Walt Factorise quadratic expression
 Success criteria I can use my knowledge of multiplication and addition facts to see the two numbers that factorise.

\qquad
Watch the video --

1 The coefficient (number in front) of x is the sum of the numbers a and b in the brackets.
2 The constant term (number at the end by itself) is the product of the numbers a and b in the brackets.
Therefore, working in reverse, to find the numbers a and b we want two numbers that:
1 add to the coefficient of x
2 multiply to the constant term.

Example
Factorise $x^{2}+8 x+12$.
Answer
To write $x^{2}+8 x+12$ in the form $(x \quad)(x \quad)$ we have to find a pair of numbers that add to 8 and multiply to 12.

Example

Factorise $x^{2}-x-6$.
Answer
Here we want two numbers that add to ${ }^{-1}$ and multiply to ${ }^{-6}$. If they multiply to a negative number, the two numbers must have different signs - one positive and one negative.
-3 and 2 are the only pair of numbers that have this property.
$x^{2}-x-6=(x-3)(x+2)$

Example
 Factorise $x^{2}-26 x+48$.

- Answer

Here we want two numbers that add to ${ }^{-26}$ and multiply to 48 . The two numbers must both be negative.
-24 and -2 are the only pair of numbers that have this property.
$x^{2}-26 x+48=(x-24)(x-2)$

Some pairs of numbers that add to 8	Some pairs of numbers that multiply to 12	
-1	9	1
12		
0	8	2
1	7	3
2	6	-1

The pair we want is the one that is in both columns, i.e. 26.

Therefore, $x^{2}+8 x+12$ factorises to $(x+2)(x+6)$.

EXERCISE 8.07

1-20 Factorise these quadratic expressions.
$1 x^{2}+8 x+15$
$17 x^{2}+15 x+50$
$2 x^{2}+10 x+24$
$18 x^{2}-3 x-70$
$3 x^{2}+4 x+3$
$19 x^{2}-17 x+72$
4. $x^{2}-2 x-15$
$20 x^{2}+5 x-36$
$x^{2}-x-12$
$6 x^{2}+x-56$
21-28 It is not always possible to factorise a quadratic expression. Four of the following factorise; the other four do not. Either factorise correctly or write "Cannot be factorised."
$7 x^{2}-7 x+12$
$8 x^{2}-13 x+42$
$x^{2}-x-2$
$21 x^{2}-2 x+8$
$25 x^{2}-4 x+18$
$22 x^{2}+12 x-13$
$23 x^{2}-5 x-6$
$26 x^{2}+x-7$
$x^{2}-8 x-20$
$24 x^{2}+2 x+3$
$27 x^{2}+x-6$
$x^{2}-15 x+56$
$x^{2}+16 x+39$
$x^{2}+11 x-60$
$14 x^{2}-6 x-40$
$15 x^{2}-22 x-23$
$16 x^{2}-13 x-48$

166 1.2 Algebraic methods
29 There are nine quadratic expressions in the left column. Eight of them have a corresponding factorisation placed in the right column, but they have been muddled up.

Use factorising or expanding to match up each expression (a-i) with its correct factorisation. For one of them write "Cannot be factorised."

Expansion			Factorisation
a	$x^{2}-3 x-4$	A	$(x+3)(x+4)$
b	$x^{2}-5 x+4$	B	$(x+4)(x-1)$
c	$x^{2}-x-12$	C	$(x+4)(x-3)$
d	$x^{2}-7 x+12$	D	$(x-1)(x-4)$
e	$x^{2}+7 x+12$	E	$(x+4)(x+1)$
f	$x^{2}+5 x+4$	F	$(x-3)(x-4)$
g	$x^{2}-2 x-12$	G	$(x-4)(x+3)$
h	$x^{2}+x-12$	H	$(x+1)(x-4)$
i	$x^{2}+3 x-4$		

Two special cases

1 A perfect square is a quadratic expression where both brackets are the same. To write it as simply as possible we use squaring rather than repeating the same set of brackets.

```
Example
Factorise \(x^{2}-6 x+9\).
```

Answer
The pair of numbers that multiply to 9 and add to -6 are -3 and -3 .
$x^{2}-6 x+9=(x-3)(x-3)$
$=(x-3)^{2}$

2 The difference of two squares factorises to two sets of brackets which are identical except for the signs; one + and the other - . It is called the difference of two squares because in its expanded form it is:
$x^{2}-$ (number) 2
and there is no x term. If an x term was written in it would be $0 x$.

```
[Example
Factorise \(x^{2}-64\).
- Answer
\(x^{2}-64=x^{2}+0 x-64\)
The two numbers that add to 0 and multiply to -64 are 8 and -8 .
\(x^{2}-64=(x+8)(x-8)\)
```


EXERCISE 8.08

Factorise these quadratic expressions. Each one is either a perfect square or a difference of two squares.
$1 x^{2}-16$
$7 x^{2}-18 x+81$
$13 x^{2}-36 x+324$
$x^{2}+4 x+4$
$8 x^{2}-24 x+144$
$14 x^{2}-\frac{1}{9}$
$x^{2}-10 x+25$
$9 x^{2}-64$
$x^{2}-1$
$10 x^{2}-121$
$15 x^{2}+\frac{1}{5} x+\frac{1}{100}$
$x^{2}+6 x+9$
$11 x^{2}+40 x+400$
$x^{2}-36$
$12 x^{2}-169$

Quadratics with a common factor

When the coefficient (number in front) of x^{2} is not 1 the whole quadratic expression may have a common factor. Deal with this first, and then factorise the resulting quadratic.

```
Example
Factorise 4x 2-20x+24.
```

Answer
On inspection each term has a common factor of 4 .
$4 x^{2}-20 x+24=4\left(x^{2}-5 x+6\right)$
Then factorise the quadratic in brackets, leaving the 4 in place:

$$
=4(x-3)(x-2)
$$

Factorise these quadratic expressions completely.
$3 x^{2}+15 x+18$
$3 x^{2}+6 x+3$
$95 x^{2}-10 x-15$
$134 x^{2}-4 x-24$
$2 x^{2}-24 x+72$
$2 x^{2}+2 x-4$
$102 x^{2}+12 x+10$
$145 x^{2}-40 x+35$
$5 x^{2}-125$
$4 x^{2}-400$
$113 x^{2}+18 x+27$
$153 x^{2}+9 x+6$
$3 x^{2}-12$
$2 x^{2}-8 x+8$
$126 x^{2}-6$

