WALT understand different expressions and its values Success Criteria I know

- Sometimes two expressions can give the same result

_

Sometimes two expressions will evaluate to give the same result, no matter what numbers the variables stand for.

For example, B + B and $2 \times B$ will always give the same result.

$$B=3$$

$$B+B=6$$

$$2 \times B=6$$

$$B=11$$

$$2 \times B=22$$

This means that B + B and $2 \times B$ are equivalent.

Let's start: Odd one out

Here are four expressions:

$$2 \times B + 6$$
 $6 + B + B$ $(B+3) \times 2$ $B+6$

One of them is not equivalent to the others.

- Copy and complete the table to help you find the odd one out. (The first row has already been done.)
- Copy and complete the table to help you find the odd one out. (The first row has already been done.)

	2 × B + 6	6 + B + B	(B+3)×2	B + 6
B = 0	$2\times 0+6=6$	6 + 0 + 0 = 6	$(0+3)\times 2=6$	0 + 6 = 6
<i>B</i> = 1				
<i>B</i> = 2				

Check your understanding

1 a If x = 3, what does x + 6 equal?

b If x = 3, what does 4x equal?

c If x = 3, are x + 6 and 4x equal to each other?

2 a If a = 5, evaluate a + 4.

b If a = 5, evaluate 2 + a + 2.

c If a = 5, do a + 4 and 2 + a + 2 equal each other?

3 Copy and complete:

Two expressions that are always equal are called ______ expressions.

4 True or false? Explain your answer with a sentence.

Understanding

Remember that

 $4x = 4 \times x$.

Fill in a table to help you decide if 3a + 6 and $(a + 2) \times 3$ are equivalent. Use a = 0, a = 1, a = 2, a = 3.

Solution

		<u> </u>		<u> </u>
	<i>a</i> = 0	<i>a</i> = 1	<i>a</i> = 2	<i>a</i> = 3
<i>a</i> + 6	6	9	12	15
$(a + 2) \times 3$	6	9	12	15

They are equivalent.

Explanation

3a + 6 and $(a + 2) \times 3$ are equal for all values of a, so they appear to be equivalent. Drawing pictures confirms this.

$$3a+6 \qquad (a+2)\times 3$$

5 a Copy and complete the following table.

	a = 0	a=1	a = 2	a = 3
2a + 2				
(a + 1) × 2				

b Fill in the gap: 2a + 2 and $(a + 1) \times 2$ are _____ expressions.

Fluency

6 a Copy and complete the following table.

	B = 0	<i>B</i> = 1	B = 2	<i>B</i> = 3
5 <i>B</i> + 3				
6 <i>B</i> + 3				

b Are 5B + 3 and 6B + 3 equivalent expressions?

Equivalent expressions are equal for *all* values.

7 a Copy and complete this table.

	6x + 5	4x + 5 + 2x
<i>x</i> = 1		
x = 2		
<i>x</i> = 3		
x = 4		

b Are 6x + 5 and 4x + 5 + 2x equivalent?

8 For each of the following pairs, decide if they are equivalent (E) or not equivalent (N).

- a k+6 and $k\times 4$
- **b** $k \times 3$ and $2 \times k + k$
- c k+2 and 1+k+1
- d k + 10 and $k \times 10$.

Try making *k* stand for different numbers

Problem solving and reason - extension

- **9** Give an example of an expression that is equivalent to 4y.
- 10 The perimeter of this rectangle is given by w + l + w + l. Write an equivalent expression for the perimeter.

- 11 The expressions a + b and b + a are equivalent and only contain two terms. How many expressions are equivalent to a + b + c and contain only three terms?
- 12 Prove that no two of these expressions are equivalent: 4 + x, 4x, x-4, $x \div 4$.

Matching pairs

13 On the following game board, each box has a partner box. Write all the matches. (For example, A1 and C2 match because 3a + 2a is equivalent to 5a.)

> Column A Row 1 3a + 2a

Column B 6a

Column C

Column D 7a

Row 2

10

4a + 25а

 $2 \times (a + 5) - 2a$

Row 3

5 – a – 2a

 $(1+2a)\times 2$

2a + 5a

 $2a \times 3$

5 - 3a

Check your answers

1 a 9

b 12

c no

2 a 9

b 9 **c** yes

- 3 equivalent
- 4 True. When adding numbers, order does not matter.

	a = 0	a = 1	a = 2	a = 3
2a + 2	2	4	6	8
$(a+1)\times 2$	2	4	6	8

b equivalent

	B=0	<i>B</i> = 1	B = 2	<i>B</i> = 3
5 <i>B</i> + 3	3	8	13	18
6 <i>B</i> + 3	3	9	15	21

	6x + 5	4x + 5 + 2x
x=1	11	11
x = 2	17	17
x = 3	23	23
x = 4	29	29

b They are equivalent because they are always equal.

 \mathbf{b} E

 \mathbf{c} E

 $\text{d}\ N$

b no

9 y + y + y + y; other answers are possible

10 2(w + 1); other answers are possible

12 If x = 8, all four expressions have different values.

13 A1 and C2, A2 and D3, A3 and C1, B1 and C3, B2 and D2, B3 and D1