Expanding and Factorising

Curriculum Ready

Investigate these terms and write a one sentence description of their meaning in Mathematics.

a The picture below shows the first four volumes from a set of ten books in order on a shelf. All volumes are exactly the same size.

A small insect got caught inside the front cover of Volume I and ate through the books until it reached the last page of Volume IV. How many units did it travel while eating if $x=1.5$?

Expanding

Grouping symbols such as [brackets], \{braces\} and (parentheses), can be removed without changing the value of the expression by expanding.

$$
\begin{aligned}
a(b+c) & =a \times b \text { and } a \times+c \\
& =a b+a c
\end{aligned}
$$

Every term inside the parentheses is multiplied by the term in front of the parentheses.

Expand $2(3 x+5)$

$$
\begin{aligned}
2(3 x+5) & =2(3 x+5) \quad 2 \times \text { every term inside the parentheses } \\
& =2 \times 3 x \text { and } 2 \times+5 \\
& =6 x \text { and }+10 \\
& =6 x+10
\end{aligned}
$$

$$
\begin{aligned}
a(b+c) & =a \times b \text { and } a \times-c \\
& =a b-a c
\end{aligned}
$$

Expand $3 a(a-4)$

$$
\begin{array}{rlr}
3 a(a-4) & =3 a(a-4) \quad 3 a \times \text { every term inside the parentheses } \\
& =3 a \times a \text { and } 3 a \times-4 \\
& =3 a^{2} \text { and }-12 a \\
& =3 a^{2}-12 a
\end{array}
$$

Now that you have seen how it works, it's time to learn the mathematical name we give this is method:

The Distributive Law

- $a(b+c)=a \times b$ and $a \times+c$

$$
=a b+a c
$$

- $a(b-c)=a \times b$ and $a \times-c$

$$
=a b-a c
$$

How does it work?

Be careful multiplying positive and negative values when expanding.

Signs the same we get a positive answer

If the signs change we get a negative answer

When expanding parenthesis multiplied by negative numbers, The Distributive Law becomes:

$$
\begin{aligned}
-a(b+c) & =-a \times b \text { and }-a \times+c \\
& =-a b-a c \\
-a(b-c) & =-a \times b \text { and }-a \times-c \\
& =-a b+a c
\end{aligned}
$$

If the term in front of the parentheses is negative, all the terms inside change sign after expanding.

$$
\text { Expand }-p(4 p+7)
$$

$$
\begin{array}{rlr}
-p(4 p+7) & =-p(4 p+7) & \\
& =-p \times \text { every term inside the parentheses } \\
& =-4 p^{2} \text { and }-7 p & \\
& =-4 p^{2}-7 p &
\end{array}
$$

Expand - $5(3 y-1)$

$$
\begin{array}{rlr}
-5(3 y-1) & =-5(3 y-1) \quad 5 \times \text { every term inside the parentheses } \\
& =-5 \times 3 y \text { and }-5 \times-1-5(3 y-1)=(-5 \times 3 y)+(-5 \times-1) \\
& =-15 y \text { and }+5 \\
& =-15 y+5
\end{array}
$$

Expanding

(1) Expand:
(a) $2(a+7)$
(b) $9(b-3)$

C $6 c(3 d+1)$
d $4 d(3-c)$
e $3 x(6+4 y)$
f $3 m(p-q)$
(8) $\frac{1}{2}(6 m-14)$
(b) $2 a b(3 c+2 d)$
(i) $4(-3-9 x)$
(i) $-2 p\left(2-\frac{q}{2}\right)$

Expanding

2 Expand:
a $-(a+11)$
(b) $-2(b-5)$
Psst! Remember the 1 can be hidden: $-1(a+11)$
C $-n(6+8 m)$
d $-3(2-7 d)$
e $-2 x(y+4)$
(f) $-5 m n(p-q)$
(3) The same rules apply for expanding the following questions:
(a) $0.2 a(25 a+15)$
(b) $-2 b(c-3.5 b)$

How does it work?

More expanding

Why limit yourself to parentheses with only two terms? The Distributive Law works for parentheses with more.
Every term inside the parentheses is multiplied by the term in front.

Expand $4(2 m+3 n-2)$

$$
\begin{aligned}
4(2 m+3 n-2) & =4(2 m+3 n-2) \\
& =4 \times 2 m \text { and } 4 \times+3 n \text { and } 4 \times-2 \\
& =8 m \text { and }+12 n \text { and }-8 \\
& =8 m+12 n-8
\end{aligned}
$$

Take care with the multiplications when there is a negative term out the front.

```
Expand - a(a-b+3c+2)
```

$$
\begin{aligned}
-a(a-b+3 c+2) & =-a(a-\dot{b}+3 c+2) \quad a \times \text { every term inside the parentheses } \\
& =-a \times a \text { and }-a \times-b \text { and }-a \times+3 c \text { and }-a \times+2 \\
& =-a^{2} \text { and }+a b \text { and }-3 a c \text { and }-2 a \\
& =-a^{2}+a b-3 a c-2 a
\end{aligned}
$$

The basic index laws are often used when expanding expressions.

$$
\text { Expand } p^{2}(p-3 p q+5 q)
$$

$$
8
$$

$$
\begin{aligned}
p^{2}(p-3 p q+5 q) & =p^{2}(p-3 p q+5 q) \\
& =p^{2} \times p \text { and } p^{2} \times-3 p q \text { and } p^{2} \times+5 q \\
& =p^{2+1} \text { and }-3 p^{2+1} q \text { and }+5 p^{2} q \\
& =p^{3}-3 p^{3} q+5 p^{2} q
\end{aligned}
$$

Remember:

$$
a^{m} \times a^{n}=a^{m+n}
$$

More expanding

(1) Expand:
a $3(a+b+2)$
(b) $4(x-y-5)$

C $3 p(2 p+q+4)$
d $-d(e+2 f+6)$
e $2 x(4 x+3 y-3+z)$
(f) $-a(b-2 c+d-5)$

2 Expand: (psst: remember the multiplication rule for indices)
a $n\left(n^{2}+3 n\right)$
(b) $x y\left(x^{2}-y^{3}\right)$
C $-a b\left(a b^{2}+2 a^{2} b\right)$
d $2 p\left(2 p^{2}-4 p q+5\right)$

Expanding and simplifying

Always simplify the expression after expanding where possible.
Simplify by collecting like terms after the expansion of any parentheses.
Expand and simplify: $3(7 m-6)-16 m$

$$
\begin{aligned}
& 3(7 m-6)-16 m=3(7 m-6)-16 m \quad 3 \times \text { every term inside the parentheses } \\
& =3 \times 7 \mathrm{~m} \text { and } 3 \times-6 \text { and }-16 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& =5 m-18 \quad \text { Combine the like terms }
\end{aligned}
$$

For expressions with multiple parentheses, expand each separately then look to simplify.
Expand and simplify: $5(2 a+4)-4(a-3)$

$$
\begin{array}{rlrl}
5(2 a+4)-4(a-3) & =5(2 a+4)-4(a-3) & & \\
5 \times 2 a & \text { and } 5 \times+4-4 \times a \text { and }-4 \times-3 & \\
& =10 a+20-4 a+12 & & \\
& & \text { Identify the like terms } \\
& =10 a-4 a+20+12 & & \text { Group the like terms grouping separately } \\
& =6 a+32 & & \text { Simplify }
\end{array}
$$

Be careful to apply the index laws correctly when expanding expressions with multiple variables.
Expand and simplify: $x y(5 x+y)-2 x^{2} y$

$$
\begin{array}{rlrl}
x y(5 x+y)-2 x^{2} y & =x y(5 x+y)-2 x^{2} y & & x y \times \text { every term inside the parentheses } \\
& =x y \times 5 x \text { and } x y \times+y \text { and }-2 x^{2} y & \\
& =5 x^{1+1} y \text { and } x y^{1+1} \text { and }-2 x^{2} y \quad & & \\
& =5 x^{2} y+x y^{2}-2 x^{2} y & & \\
& & \text { Identify the like terms } \\
& =5 x^{2} y-2 x^{2} y+x y^{2} & & \text { Group the like terms } \\
& =3 x^{2} y+x y^{2} & & \text { Simplify }
\end{array}
$$

Expanding and simplifying

(1) Expand and simplify:
(a) $4(a+3)+2 a$
b $-3(2-x)+1$
C $12 p+5(p-2)$
(d) $5 d-4(9-3 d)$
(e) $-5 b(4-b)+3 b+5 b^{2}$
f $9(x-2 y)-x+4 y$
(2) Expand and simplify:
(a) $8(c-4)+3(c+2)$
(b) $9(d+2)-(5-3 d)$

C $3(x-5)-2(4+x)$
d $a(a+8)-5(a+3)$

Expanding and simplifying

(3) Expand and simplify:
a $-(y+4 x)-5(2 x-y)$
b $x(2+x-y)+3 x-x y$

Psst! Remember the 1 can be hidden: $-1(y+4 x)$
C $2 a(3+4 b)+4(a b+2 a)$
d $-3 b(2+b)-(6-b)$
e $-(2-d)-2(d-2)$
(f) $x y(40 x+5)-3 y\left(10 x^{2}-x\right)$
(8) $-m n\left(5 m-2 n^{2}\right)+m n^{3}+3 m^{2} n$
(b) $q\left(4 p+3 q^{2}-2\right)+2 q(q+5 p)$

How does it work?

Highest common factor

The highest common factor (HCF) is the largest term that divides exactly into all the given terms.
The HCF must divide exactly into every term.
Find the HCF for the terms $12 a$ and 18

For $12 a$ and 18 Both numbers are divisible by $1,2,3,4$ and 6
$\therefore 6$ is the HCF for the numbers
For $12 a$ and 18
There are no variables common to both terms
\therefore The HCF for $12 a$ and 18 is: $\mathbf{6}$

Take care to ensure all common factors have been found.
Find the HCF for the terms $15 x y, 30 x$ and $25 x^{2}$
For $15 x y, 30 x$ and $25 x^{2} \quad$ All three numbers are divisible by 1 and 5
$\therefore 5$ is the HCF for the numbers
For $15 x y, 30 x$ and $25 x^{2}$ One x variable is common to all terms
$\therefore \boldsymbol{x}$ is the HCF for the variables
\therefore The HCF for $15 x y, 30 x$ and $25 x^{2}$ is: $5 \boldsymbol{x}$
Multiply the HCFs together.

Some terms need to be simplified first.
Find the HCF for the terms $8 m^{2} n, 24 m n^{2}$ and $(6 m n)^{2}$
$(6 m n)^{2}=36 m^{2} n^{2}$
Use the power rule to simplify $(6 m n)^{2}$
For $8 m^{2} n, 24 m n^{2}$ and $36 m^{2} n^{2}$
All the numbers are divisible by 1,2 and 4
$\therefore 4$ is the HCF for the numbers
For $8 m^{2} n, 24 m n^{2}$ and $36 m^{2} n^{2} \quad m$ and n are common to all terms
$\therefore \boldsymbol{m} \boldsymbol{n}$ is the HCF for the variables
\therefore The HCF for $8 m^{2} n, 24 m n^{2}$ and $\left(6 m n^{2}\right)$ is: $4 m \boldsymbol{n}$
Multiply the HCFs together

Highest common factor

(1) Find the HCF for these groups of terms:
(a) 6 and 9
(b) 14 and $8 b$

C $30 m$ and $15 m$
d -10d and 15
hint: there are positive and negative HCFs for this one
(e) $18 h^{2}$ and $24 h^{2}$
(f) $28 w^{2}$ and $35 w$
(2) Find the HCF for these groups of terms:
(a) $6 a b, 12 a$ and $8 b$
b $14 x^{2} y, 21 x y$ and $7 y$
C $(4 m)^{2}, 16 m$ and $24 m^{2}$
d $8 p q^{2},-p^{2} q$ and $-4 p q$
hint: there are positive and negative HCFs for this one

How does it work?

Factorising

This is the opposite of expanding. Put the highest common factor (HCF) out the front of a pair of parentheses and put the remaining parts inside.

Factorise $12 a+4$
For $12 a+4$, the HCF is: 4

A good way to check your factorisation is by expanding your answer it to see if you get the original expression.

$$
\begin{aligned}
4(3 a+1) & =4 \times 3 a \text { and } 4 \times+1 \\
& =12 a+4
\end{aligned}
$$

Make sure you also look for variables common to all terms as possible factors.

Factorise $5 x y-2 x$

For $5 x y-2 x$, the HCF is: x

Be very careful when there are negative signs involved.
Factorise $-6 m n-8 m$

$$
\begin{aligned}
& \text { For }-6 m n-8 m \text {, the HCF is: }-2 m \quad \text { Put negative sign in HCF if both terms are negative } \\
& \therefore-6 m n-8 m=-2 m(? \quad \text { Put the HCF out the front of a pair of parentheses } \\
& \text { Because: }-2 m \times 3 n=-6 m n-2 m \times 4=-8 m \\
& \therefore-6 m n-8 m=-2 m(3 n+4)
\end{aligned} \quad \text { Find what the HCF is multiplied by to get each term }
$$

For more complex questions, be careful to ensure that you find all the common factors.
Factorise $2 x y+6 x^{2} y-4 x y^{2}$
For $2 x y+6 x^{2} y-4 x y^{2}$, the HCF is $2 x y$
$\therefore 2 x y+6 x^{2} y-4 x y^{2}=2 x y(\quad$?) Put the HCF out the front of a pair of parentheses

$\therefore 2 x y+6 x^{2} y-4 x y^{2}=2 x y(1+3 x-2 y)$

Dividing each term by the HCF is another method to help find what goes inside the parentheses.
Factorise $2 x y+6 x^{2} y-4 x y^{2}$

$$
\begin{aligned}
& \text { For } 2 x y+6 x^{2} y-4 x y^{2} \text {, the HCF is } 2 x y \\
& \therefore 2 x y+6 x^{2} y-4 x y^{2}=2 x y(?) \quad \text { Put the HCF out the front of a pair of parentheses } \\
& \therefore 2 x y+6 x^{2} y-4 x y^{2}=2 x y(1+3 x-2 y)
\end{aligned}
$$

Go back and try this last method with the other three factorisation examples to see which one you prefer.

Factorising

(1) Factorise:
a $2 a-6$
(b) $8 b+16$

C $6 c+8$
(d) $9-3 d$
(e) $-8-6 e$
(f) $-24 f+36$
(8) $14 m-18 n$
(b) $-48 p-28 q$
(2) Factorise:
(a) $8 a b+2 a$
(b) $7 m-14 m n$

C $22 v w+16 w$
d $-15 p q-25 p$

15

Factorising

e $3 x y z+9 x y$
(f) $-32 a b+16 a b c$
(3) Factorise:
(a) $20 p q r+14 p q^{2}$
(b) $-12 y^{2} z+36 y z^{2}$
C $-3 a^{2} b c-6 b^{2} c$
d $6 x+3 y+12 x y$
e $a b-2 a^{2}+a c$
f $33 j-22 j k+11 j^{2} k$
(4) Factorise $39 a^{4} b^{3} c^{5}-91 a b^{2} c^{3}$

Expanding and Factorising

Algebraic calculations

Many calculations contain algebraic terms. These can be simplified using the techniques learned so far.
For the rectangle shown here:
(i) Write a simplified expression for the area of the rectangle.

$$
\begin{aligned}
\text { Area } & =\text { length } \times{\text { width } \text { units }^{2}}^{2} \\
& =4(d+1) \times 2 a \text { units }^{2} \\
& =4 \times 2 a \times(d+1) \text { units }^{2}
\end{aligned}
$$

Multiply the terms outside the parentheses

Factorised form

Expanded form
(ii) Find the area of the rectangle when $a=5$ and $d=4.2$

Using expanded form
or
Area $=8 a d+8 a$ units 2
substitute in the variable values
\therefore when $a=5$ and $d=4.2$

Using factorised form

Area $=8 a(d+1)$ units 2

Area $=8 \times 5 \times(4.2+1)$ units 2
use correct order of operations
$=168+40$ units 2
$=40 \times 5.2$ units 2
$=208$ units 2

$$
=208 \text { units }^{2}
$$

You can simply substitute the variable values into the expressions for each side and calculate the area straight away if not asked to simplify first.

Looking for identical variable parts in a question will help with simplification.
For this shape made using 10 equal sized rectangles:
(i) Write a simplified expression for the perimeter.

$$
\begin{array}{rlrl}
\text { Perimeter } & =6 \text { lengths of }(m+n) \text { plus } 8 \text { lengths of } 2 n \\
\therefore \text { Perimeter } & =6(m+n)+8 \times 2 n \text { units } & & \text { Multiply equal sections by their total number } \\
& =6 m+6 n+16 n \text { units } & & \text { Expand the parentheses } \\
& =6 m+22 n \text { units } & & \text { Simplify by collecting like terms }
\end{array}
$$

(ii) Calculate the perimeter of the shape when $m=2$ and $n=1.5$

$$
\begin{array}{rlrl}
\text { Perimeter } & =6 m+22 n \text { units } & \\
\therefore \text { when } m & =2 \text { and } n=1.5 & \\
\text { Perimeter } & =6 \times 2+22 \times 1.5 \text { units } & & \text { Substitute in the variable values } \\
& =45 \text { units } & & \text { Calculate the perimeter }
\end{array}
$$

(iii) If one variable dimension is changed, a new expression needs to be found.

Write a simplified expression for the new perimeter if the length of each small rectangle is doubled ($\times 2$).

$$
\begin{array}{rlrl}
\text { New Perimeter } & =6 \text { lengths of } 2(m+n) \text { plus } 8 \text { lengths of } 2 n \\
\therefore \text { New Perimeter } & =6 \times 2(m+n)+8 \times 2 n \text { units } & & \\
& =12(m+n)+16 n & & \\
& =12 m+12 n+16 n \text { units } & & \text { Expand the parentheses sections by their total number } \\
& =12 m+28 n \text { units } & & \text { Simplify by collecting like terms }
\end{array}
$$

You can see that the answer to part (iii) is not simply double the original expression.

Algebraic calculations

(1) (i) Write simplified expressions for the area of each of these shapes
(ii) Calculate the area of each shape when $m=2.5$ and $n=3$
a

Area $=$ length \times width
b

Area $=($ base \times height $) \div 2$

Algebraic calculations

(i) Write simplified expressions for the area of each of these shapes
(ii) Calculate the area of each shape when $m=2.5$ and $n=3$

$$
\text { Area }=(\text { short diagonal } \times \text { long diagonal }) \div 2
$$

d Earn an Awesome passport stamp with this one

Help:

- Area of large rectangle $=(8 n+2 m) \times(3 m+2 m)$
- Area for each of the cut out squares $=m \times m$
- Shaded Area $=$ Area of large rectangle - Area of 4 small squares

Mathletics Passport © 3P Learning

Algebraic calculations

2 (i) Write simplified expressions for the perimeter of these shapes made with equal sized rectangles.
(ii) Calculate the perimeter by substituting in the variable values given in [brackets].
(iii) Write simplified expressions for the new perimeter if the vertical side of each rectangle was tripled ($\times 3$).
(a) $[x=5$ and $y=3]$

(i)

(ii)

(ii)
(iii)
(iii)

21

Where does it work?

Your Turn

Expanding and Factorising

Algebraic calculations

2 (i) Write simplified expressions for the perimeter of these shapes made with equal sized rectangles.
(ii) Calculate the perimeter by substituting in the variable values given in [brackets].
(iii) Write simplified expressions for the new perimeter if the vertical side of each rectangle was tripled ($\times 3$).

C $[p=3$ and $q=4]$
(i)

d $[m=2$ and $n=-1]$

(i)
(ii)
(ii)
(iii)
(iii)

Where does it work?

Algebraic calculations

3 Ignoring the space between the bricks, calculate the total area of the six, equal sized brick faces.

Follow these steps to solve the problem:
(i) Show by expanding and simplifying, that the total area of the six brick faces is given by: Area of six brick faces $=15 m+60$ units 2

Hint: multiply $\frac{5}{2 m}$ by m first and simplify before expanding
(ii) Factorise the expression for the total area.
(iii) Use substitution to calculate the area of the six brick faces when $m=3.6$ units.

Product of two parentheses

This factorisation method is a key to unlock future Algebra work.

When finding the area of simple shapes, we usually find the length of each side separately first.
For this shape made up of four different rectangles:
(i) Calculate the length of each side of the large rectangle formed.

(ii) Calculate the area of the whole shape:

$$
\begin{aligned}
\text { Area of Rectangle } & =\text { long side } \times \text { short side } \\
& =6 \times 4 \\
& =24 \text { units }^{2}
\end{aligned}
$$

Looking at the same problem, this time we will write the answer in a different way.
For this shape made up of four different rectangles:
(i) Write down a sum expression for the length of each side.

$$
\text { Length of the long side }=4+2 \quad \text { Length of the short side }=3+1
$$

(ii) Write an expression that will find the area of the whole shape and has two pairs of parentheses.

$$
\begin{array}{rlrl}
\text { Area of Rectangle } & =\text { long side } \times \text { short side } \\
& =(4+2) \times(3+1) \text { units }^{2} & & \\
& \text { Put in parentheses so the sums are done first } \\
& =(4+2)(3+1) \text { units }^{2} & & \text { Simplify by writing without ' } \times \text { ' sign }
\end{array}
$$

Let's take a look at the question one more time to see another way to write the area.

This time we will calculate the area of each small rectangle and add them together.
For this shape made up of four different rectangles:
(i) Calculate the area of each small rectangle.

(1) Area $=4 \times 3$
(2) Area $=4 \times 1$
(3) Area $=2 \times 3$
(4) Area $=2 \times 1$
$=12$ units 2
$=4$ units 2
$=6$ units 2
$=2$ units 2
(ii) Calculate the total area by adding the areas of the smaller rectangles together.

$$
\begin{aligned}
\text { Total Area } & =\text { Area (1) }+ \text { Area (2) }+ \text { Area (3) }+ \text { Area (4) } \\
& =12+4+6+2 \text { units }^{2} \\
& =24 \text { units }^{2}
\end{aligned}
$$

(iii) Combine the part (ii) answer with the previous example to write two expressions for the area.

$$
\begin{aligned}
\text { Area of Rectangle } & =(4+2)(3+1) \text { units }^{2} & & \text { Factorised form with two pairs of parentheses } \\
& =12+4+6+2 \text { units }^{2} & & \text { Parentheses converted to expanded form } \\
& =24 \text { units }^{2} & & \text { Simplified form }
\end{aligned}
$$

Can you see the relationship between the factorised form and expanded form?

$$
\begin{aligned}
(4+2)(3+1) & =12+4+6+2 \\
& =4 \times 3+4 \times 1+2 \times 3+2 \times 1 \\
& =(4+2)(3+1)
\end{aligned}
$$

The name in Mathematics for expressions written like $(4+2)(3+1)$ is a:

Binomial product

The name for writing the binomial product like $12+4+6+2$ is a:

Binomial expansion

What else can you do? Your Turn Expanding and Factorising

Product of two parentheses

For each of these questions:
(i) Write down a sum expression for the length of each side.
(ii) Write an expression that will find the area of the whole shape and contains two parentheses.

(iii) Write an expression for the total area by adding together the area of each smaller rectangle.
(iv) Combine the answers to part (ii) and (iii) to write the area in factorised and expanded forms.

(i)
(ii)

(i)
(ii)
(iii)
(iv)

What else can you do? Your Turn Expanding and Factorising

Product of two parentheses

For each of these questions:
(i) Write down a sum expression for the length of each side.
(ii) Write an expression that will find the area of the whole shape and contains two parentheses.
(iii) Write an expression for the total area by adding together the area of each smaller rectangle.
(iv) Combine the answers to part (ii) and (iii) to write the area in factorised and expanded forms.

(i)

(ii)
(ii)
(iii)
(iii)
(iv)
(iv)

Product of two parentheses with algebraic terms

Here is the exact same thing but with algebra in it.
For this rectangle made up of four smaller rectangles:
(i) Write down the sum for the length of each side.

$$
\text { Length of the long side }=x+5 \quad \text { Length of the short side }=y+3
$$

(ii) Write an expression for the area of the whole shape that contains two pairs of parentheses.

$$
\begin{array}{rlrl}
\text { Area of Rectangle } & =\text { long side } \times \text { short side } \\
& =(x+5) \times(y+3) \text { units }^{2} & & \text { Put in parentheses so the sums are done first } \\
& =(x+5)(y+3) \text { units }^{2} & \text { Simplify by writing without ' } \times \text { ' sign }
\end{array}
$$

(iii) Write an expression for the total area by adding together the area of each small rectangle.

(1) Area $=x \times y$
(2) Area $=x \times 3$
(3) Area $=5 x y$
(4) Area $=5 \times 3$
$=x y$ units 2
$=3 x$ units 2
$=5 y$ units 2
$=15$ units 2

$$
\begin{aligned}
\text { Total Area } & =\text { Area (1) }+ \text { Area (2) }+ \text { Area (3) }+ \text { Area (4) } \\
& =x y+3 x+5 y+15 \text { units }^{2}
\end{aligned}
$$

(iv) Combine the answers to part (ii) and (iii) to write the area in both factorised and expanded forms.

$$
\begin{array}{rlrl}
\therefore \text { Area of Rectangle } & =(x+5)(y+3) \text { units }^{2} & & \text { Factorised form } \\
& =x y+3 x+5 y+15 \text { units }^{2} & & \text { Expanded form } \\
\therefore(x+5)(y+3) & =x y+3 x+5 y+15 &
\end{array}
$$

Product of two parentheses with algebraic terms

(i)
(ii)

(i)
(ii)
(iii)
(iii) psst!: remember you can simplify if there are like terms
(iv)
(iv)

Product of two parentheses

(i)
(ii)
(ii)
(iii)
(iii)
(iv)
(iv)

Expansion of two parentheses

Drawing the areas represented by the product of two parentheses can assist with their expansion.
Starting with the area expression $(a+2)(3+b)$ units 2 :
(i) Divide and label the large rectangle into four smaller rectangles using the area expression.

$$
\begin{aligned}
\text { Area of Rectangle } & =\text { length } \times \text { width } \\
& =(a+2)(3+b)
\end{aligned}
$$

\therefore One side of the rectangle $=a+2 \quad$ Other side of the rectangle $=3+b$

A neat sketch is all that is needed. Just ensure that:

- The sides are correctly labelled, and
- the numerical lengths 'look' right.
(ii) Write an expression for the total area by adding together the area of each smaller rectangle.

$$
\left.\begin{array}{l}
\text { Area (1) }=3 a \text { units }^{2} \\
\text { Area (2) }=a b \text { units }^{2} \\
\text { Area (3) }=6 \text { units }^{2} \\
\text { Area (4) }=2 b \text { units }^{2}
\end{array}\right\} \text { Total Area }=3 a+a b+6+2 b \text { units }^{2}
$$

(iii) Use the total area expression to write $(a+2)(3+b)$ in expanded form.

$$
\therefore(a+2)(3+b)=3 a+a b+6+2 b
$$

What else can you do?

Expansion of two parentheses

For each of these questions:
(i) Divide and label each of these into four rectangles to represent the given product.

Sketch the divisions only
(ii) Write an expression for the total area by adding together the area of each smaller rectangle.
(iii) Use your answer to part (ii) to write the area expression in expanded form.
(1) Area $=(x+3)(y+4)$ units 2

(ii)
(ii)

(iii)
(iii)

What else can you do? Your Turn Expanding and Factorising

Expansion of two parentheses

For each of these questions:
(i) Divide and label each of these into four rectangles to represent the given product. Sketch the divisions only

(ii) Write an expression for the total area by adding together the area of each smaller rectangle.
(iii) Use your answer to part (ii) to write the area expression in expanded form.

3 \quad Area $=(2 x+3)(x+2)$ units 2
(ii)
(ii)
(ii)
机

4. Area $=(4 a+b)(a+2 b)$ units 2

(i)

What else can you do?

Stuck in a book!

The picture below shows the first four volumes from a set of ten books in order on a shelf. All volumes are exactly the same size and all lengths are in units.

A small insect got caught inside the front cover of Volume I and ate through the books until it reached the last page of Volume IV.

1 Which expressions below represents the total distance the insect has travelled eating its way through the books to the last page of Volume IV?
Work it out here!
a $7 x^{4}$ units
b $x\left(3+8 x^{2}\right)$ units
C $2 x\left(3+2 x^{2}\right)$ units
d $8 x\left(1+x^{2}\right)$ units

2 How far would the insect have travelled to get to the same destination (last page of Volume IV), if Volume I was incorrectly placed between Volumes VI and VII?
Work it out here!
a $6 x\left(1+2 x^{2}\right)$ units
b $2 x\left(4 x^{2}+3\right)$ units
C $2 x\left(4+3 x^{2}\right)$ units
d $8 x\left(x^{2}+1\right)$ units
(3) How far did it travel while eating in question 2 if $x=1.5$?

What else can you do?

Reflection Time

(1) Reflect on the previous question by answering the three points below:

- Think about your approach to this problem and write down any assumptions you made when answering this question that were incorrect.
- What could you do to avoid making similar errors in future?
- If you found the wording confusing, how would you have asked the same question?

2. Where do you think the skills you have learnt here will be useful and why?

Here is a summary of the things you need to remember for Expanding and Factorising

Expanding

Writing the same algebraic expression without parentheses.
This is achieved using the Distributive law:

The Distributive Law

$$
\begin{aligned}
& \text { Positive Number out the front Negative Number out the front } \\
& a(b+c)=a \times b \text { and } a \times+c \\
& =a b+a c \\
& \begin{aligned}
-a(b+c) & =-a \times b \text { and }-a \times+c \\
& =-a b-a c
\end{aligned} \\
& a(b-c)=a \times b \text { and } a \times-c \\
& =a b-a c \\
& \begin{aligned}
-a(b-c) & =-a \times b \text { and }-a \times-c \\
& =-a b+a c
\end{aligned}
\end{aligned}
$$

Expanding and simplifying

After expanding, sometimes like terms can be collected to simplify the expression.

Highest common factor

The highest common factor (HCF) is the largest term that divides exactly into all the given terms.

Factorising

This is the opposite of expanding. Find the HCF then re-write the expression with the HCF out the front of a pair of parentheses and put the remaining parts inside.

Algebraic calculations

All the skills listed above can be used to simplify problems before performing calculations.

