9/1 Put a circle round the correct answer:

Which of these expressions would yield the same answer, if the value of x is 6 ?
a) $x^{3}-1$
b) $1-\left(-x^{3}\right)$
C) $1-\left((-x)^{3}\right)$
d) $\quad(1-x)^{3}$

9/2 What fraction of whole number multiples result in an even number?

9/3 Three consecutive odd numbers are added together to give a sum of 57 . What are these three numbers?

9/4 Nina has 3 dice which are stacked one on top of the other. If the top face of the top dice is 6 and the dice which touch have the same face value, what is the value of the face on the bottom?

9/5 Using this dotty array, Raphael says "I can make at least 5 different sized squares, the area of the biggest square is how many times the smallest?

9/6 A small triangular seating area has one seat at the apex, 2 in the next row, 3 in the next row. This continues until there are 10 chairs in the final row. How many chairs are there altogether?

9/7 In this triangular lattice, how many different-sized equilateral triangles could be drawn?

9/8 Different single digits (0-9) are represented by different letters. What is the greatest value of

$$
2018 \text { - MA - THE - X }
$$

($0,1,2,8$ are already used)

9/9 At Wimbledon this year one person served at 160 mph (miles per hour). If one mile is equal to 1.6 kilometres, how fast is that serve in metres per second?

9/10 A square is drawn on (1, 1), (1,7), (7, 7) and (7,1), what are the coordinates of the centre of this square?

9/11 Freddie is colouring in the prime numbers on a Hundred Square. He notices that there are 5 horizontal lines with only 2 primes in each of them. There is also a line with only one prime number in it. Which prime number is it?

9/12 Alice is using a hundred square to make a new game. She tells her group "Add the diagonal line that starts with 1 and finishes with 100". What is the answer?

9/13 In an acting group, the girls are greater than 45\% of the actors but less than 50% of the actors. What is the least number of girls in the group?

9/14 27 small cubes are put together to make a bigger cube of side length 3 . If all sides but the bottom are painted red, how many small cubes have only 2 sides painted?

9/15 A rectangle has whole number sides and an area of $100 \mathrm{~cm}^{2}$. What is the value of

greatest perimeter - smallest perimeter?

$9 / 16 \quad 1, \quad 1+3=4,1+3+5=9, \quad 1+3+5+\ldots+99=?$

9/17 Louise had a birthday party to which she invited many people. If she seated the guests on tables of 7 , there was one left over, if she seated them in tables of 6 , she still had one left over, same with 5 , and 3 and 2 . What is the least number of guests?

9/18 Find a pair of prime numbers less than 50 which given p, the other is $p^{4}+1$

9/19 A square ended cuboidal package has a volume of 300 cubic centimetres. If the dimensions are all in whole centimetres, what are the dimensions of the package that has the least surface area?

9/20 In this regular hexagon, the length of each side is 1 cm .
What is the difference in length of line PQ and line RS?
Answer to 3 d.p.

MATHEX QUIZ ANSWERS Year 9-2018
No units required

Number	Answers	Comment
1	B and C	Both
2	$\frac{3}{4}$	
3	17,19, and 21	All three, any order
4	1	
5	9	times
6	55	chairs
7	2	
8	1606	
9	71.1	Metres per second
10	$(4,4)$	
11	97	
12	505	
13	5	girls
14	12	
15	162	
16	2500	
17	211	
18	2,17	
19	$5 \times 5 \times 12$	
20	0.268	0.267949192 cm

No units required

Number	Answers	Comment
20	0.268	0.267949192 cm
19	$5 \times 5 \times 12$	
18	2,17	
17	211	
16	2500	
15	162	
14	12	
13	5	girls
12	505	
11	97	
10	$(4,4)$	
9	71.1	Metres per second
8	1606	
7	2	
6	55	chairs
5	9	times
4	1	
3	17, 19, and 21	All three, any order
2	$\frac{3}{4}$	
1	B and C	Both

