Slope (gradient)

WALT Calculate slope of a line
Success Criteria I can count the way lines go/move up/down (rise) and go/move across (run)

We use the word slope or gradient when talking about the degree of steepness of a line or a line segment. Horizontal lines have zero slope.

This line is very steep. It must therefore have a large slope.
To compare the slopes of different lines, we use the ratio of vertical rise to horizontal run. For a horizontal line, the vertical rise is 0 , so the slope is 0 .

$$
\text { Slope }=\frac{\text { vertical rise }}{\text { horizontal run }}
$$

The following illustrations indicate slopes of varying amounts.

slope $=\frac{4}{10}=\frac{2}{5}$

When line segments are drawn on graph paper, we can determine the slope of the line segments by drawing horizontal and vertical lines to complete a right-angled triangle.

EXAMPLE 1

Find the slope of line $A B$.

Solve	Think	Apply
	Complete a right-angled triangle using $A B$ as the hypotenuse. Then vertical rise $=2$ and horizontal run $=5$, so slope $=\frac{2}{5}$.	Complete a right-angled triangle. Determine the vertical rise and horizontal run to calculate the gradient.
Slope of $A B=\frac{\text { vertical rise }}{\text { horizontal run }}=\frac{2}{5}$		Gradient $=\frac{\text { run }}{\text { run }}$

2 In each diagram, draw a right-angled triangle and find the gradient using:
Gradient $=\frac{\text { vertical rise }}{\text { horizontal run }}$
a

b

c

d

Find the gradient of the line passing through points $C(-4,-2)$ and $D(3,2)$.

Solve	Think	Apply
$\text { Gradient }=\frac{\text { rise }}{\text { run }}=\frac{4}{7}$	Complete a right-angled triangle using $C D$ as the hypotenuse. Then vertical rise $=4$ and horizontal run $=7$, so gradient $=\frac{4}{7}$.	Complete a right-angled triangle using $C D$ as the hypotenuse. Determine the vertical rise and horizontal run from C to D and calculate the gradient. Gradient $=\frac{\text { rise }}{\text { run }}$

3 Find the gradient of the line passing through each pair of points.
a $C(-5,-2)$ and $D(4,5)$
b $A(-3,-1)$ and $B(5,2)$
c $C(-5,3)$ and $P(7,7)$
d $M(1,-5)$ and $N(2,6)$

Investigation 2 Varying the slope

1 Complete the table.

Line segment	\boldsymbol{x}-run	\boldsymbol{y}-rise	Slope
$A B$			
$C D$			
$E F$			
$G H$			
$I J$			
$K L$			
$M N$			

2 Complete the following.
a The slope of a horizontal line is \qquad .
b The slope of a vertical line is \qquad .
c As the line segments become steeper, their slopes \qquad -

Positive and negative gradients

In the diagram, lines 1 and 2 are parallel, and have the same slope of 2 .
Line 3 is not parallel to lines 1 and 2, yet it has the same degree of steepness.
We say that lines 1 and 2 are forwards sloping, whereas line 3 is backwards sloping.

As we go from left to right, on line 1 we are going uphill and the slope (gradient) is positive, whereas on line 3 we are going downhill and the slope (gradient) is negative.

Find the slope of each line.
a

b

a (uphill).
Slope $A B=\frac{\text { rise }}{\text { run }}$
$=+\frac{6}{4}$

$$
=+1 \frac{1}{2}
$$

b
The slope of $C D$ is negative (downhill).
Slope $C D=\frac{\text { rise }}{\text { run }}$

$$
\begin{aligned}
& =-\frac{5}{2} \\
& =-2 \frac{1}{2}
\end{aligned}
$$

Think
Draw in a rightangled triangle and find the rise and run.

Draw in a rightangled triangle and find the rise and run.

Apply

First determine whether the slope is positive or negative.
For downhill slopes, the 'rise' is a 'drop', so the slope is a negative value.

1 Determine whether the slope is positive or negative and then find the gradient.
a

b

c

d

e

f

2 Find the gradient of each line.
a $O A$
b $O B$
c OC
d $O D$
e $O E$
f $O F$

3 Find the gradient of each line.
a $A P$
b $A Q$
c $A R$
d $A S$
e $A T$
f $A U$
g $A V$

4 Imagine you are walking across the countryside from O to W (from left to right).

a When are you going uphill?
b When are you going downhill?
c Where is the steepest positive slope?
d Where is the steepest negative slope?
e Where is the slope 0 ?
f Where is the slope not zero but least?

Plot points $A(-3,5)$ and $B(7,2)$ and find the gradient of the line passing through them.

Solve	Think	Apply
$\begin{aligned} \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\ & =-\frac{3}{10} \end{aligned}$	From the right-angled triangle, the slope is downhill, so the rise is -3 and the run is 10 .	Plot the points, and draw a right-angled triangle. Find the rise and run. The gradient is negative (downhill).

5 Plot each pair of points and find the gradient of the line passing through them.
a $A(-4,6)$ and $B(7,2)$
b $C(-4,-1)$ and $D(5,3)$
c $P(1,3)$ and $Q(-4,-1)$
d $R(0,0)$ and $S(5,3)$
e $M(5,3)$ and $N(-5,2)$
f $S(-3,-2)$ and $T(4,-6)$

Find the gradient of this line.

Solve	Think	Apply
$\begin{aligned} \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\ & =+\frac{6}{5} \end{aligned}$	Choose any two points on the line, say $(-1,-2)$ and $(4,4)$. Draw in a right-angled triangle. The gradient is positive (uphill). The rise is 6 and the run is 5 .	A straight line has the same gradient for its entire length. Choose any two points to calculate the gradient.

6 By choosing two points on each line, find the gradients.
a

b

c

d

Find the gradient of the given line.

Solve	Think	Apply
$\begin{aligned} \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\ & =+\frac{3}{6}=+\frac{1}{2} \end{aligned}$	The gradient is positive (uphill). The rise is 3 and the run is 6 .	Draw in a right-angled triangle. Find the rise and run.

7 Find the gradients of these lines.
a

b

c

d

e

f

Be careful as the scales are not the same \qquad
8 Find the gradient of each line.
a

b

c

d

e

Investigation 3 Formula for gradient

The gradient has been found by drawing a right-angled triangle and finding the vertical rise and horizontal run.
Gradient $=\frac{\text { rise }}{\text { run }}$
1 a Find values for the vertical rise and horizontal run as shown in the triangle on this graph.
b Calculate the gradient.

2 a Copy this diagram.
b Draw in the triangle as shown on the right-hand diagram.

c If A is $\left(x_{1}, y_{1}\right)$ and B is $\left(x_{2}, y_{2}\right)$ then from the diagram:

- rise $=y_{2}-y_{1}$
- run $=x_{2}-x_{1}$
- the vertical rise from A to B is $y_{2}-y_{1}$ (the difference between the y-coordinates)
- the horizontal run from A to B is $x_{2}-x_{1}$ (the difference between the x-coordinates).
d The symbol for gradient is m. Complete the following.
$m=\frac{y_{2}-\square}{\square-\square}$

Investigation 4 The slope of a line

1 Complete the table.

Line segment	\boldsymbol{x}-run	\boldsymbol{y}-rise	$\frac{\boldsymbol{y} \text {-rise }}{\boldsymbol{x} \text {-run }}$
$B C$	2	1	$\frac{1}{2}$
$D E$			
$A C$			
$B E$			
$A E$			
$A F$			

2 State, in sentence form, any conclusions you can draw from the graph and table.

Investigation 5 Relating gradient and the tangent ratio

1 Plot points $A(1,2)$ and $B(5,9)$.
2 Draw a right-angled triangle and write the lengths of the horizontal and vertical sides.
3 Find the gradient of $A B$.
4 Label the angle at A as θ.
5 With respect to θ, label the sides as opposite, adjacent and hypotenuse.
6 Write an expression for $\tan \theta$.
7 Compare $\tan \theta$ and the gradient.
8 Explain the result from question 7.
9 Calculate the size of the angle that the line makes with the x-axis.
10 Calculate the angles for the gradients of the line joining the points in Exercise 10D question 5.
11 Copy and complete the following.
The gradient of a line is equal to \qquad θ, where θ is the angle made by the line and the \qquad axis.

