## Monday 17th Agust 20

Walt complete the table to values by viewing a graph
Success criteria I can identify coordinates and the y-intercept. The rate of increase is the value that can guide me to the equation.

## EXAMPLE 3

This graph shows a straight line.
a Use the graph to complete this table of values.

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ |  |  |  |  |  |

b Write the rule describing this straight line.


The rule is of the form $y=\square x \pm \Delta$.

The symbol $\pm$ means plus or minus.
 --
a The table of values is completed from the graph.
b As $x$ increases by $1, y$ increases by 3 . This means that $y=3 x$ is part of the equation of the line.

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | -7 | -4 | -1 | 2 | 5 |

When $x=0, y=-1$, so the equation is $y=3 x-1$.
To check, test another point. Test $(2,5): 5=3(2)-1=5$
$\therefore$ The equation is correct.
c

d

e

g

h

i


## Extension

## Investigation 2 Linear relationships

1 a Using a 0.5 cm grid, draw these graphs on the same number plane.

$$
y=3 x+1, y=3 x-1, y=3 x, y=3 x+2
$$

b What do you notice about all four graphs? Explain.
c Without plotting points, add the graph of $y=3 x+3$ to your number plane in part a. Explain how you knew what to draw.

2 a On the number plane from question 1, draw these graphs.

$$
y=2 x+1, y=3 x+1, y=x+1
$$

b What do you notice about all three graphs? Explain
c Without plotting points, add the graph of $y=4 x+1$ to your number plane. Explain how you knew what to draw.

3 a On another number plane draw the graphs of $y=x+1, y=-x+1$.
b What do you notice about these two graphs? Explain.
c On a second number plane draw graphs of $y=x$ and $y=-x$.
d What do you notice about these two graphs? Explain.
e On a third number plane draw graphs of $y=2 x+1$ and $y=-2 x+1$.
f What do you notice about these two graphs? Explain.
g How can you decide if a graph is increasing or decreasing based on the equation?

In Investigation 2 you found the following properties of straight-line graphs.
1 If the coefficient of $x$ is the same in each equation, the lines are parallel. For example, $y=2 x+1$ and $y=2 x-3$ are parallel.
2 The constant term (the term without $x$ ) is where the line cuts the $y$-axis.
For example, $y=-2 x+1$ cuts the $y$-axis at $y=1$. This is the $y$-intercept.
3 Lines with the coefficient of $x$ equal but opposite in sign have the same slope but in opposite directions.
4 As we move from left to right, lines with a positive coefficient of $x$ have an 'uphill' slope. Lines with a negative coefficient of $x$ have a 'downhill' slope.

## Check your answers

6 a $y=2 x-1$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | -5 | -3 | -1 | 1 | 3 |

b $y=3 x+2$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | -4 | -1 | 2 | 5 | 8 |

c $y=2 x+3$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | -1 | 1 | 3 | 5 | 7 |

d $y=4 x+1$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | -7 | -3 | 1 | 5 | 9 |

e $y=4 x-3$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | -11 | -7 | -3 | 1 | 5 |

f $y=-2 x+1$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 5 | 3 | 1 | -1 | -3 |

g $y=-3 x+2$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 8 | 5 | 2 | -1 | -4 |

h $y=2 x-3$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | -7 | -5 | -3 | -1 | 1 |

i $y=-2 x+5$

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 9 | 7 | 5 | 3 | 1 |

