Do now

Expand and simplify:
a $(x+1)^{2}$
b $(x+3)^{2}$
c $(x-2)^{2}$
d $(x-5)^{2}$
e $(2+x)^{2}$
f $(2-x)^{2}$
g $(2 x+1)^{2}$
h $(2 x-1)^{2}$
i $\quad(3 x+2)^{2}$
$(3 x-2)^{2}$
k $(x+y)^{2}$
\| $(x-y)^{2}$

Expand and simplify:
a $\quad(x-1)(x+1)$
b $(x+4)(x-4)$
c $\quad(x+5)(x-5)$
d $(2 x+1)(2 x-1)$
e $(4-x)(4+x)$
f $(3-2 x)(3+2 x)$

Why did the x-terms disappear in the expansions of question 6 ?

WALT: Factorise algebraic expressions

Success Criteria: I know in expansions we have to remove brackets whereas in factorisation we have to insert brackets

Video Dr Frost

1 Copy and complete:
a $3 x+6=3(x+\ldots)$
b $4 a-12=4(a-\ldots)$
c $20-5 p=5(\ldots-p)$
d $16 x+12=4(\ldots+3)$
e $3 x^{2}-9 x=3 x(x-\ldots)$
f $2 m+8 m^{2}=2 m(\ldots+4 m)$

2 Copy and complete:
a $4 x+12=4(\ldots+\ldots)$
b $9+3 d=3(\ldots+\ldots)$
c $3 c-3=3(\ldots-\ldots)$
d $\quad c d+d e=d(\ldots \quad . .$.
e $6 a+8 a b=\ldots(3+4 b)$
f $4 x-2 x^{2}=\ldots(2-x)$
g $4 a b-4 a=\ldots(b-1)$
h $4 a b-6 b c=\ldots(2 a-3 c)$

3 Fully factorise:

a	$5 a+5 b$	b	$2 x-4$	c	$7 d+14$
d	$21-14 x$	e	$6 x-12$	f	$12+3 x$
g	$a c+b c$	h	$12 y-6 a$	i	$2 a+a b$
j	$b c-3 c d$	k	$2 x-x y$	I	$x y+y$
m	$a+a b$	n	$a b-b c$	-	$2 a n+a b$
P	$a b-a$	q	$a b+b c$	r	$2 x+x y-4$

Remember to check your factorisations by expanding back out!

Factorising Quadratics - Challenge

Example 17

Factorise: $\quad x^{2}+11 x+24$

We need to find two numbers which have sum $=11$, product $=24$.
Pairs of factors of 24 :

Factor product	1×24	2×12	3×8	4×6
Factor sum	25	14	11	10
this one				

The numbers we want are 3 and 8 .

$$
\text { So, } \begin{aligned}
& x^{2}+11 x+24 \\
= & (x+3)(x+8)
\end{aligned}
$$

Most of the time we can find these two numbers mentally.

Note: Only the last two lines of this example need to be shown in your working.
2 Factorise:
a $\quad x^{2}+4 x+3$
b $x^{2}+11 x+24$
c $x^{2}+10 x+21$
d $x^{2}+15 x+54$
e $x^{2}+9 x+20$
f $x^{2}+8 x+15$
g $x^{2}+10 x+24$
h $x^{2}+9 x+14$
I $x^{2}+6 x+8$
J $x^{2}+11 x+18$
k $\quad x^{2}+9 x+18$
|l $x^{2}+13 x+42$
m $x^{2}+11 x+24$
n $x^{2}+15 x+26$

- $x^{2}+29 x+100$

Example 15

Fully factorise: $-2 a+6 a b$

$$
\begin{array}{rlr}
& -2 a+6 a b & \\
= & 6 a b-2 a & \text { \{Rewrite with } 6 a b \text { first. Why?\} } \\
= & 2 \times 3 \times a \times b-2 \times a & \\
= & 2 a(3 b-1) & \{\text { as } 2 a \text { is the HCF }\}
\end{array}
$$

5 Fully factorise:
a $\quad-2 a+2 b$
b $-3+6 b$
c $-4 a+8 b$
d $\quad-3 c+c d$
g $-6 x+12 x^{2}$
e $\quad-a+a b$
h $-4 b^{2}+2 a b$
f $-7 x^{2}+14 x$
i $-a+a^{2}$

7xample 16

Fully factorise: $\quad-2 x^{2}-4 x$

$$
\begin{aligned}
& -2 x^{2}-4 x \\
= & -2 \times x \times x+-2 \times 2 \times x \quad \\
= & -2 x(x+2) \quad \text { as HCF is }-2 x\}
\end{aligned}
$$

Fully factorise:
a $\quad-3 a-3 b$
b $-4-8 x$
c $-3 y-6 b$
d $-5 c-c d$
e ${ }^{-} x-x y$
h $\quad-6 a^{2}-3 a b$
f $-5 x^{2}-10 x$
if $-8 x^{2}-24 x$

Example 18

Factorise: $\quad x^{2}-7 x+12$
sum $=-7$ and product $=12$
\therefore numbers are -3 and -4
So, $\quad x^{2}-7 x+12$

$$
=(x-3)(x-4)
$$

3 Factorise:

> As the sum is negative but the product is positive, both numbers must be negative.
a $\quad x^{2}-3 x+2$
b $x^{2}-4 x+3$
c $x^{2}-5 x+6$
d $\quad x^{2}-14 x+33$
e $x^{2}-16 x+39$
f $x^{2}-19 x+48$
g $x^{2}-11 x+28$
J $x^{2}-7 x+12$
h $x^{2}-14 x+24$
I $x^{2}-20 x+36$
m $x^{2}-13 x+36$
k $\quad x^{2}-17 x+30$
| $x^{2}-11 x+30$
n $x^{2}-13 x+42$

- $x^{2}-17 x+60$

Example 19

Factorise: \quad a $x^{2}-2 x-15 \quad$ b $\quad x^{2}+x-6$
a \quad sum $=-2$ and product $=-15$
\therefore numbers are ${ }^{-} 5$ and 3
So, $\quad x^{2}-2 x-15$

$$
=(x-5)(x+3)
$$

b \quad sum $=1$ and product $={ }^{-} 6$
\therefore numbers are 3 and -2
So, $\quad x^{2}+x-6$

$$
=(x+3)(x-2)
$$

Notice that as the product is negative, the numbers are opposite in sign.

4 Factorise:
a $x^{2}-7 x-8$
b $x^{2}+4 x-21$
d $x^{2}-2 x-8$
e $x^{2}+5 x-24$
g $x^{2}+3 x-54$
h $x^{2}+x-72$
J $x^{2}-x-6$
k $\quad x^{2}-7 x-60$

$$
\begin{array}{ll}
\text { f } & x^{2}-x-2 \\
\text { f } & x^{2}-3 x-10 \\
\text { I } & x^{2}-4 x-21 \\
\text { \| } & x^{2}+7 x-60
\end{array}
$$

Example 20

Fully factorise by first removing a common factor: $3 x^{2}+6 x-72$

$$
\begin{aligned}
& 3 x^{2}+6 x-72
\end{aligned} \quad\{\text { first look for a common factor }\}
$$

5 Fully factorise by first removing a common factor:
a $2 x^{2}+10 x+8$
b $3 x^{2}-21 x+18$
c $2 x^{2}+14 x+24$
d $2 x^{2}-44 x+240$
e $4 x^{2}-8 x-12$
g $2 x^{2}-2 x-180$
h $3 x^{2}-6 x-24$
f $3 x^{2}-42 x+99$
j $x^{3}-7 x^{2}-8 x$
k $x^{3}-3 x^{2}-28 x$
i $2 x^{2}+18 x+40$
I $x^{4}+2 x^{3}+x^{2}$
"the difference of two squares".
Write each term as

Example 21

Fully factorise:

a	$x^{2}-4$	b
a	$1-25 y^{2}$	
	$x^{2}-4$	b
$=$	$1-25 y^{2}$	
$=$	$x^{2}-2^{2}$	
$=(x+2)(x-2)$	$=1^{2}-(5 y)^{2}$	
		$=(1+5 y)(1-5 y)$

a square.

EXERCISE 11 E

Fully factorise:
a $c^{2}-d^{2}$
b $m^{2}-n^{2}$
c $n^{2}-m^{2}$
d $m^{2}-x^{2}$
e $x^{2}-16$
f $x^{2}-81$
g $a^{2}-9$
h $4 x^{2}-1$
I $\quad 4 x^{2}-9$
j $9 y^{2}-25$
k $64-x^{2}$
| $16-9 a^{2}$
m $9 x^{2}-1$
n $4 a^{2}-9 b^{2}$

- $16 a^{2}-x^{2}$
p $9 x^{2}-16 b^{2}$

PERFECT SQUARE FACTORISATION (EXTENSION)

Recall that

$$
\begin{aligned}
& (a+b)^{2} \\
= & (a+b)(a+b) \\
= & a^{2}+a b+a b+ \\
= & a^{2}+2 a b+b^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& (a-b)^{2} \\
= & (a-b)(a-b) \\
= & a^{2}-a b-a b+b^{2} \\
= & a^{2}-2 a b+b^{2}
\end{aligned}
$$

