Walt Factorise quadratic expression **Success criteria** I can use my knowledge of multiplication and addition facts to see the two numbers that factorise.

Watch the video --

- **1** The **coefficient** (number in front) of *x* is the sum of the numbers *a* and *b* in the brackets.
- **2** The **constant term** (number at the end by itself) is the product of the numbers *a* and *b* in the brackets.

Therefore, working in reverse, to find the numbers *a* and *b* we want two numbers that:

- 1 add to the coefficient of x
- 2 multiply to the constant term.

Example

Factorise $x^2 + 8x + 12$.

Answer

To write $x^2 + 8x + 12$ in the form (x)(x) we have to find a pair of numbers that add to 8 and multiply to 12.

Some pairs of numbers that add to 8	Some pairs of numbers that multiply to 12	
-1 9	1 12	
0 8	2 6	
1 7	3 4	
2 6	⁻ 1 ⁻ 12	
3 5	-2 -6	
4 4	-3 -4	

The pair we want is the one that is in *both* columns, i.e. 2 6.

Therefore, $x^2 + 8x + 12$ factorises to (x + 2)(x + 6).

A competent Maths student explores the possibilities in their head rather than writing them all down. This takes some practice at first, but you will gradually speed up!

Example

Factorise $x^2 - x - 6$.

Answer

Here we want two numbers that add to $^{-1}$ and multiply to $^{-6}$. If they multiply to a negative number, the two numbers must have different signs - one positive and one negative.

⁻³ and 2 are the only pair of numbers that have this property.

$$x^2 - x - 6 = (x - 3)(x + 2)$$

Example

Factorise $x^2 - 26x + 48$.

– Answer

Here we want two numbers that add to $^-26$ and multiply to 48. The two numbers must both be negative.

⁻²⁴ and ⁻² are the only pair of numbers that have this property.

$$x^2 - 26x + 48 = (x - 24)(x - 2)$$

It does not matter which bracket comes first, e.g.

(x-3)(x+2) is the same as (x+2)(x-3).

Expanding is the opposite of factorising.

$$x^2 + \frac{\text{Factorising}}{3x - 10} > (x + 5)(x - 2)$$

Expanding

EXERCISE 8.07

1–20 Factorise these quadratic expressions.

1
$$x^2 + 8x + 15$$

$$2 x^2 + 10x + 24$$

3
$$x^2 + 4x + 3$$

4
$$x^2 - 2x - 15$$

5
$$x^2 - x - 12$$

6
$$x^2 + x - 56$$

$$x^2 - 7x + 12$$

8
$$x^2 - 13x + 42$$

9
$$x^2 - x - 2$$

10
$$x^2 - 8x - 20$$

11
$$x^2 - 15x + 56$$

12
$$x^2 + 16x + 39$$

13
$$x^2 + 11x - 60$$

14
$$x^2 - 6x - 40$$

15
$$x^2 - 22x - 23$$

16
$$x^2 - 13x - 48$$

17
$$x^2 + 15x + 50$$

18
$$x^2 - 3x - 70$$

19
$$x^2 - 17x + 72$$

20
$$x^2 + 5x - 36$$

21-28 It is not always possible to factorise a quadratic expression. Four of the following factorise; the other four do not. Either factorise correctly or write "Cannot be factorised."

21
$$x^2 - 2x + 8$$

25
$$x^2 - 4x + 18$$

22
$$x^2 + 12x - 13$$

26
$$x^2 + x - 7$$

23
$$x^2 - 5x - 6$$

24 $x^2 + 2x + 3$

27
$$x^2 + x - 6$$

28
$$x^2 + 13x - 14$$

1.2 Algebraic methods 166

There are nine quadratic expressions in the left column. Eight of them have a corresponding factorisation placed in the right column, but they have been muddled up.

Use factorising or expanding to match up each expression (a-i) with its correct factorisation. For one of them write "Cannot be factorised."

	Expansion	Factorisation	
a	$x^2 - 3x - 4$	A	(x+3)(x+4)
b	$x^2 - 5x + 4$	В	(x+4)(x-1)
c	$x^2 - x - 12$	C	(x+4)(x-3)
d	$x^2 - 7x + 12$	D	(x-1)(x-4)
e	$x^2 + 7x + 12$	Е	(x+4)(x+1)
f	$x^2 + 5x + 4$	F	(x-3)(x-4)
g	$x^2 - 2x - 12$	G	(x-4)(x+3)
h	$x^2 + x - 12$	Н	(x+1)(x-4)
i	$x^2 + 3x - 4$		

■ Two special cases

1 A perfect square is a quadratic expression where both brackets are the same. To write it as simply as possible we use squaring rather than repeating the same set of brackets.

Example

Factorise $x^2 - 6x + 9$.

– Answer

The pair of numbers that multiply to 9 and add to $^-6$ are $^-3$ and $^-3$.

$$x^{2} - 6x + 9 = (x - 3)(x - 3)$$
$$= (x - 3)^{2}$$

2 The **difference of two squares** factorises to two sets of brackets which are identical except for the signs; one + and the other -. It is called the difference of two squares because in its expanded form it is:

 x^2 – (number)²

and there is no x term. If an x term was written in it would be 0x.

Example

Factorise $x^2 - 64$.

- Answer

$$x^2 - 64 = x^2 + 0x - 64$$

The two numbers that add to 0 and multiply to $^-64$ are 8 and $^-8$.

$$x^2 - 64 = (x+8)(x-8)$$

EXERCISE 8.08

Factorise these quadratic expressions. Each one is either a perfect square or a difference of two squares.

1
$$x^2 - 16$$

$$7 x^2 - 18x + 81$$

13
$$x^2 - 36x + 324$$

$$2 x^2 + 4x + 4$$

8
$$x^2 - 24x + 144$$

14
$$x^2 - \frac{1}{9}$$

$$x^2 - 10x + 25$$

9
$$x^2 - 64$$

$$14 \quad x^2 - \frac{1}{9}$$

4
$$x^2 - 1$$

10
$$x^2 - 121$$

15
$$x^2 + \frac{1}{5}x + \frac{1}{100}$$

$$5 \quad x^2 + 6x + 9$$

11
$$x^2 + 40x + 400$$

6
$$x^2 - 36$$

12
$$x^2 - 169$$

Quadratics with a common factor

When the coefficient (number in front) of x^2 is not 1 the whole quadratic expression may have a common factor. Deal with this first, and then factorise the resulting quadratic.

Example

Factorise $4x^2 - 20x + 24$.

Answer

On inspection each term has a common factor of 4.

$$4x^2 - 20x + 24 = 4(x^2 - 5x + 6)$$

Then factorise the quadratic in brackets, *leaving* the 4 in place:

$$=4(x-3)(x-2)$$

Factorise these quadratic expressions *completely*.

1
$$3x^2 + 15x + 18$$

$$5 3x^2 + 6x + 3$$

9
$$5x^2 - 10x - 15$$

10 $2x^2 + 12x + 10$

13
$$4x^2 - 4x - 24$$

2
$$2x^2 - 24x + 72$$

3 $5x^2 - 125$

6
$$2x^2 + 2x - 4$$

7 $4x^2 - 400$

11
$$3x^2 + 18x + 27$$

14
$$5x^2 - 40x + 35$$

15 $3x^2 + 9x + 6$

4
$$3x^2 - 12$$

8
$$2x^2 - 8x + 8$$

12
$$6x^2 - 6$$