x^2 + 7x - 60$$

Example 20

Fully factorise by first removing a common factor: $3x^2 + 6x - 72$

$$3x^2+6x-72$$
 {first look for a **common factor**} = $3(x^2+2x-24)$ {sum = 2, product = -24 i.e., 6 and -4 } = $3(x+6)(x-4)$

5 Fully factorise by first removing a common factor:

$$2x^2 + 10x + 8$$

$$3x^2 - 21x + 18$$

$$2x^2 + 14x + 24$$

$$2x^2 - 44x + 240$$

$$4x^2 - 8x - 12$$

$$3x^2 - 42x + 99$$

$$2x^2-2x-180$$

$$3x^2-6x-24$$

$$2x^2 + 18x + 40$$

$$x^3 - 7x^2 - 8x$$

$$x^3 - 3x^2 - 28x$$

$$x^4 + 2x^3 + x^2$$

"the difference of two squares".

Example 21

Fully factorise:

$$x^2 - 4$$

$$1 - 25y^2$$

$$x^{2} - 4$$

$$= x^{2} - 2^{2}$$

$$= (x+2)(x-2)$$

$$\begin{array}{ll}
\mathbf{b} & 1 - 25y^2 \\
&= 1^2 - (5y)^2 \\
&= (1 + 5y)(1 - 5y)
\end{array}$$

Write each term as a square.

EXERCISE 11E

1 Fully factorise:

$$c^2 - d^2$$

b
$$m^2 - n^2$$
 c $n^2 - m^2$

$$n^2 - m^2$$

d
$$m^2 - x^2$$

$$x^2 - 16$$

$$4x^2 - 1$$

$$a^2-9$$

$$4x^2-1$$

$$4x^2 - 9$$

$$4x^2 - 9$$

$$9u^2 - 25$$

$$64 - x^2$$

$$16 - 9a^2$$

$$9x^2 - 1$$

$$1a^2$$
 0h

•
$$16a^2 - x^2$$

PERFECT SQUARE FACTORISATION (EXTENSION)

Recall that

$$(a + b)^2$$

$$(a - b)^2$$

$$= (a+b)(a+b)$$

$$= (a-b)(a-b)$$

$$= a^2 + ab + ab + b^2$$

$$=a^2-ab-ab+b^2$$

$$= a^2 + 2ab + b^2$$

$$= a^2 - 2ab + b^2$$