Walt calculate volume to describe the amount of space inside a three dimensional object Success Criteria: I know we use Cubic kilometres for the volume of concrete poured at a building
Units for Capacity for liquids and gases - Millilitres, litres, kilolitres, and Megalitres

6.8 Volume

We use volume to describe the amount of space inside a three-dimensional object. We use metric units, such as:

- cubic kilometres for the volume of water in the sea
- cubic metres for the volume of concrete poured at a building site
- cubic centimetres for the volume of space occupied by this book
- cubic millimetres for the volume of metal in a pin.

Units for capacity (millilitres, litres, kilolitres and megalitres) are used for liquids and gases.

Let's start: Why length \times width \times height?

For most people, the first thing that comes to mind when dealing with volume is length \times width \times height. But this rule only applies to finding the volume of rectangular prisms.

Let's look at a rectangular prism split into two layers.

- How many cubes sit on one layer?
- What is the area of the base? What do you notice?
- What is the height and how many layers are there?
- Why is the volume rule given by $V=l w h$ in this case?
- Common metric units for volume include cubic kilometres $\left(\mathrm{km}^{3}\right)$, cubic metres $\left(\mathrm{m}^{3}\right)$, cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic millimetres $\left(\mathrm{mm}^{3}\right)$.

$1 \mathrm{~cm}=10 \mathrm{~mm}$

$$
1 \mathrm{~cm}^{3}=10 \times 10 \times 10
$$

$$
=10^{3} \mathrm{~mm}^{3}
$$

Volume The amount of threedimensional space inside an object

- For capacity, common units include:
- Megalitres (ML) 1 ML = 1000 kL

Capacity The

- Kilolitres (kL) $1 \mathrm{~kL}=1000 \mathrm{~L}$
- Litres (L)
$1 \mathrm{~L}=1000 \mathrm{~mL}$
- Millilitres (mL)

Also: $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$ so $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$ and $1 \mathrm{~m}^{3}=1000 \mathrm{~L}$

- Volume of solids with a uniform cross-section is equal to area of cross-section $(A) \times$ height (b).
$V=A \times h$
- Volume of a rectangular prism: $V=l \times w \times h$ nt of liquid a container can hold Cross-section The plane figure formed when you slice a solid figure parallel to one of its surfaces

- The 'height' is the length of the edge that runs perpendicular to the cross-section in any solid.

Exercise 6H

1 What is the name given to the shape of the shaded cross-section of each of the following solids?

b

d

e

2 Draw the cross-sectional shape for these prisms and state the given
'perpendicular' means 'at a right angle $\left(90^{\circ}\right)^{\prime}$. 'height' (perpendicular to the cross-section).
a

b

C

d

e

f

3 Write the missing number.
a The number of mm in 1 cm is \qquad .
b The number of mm^{2} in $1 \mathrm{~cm}^{2}$ is \qquad .
c The number of mm^{3} in $1 \mathrm{~cm}^{3}$ is \qquad .
d There are \qquad cm^{3} in $1 \mathrm{~m}^{3}$.
e There are \qquad m^{3} in $1 \mathrm{~km}^{3}$.
f There are \qquad mL in 1 L .
g There are \qquad L in 1 kL .
h There are \qquad cm^{3} in 1 mL .

Example 18 Converting units of volume

Convert the following volume measurements into the units given in the brackets.
a $2.5 \mathrm{~m}^{3}\left(\mathrm{~cm}^{3}\right)$
b $\quad 458 \mathrm{~mm}^{3}\left(\mathrm{~cm}^{3}\right)$

Solution

a $2.5 \mathrm{~m}^{3}=2.5 \times 100^{3} \mathrm{~cm}^{3}$

$$
=2500000 \mathrm{~cm}^{3}
$$

b $458 \mathrm{~mm}^{3}=458 \div 10^{3} \mathrm{~cm}^{3}$

$$
=0.458 \mathrm{~cm}^{3}
$$

Explanation

$$
\times 100^{3}=1000000
$$

$$
{\underset{\div 10^{3}=1000}{\mathrm{~cm}^{3}} \mathrm{~mm}^{3}}_{458 .}^{m}
$$

4 Convert the following volume measurements into the units given in brackets.
a $3 \mathrm{~cm}^{3}\left(\mathrm{~mm}^{3}\right)$
b $0.3 \mathrm{~cm}^{3}\left(\mathrm{~mm}^{3}\right)$
c $2000 \mathrm{~mm}^{3}\left(\mathrm{~cm}^{3}\right)$
d $0.001 \mathrm{~m}^{3}\left(\mathrm{~cm}^{3}\right)$
e $8.7 \mathrm{~m}^{3}\left(\mathrm{~cm}^{3}\right)$
f $5900 \mathrm{~cm}^{3}\left(\mathrm{~m}^{3}\right)$
g $0.00001 \mathrm{~km}^{3}\left(\mathrm{~m}^{3}\right)$
h $21700 \mathrm{~m}^{3}\left(\mathrm{~km}^{3}\right)$
i $430000 \mathrm{~cm}^{3}\left(\mathrm{~m}^{3}\right)$

5 Convert these units of capacity to the units given in brackets.
a $3 \mathrm{~L}(\mathrm{~mL})$
b $\quad 0.2 \mathrm{~kL}(\mathrm{~L})$
c $3500 \mathrm{~mL}(\mathrm{~L})$
d $\quad 0.021 \mathrm{~L}(\mathrm{~mL})$
e $37000 \mathrm{~L}(\mathrm{~kL})$
f $42900 \mathrm{~kL}(\mathrm{ML})$
$1 \mathrm{ML}=1000 \mathrm{~kL}$
g $2 \mathrm{~cm}^{3}(\mathrm{~mL})$
h $2 \mathrm{~L}\left(\mathrm{~cm}^{3}\right)$
i $\quad 1 \mathrm{~m}^{3}(\mathrm{~L})$

$$
\begin{aligned}
& 1 \mathrm{~kL}=1000 \mathrm{~L} \\
& 1 \mathrm{~L}=1000 \mathrm{~mL}
\end{aligned}
$$

Example 19 Finding the volume of a rectangular prism

Find the volume of this rectangular prism.

Solution

Explanation

$$
\begin{aligned}
\text { Volume } & =l \times w \times h \\
& =1 \times 1 \times 3 \\
& =3 \mathrm{~cm}^{3}
\end{aligned}
$$

The solid is a rectangular prism.
Length $=1 \mathrm{~cm}$, width $=1 \mathrm{~cm}$ and height $=3 \mathrm{~cm}$

6 Find the volume of these three-dimensional rectangular prisms.
a

b

C

7 Find the volume of each of these rectangular prisms (cuboids).
a

b

8 Find the volume of each of these three-dimensional objects. The cross-sectional area has been given.
a

b

C

Simply use $V=A \times h$, since the area of the cross-section is given.
d

e

f

Example 20 Finding the volume of a triangular prism

Find the volume of this triangular prism.

Solution

Area of cross-section $=\frac{1}{2} \times b \times h$

$$
\begin{aligned}
& =\frac{1}{2} \times 4 \times 3 \\
& =6 \mathrm{~cm}^{2}
\end{aligned}
$$

Volume $=$ area of cross-section \times height

Explanation

The cross-section is a triangle.

$$
\begin{aligned}
& =6 \times 6 \\
& =36 \mathrm{~cm}^{3}
\end{aligned}
$$

9 Find the volume of these prisms.
a

b

First find the area of the triangular crosssection.
c

10 A brick is 10 cm wide, 20 cm long and 8 cm high. How much space would five of these bricks occupy?
1125 L of water is poured into a rectangular fish tank which is 50 cm long, 20 cm wide and 20 cm high. Will it overflow?

12 Find the volume of these solids, converting your answer to litres.

C

There are $1000 \mathrm{~cm}^{3}$ in 1 L .

Area of a trapezium: $A=\frac{1}{2}(a+b) h$

Exercise 6H

