WALT Identify sides of a right angle triangle
Success Criteria - I can identify hypotenuse and read the sign theta I am able to list the rules for Sine, Cosine and Tangent

1 For each triangle below, name the:
i hypotenuse
ii side opposite the angle marked θ
iiii side adjacent to the angle marked θ.
a

d

j

k

2 For the triangle shown, name the side:
a opposite the angle marked $\theta \quad \mathbf{b}$ opposite the angle marked ϕ
c adjacent to the angle marked $\theta \quad \mathbf{d}$ adjacent to the angle marked ϕ

EXAMPLE 2

Using the given triangle, write expressions to complete the table for θ.

$\frac{\text { opposite }}{\text { adjacent }}$	$\frac{\text { opposite }}{\text { hypotenuse }}$	$\frac{\text { adjacent }}{\text { hypotenuse }}$

Solve		
$\frac{\text { opposite }}{\text { adjacent }}$ $\frac{\text { opposite }}{\text { hypotenuse }}$$\frac{\text { adjacent }}{\text { hypotenuse }}$		
$\frac{q}{p}$	$\frac{q}{r}$	$\frac{p}{r}$

Think
The hypotenuse is r, the side opposite the angle marked θ is q, and the side adjacent to θ is p.

Apply

The opposite and the adjacent sides are relative to the nonright angle chosen.

3 Complete this table for θ for each of the triangles in question 1.

$\frac{\text { opposite }}{\text { adjacent }}$	$\frac{\text { opposite }}{\text { hypotenuse }}$	$\frac{\text { adjacent }}{\text { hypotenuse }}$

The trigonometric ratios

The ratios from Example 2 are given names.

- The ratio $\frac{\text { opposite }}{\text { adjacent }}$ is the tangent of the angle marked θ.

This is written as $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$.

- The ratio $\frac{\text { opposite }}{\text { hypotenuse }}$ is the sine of the angle marked θ.

This is written as $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$.

- The ratio $\frac{\text { adjacent }}{\text { hypotenuse }}$ is the cosine of the angle marked θ.

This is written as $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$.

The trigonometric ratios can be remembered using a mnemonic: SOH CAH TOA.

$$
\begin{array}{ll}
\text { SOH } & \operatorname{Sin} \theta=\frac{\text { Opposite }}{\text { Hypotenuse }} \\
\text { CAH } & \operatorname{Cos} \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }} \\
\text { TOA } & \operatorname{Tan} \theta=\frac{\text { Opposite }}{\text { Adjacent }} \\
\hline
\end{array}
$$

EXAMPLE 3

In triangle $A B C$, find expressions for $\tan \theta, \cos \theta$, and $\sin \theta$.

Solve	Think	Apply
$\tan \theta=\frac{B C}{A C}$	$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$	Locate the hypotenuse opposite the right angle. Identify the opposite and adjacent sides
$\sin \theta=\frac{B C}{A B}$	$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$	$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse to the chosen angle. }}$
$\cos \theta=\frac{A C}{A B}$	\cos	

4 For each triangle, find an expression for:
i $\tan \theta$

iii $\sin \theta$
b

iiii $\cos \theta$

e

f

h

5 For each triangle, find an expression for:
a

iii $\cos A$
b

Check your answers

1	a	i	$A B$
	ii $B C$	iii $A C$	
b	i $R Q$	ii $P R$	iii $P Q$
c	i $X Z$	ii $X Y$	iii $Z Y$
d	i r	ii p	iii q
e	i n	ii m	iii l
f	i $E F$	ii $E D$	iii $F D$
g	i y	ii x	iii z
h	i $U V$	ii $T V$	iii $U T$
i	i $T U$	ii $S U$	iii $S T$
j	i g	ii h	iii k
k	i v	ii u	iii w
l	i m	ii k	iiii l

