
WALT calculate the area of different shapes, including squares, rectangles, triangles, circles, and composite shapes.

Success Criteria : I can...

- define the area of a shape.
- identify the different formulas for calculating the area of different shapes.
- use the formulas to calculate the area of different shapes, both accurately and efficiently.
- check my calculations for accuracy.
- apply my knowledge of area to solve real-world problems.

EXAMPLE 1

Convert the following measurements.

 $d \quad 5 \; 600 \; 000 \; m^2 \; to \; km^2$ a 25 cm² to mm² b 2000 cm² to m² c 4.3 ha to m²

	Solve	Think	Apply	
a	$25 \text{ cm}^2 = 25 \times 100$ = 2500 mm ²	Multiply by 100.	Use the conversion diagram to multiply or divide, as appropriate.	
b	$2000 \text{ cm}^2 = \frac{2000}{10\ 000}$ $= 0.2 \text{ m}^2$	Divide by 10 000.		
c	$4.3 \text{ ha} = 4.3 \times 10\ 000$ = $43\ 000\ \text{m}^2$	Multiply by 10 000.		
d	$5 600 000 \text{ m}^2 = \frac{5 600 000}{1 000 000}$ $= 5.6 \text{ km}^2$	Divide by 1 000 000.		

Exercise 6A

1 Convert the following areas.

a 4 cm² to mm² \mathbf{b} 31 m² to cm² c 32 km² to m²

 $\ \ \, \text{d} \quad 40\ 000\ cm^2\ to\ m^2$

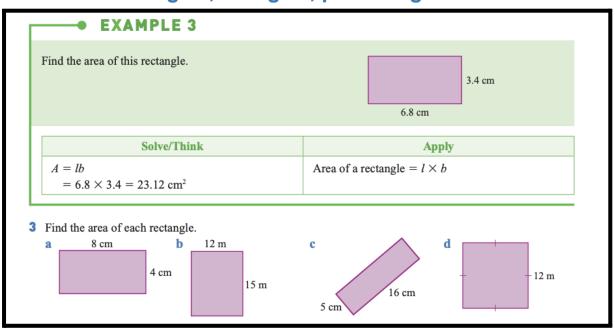
e 7.3 ha to m²

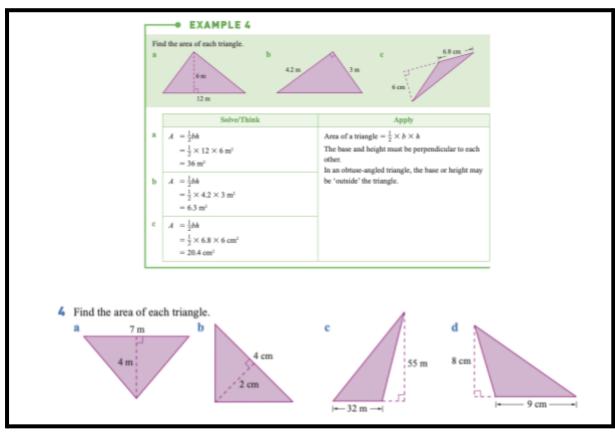
f 42 000 m² to ha

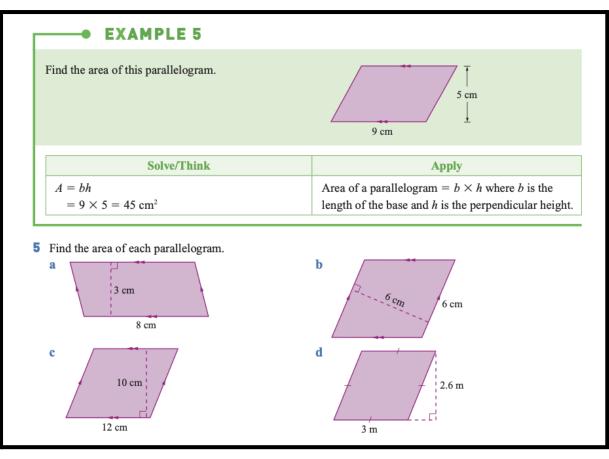
g 15 cm² to mm²

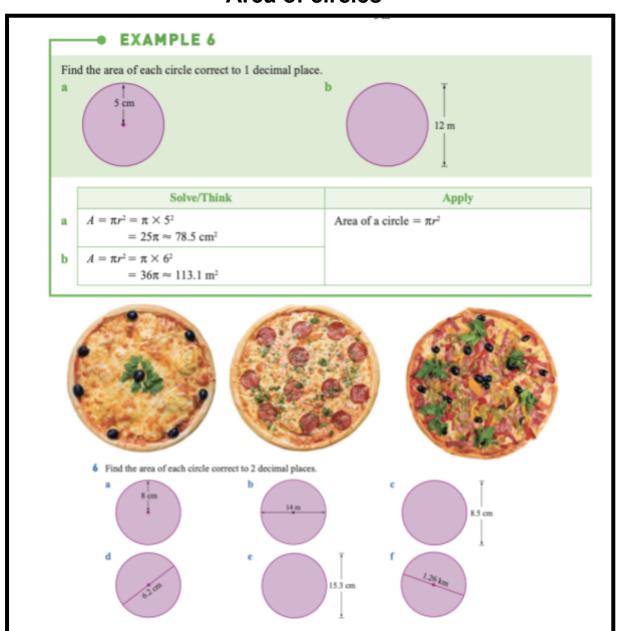
h 32 000 cm² to m²

i 3280 mm² to cm²

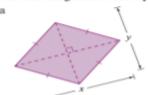

j 235 000 m² to km²

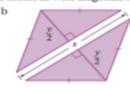

k 36.5 ha to m²


1 780 m² to ha


Areas of rectangles, triangles, parallelograms and circles

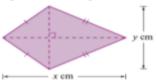
Area of circles

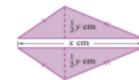

Investigation 1 Formulas for area


You know that the area of a triangle is: $A = \frac{1}{2}bh$

Use this formula to find expressions for the area of a rhombus, kite and trapezium.

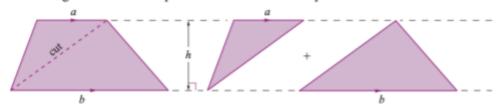
1 Rhombus


Use these diagrams to find expressions for the area of a rhombus with diagonals x and y units in length.



2 Kite

The formula for the area of a kite is the same as that for a rhombus. Compare this derivation with your expressions from question 1.

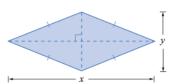


$$A = \frac{1}{2} \times x \times (\frac{1}{2}y) + \frac{1}{2} \times x \times (\frac{1}{2}y)$$
$$= \frac{1}{4}xy + \frac{1}{4}xy$$
$$= \frac{1}{2}xy$$

3 Trapezium

Use these diagrams to find an expression for the area of a trapezium.

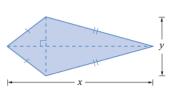
В


Areas of special quadrilaterals

From Investigation 1, we have developed the following formulas.

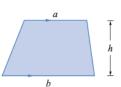
Rhombus

$$A = \frac{1}{2}xy$$


 $A = \frac{1}{2} \times \text{product of the lengths of the diagonals}$

Kite

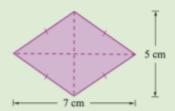
$$A = \frac{1}{2}xy$$


 $A = \frac{1}{2} \times \text{product of the lengths of the diagonals}$

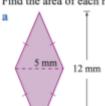
Trapezium

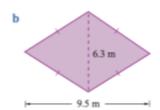
$$A = \frac{1}{2}ah + \frac{1}{2}bh$$

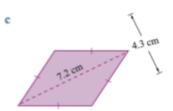
= $\frac{1}{2}h(a+b)$ or $A = (\frac{a+b}{2})h$


A =product of half the height and the sum of the lengths of the parallel sides or product of the height and the average of the lengths of the parallel sides

Note: The height is the perpendicular distance between the two parallel sides. Sometimes it is a side but usually it is not.

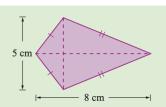

EXAMPLE 1

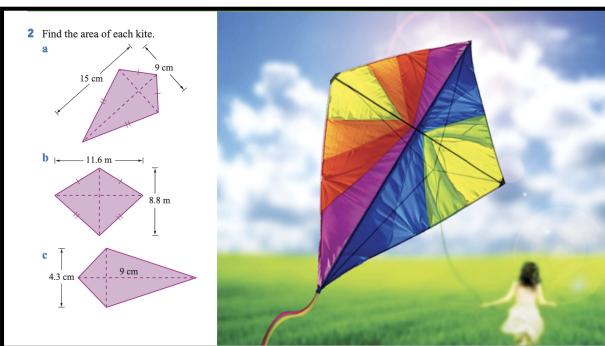

Find the area of a rhombus with diagonals of length 5 cm and 7 cm.

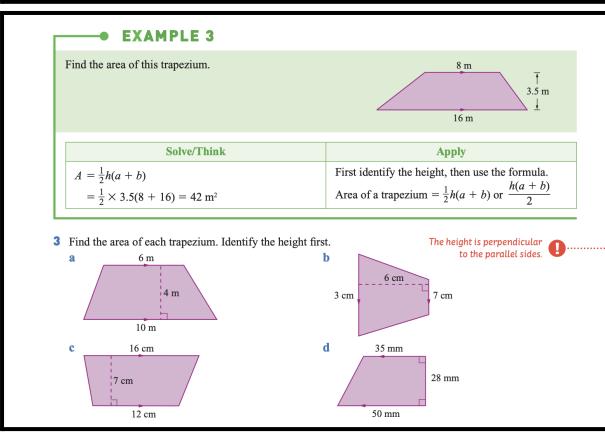


Solve/Think	Apply	
$A = \frac{1}{2}xy$ = $\frac{1}{2} \times 5 \times 7 = 17.5 \text{ cm}^2$	Area of a rhombus $= \frac{1}{2}xy$ where x and y are the lengths of the diagonals.	

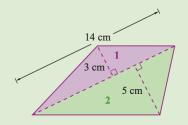
1 Find the area of each rhombus.

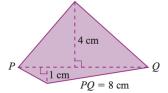


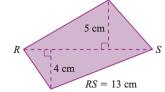


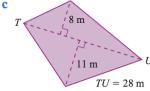

• EXAMPLE 2

Find the area of this kite.


Solve/Think	Apply
$A = \frac{1}{2}xy$ $= \frac{1}{2} \times 5 \times 8$ $= 20 \text{ cm}^2$	Area of a kite $= \frac{1}{2}xy$ where x and y are the lengths of the diagonals.

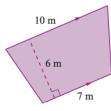


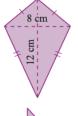

Find the area of this quadrilateral.

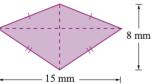


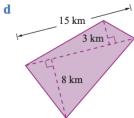
Solve/Think	Apply
A = area of triangle 1 + area of triangle 2	Divide the quadrilateral into 2 triangles.
$= \frac{1}{2} \times 14 \times 3 + \frac{1}{2} \times 14 \times 5$	
$= 21 + 35 = 56 \text{ cm}^2$	

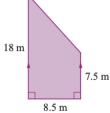
4 Find the area of each quadrilateral.

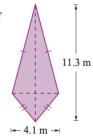









5 Use the correct formula to find the area of each quadrilateral.



f

Exercise 6A

e 183.85 m²

1 a 400 mm² **b** 310 000 cm² c 32 000 000 m² $d 4 m^2$ **f** 4.2 ha e 73 000 m² g 1500 mm² h 3.2 m² $j 0.235 \text{ km}^2$ i 32.8 cm² k 365 000 m² 1 0.078 ha $2 a 7 m^2$ **b** 5 300 000 mm² **c** 0.036 ha **d** 100 ha e 230 ha f 420 000 cm² g 2000 mm² **h** 0.063 km² 3 a 32 cm² **b** 180 m^2 c 80 cm² d 144 m² **4 a** 14 m² **b** 4 cm² c 880 m² d 36 cm² **5 a** 24 cm² **b** 36 cm² c 120 cm² $d 7.8 m^2$ **6 a** 201.06 cm² **b** 153.94 m² c 56.75 cm² d 30.19 cm²

f 1.25 km²

Exercise 6B

1 a 30 mm² **b** 29.925 m² c 15.48 cm² c 19.35 cm² 2 a 67.5 cm² **b** 51.04 m^2 3 a $h = 4 \text{ m}, A = 32 \text{ m}^2$ **b** h = 6 cm, A = 30 cm² $h = 7 \text{ cm}, A = 98 \text{ cm}^2$

d $h = 28 \text{ mm}, A = 1190 \text{ mm}^2$

4 a 20 cm² **b** 58.5 cm² c 266 m² **5 a** 51 m² **b** 48 cm² **c** 60 mm² d 82.5 km² e 108.375 m² f 23.165 m²