Area of a triangle

WALT - Understand triangle area rules by working on a practical investigation

- Use triangle area rules to solve area problems in a composite area problem

Success Criteria: I understand that a triangle can be $1 / 2$ of a rectangle. I can divide a shape into triangular parts to calculate the area.

Try a practical investigation

Investigation 2 Area of a triangle

Follow the steps to develop a rule for finding the area of a triangle.
1 Step 1: Find the area of each rectangle.
a

b

Step 2: Find the shaded area within each rectangle.
a

b

Step 3: Find the area of each shaded triangle.
a

b

2 Step 1: Find the area of each rectangle.
a

b

8 cm

Step 2: Find the area of each shaded triangle.
a

b

3 The rectangles in question 2 can be put together as shown. What is the area of the shaded triangle formed?

4 Find the area of each shaded triangle.
a

b

5 Find an expression for the area of each shaded triangle.
a

6 Copy and complete the following:
The area of a triangle with base b and perpendicular height h is $A=\frac{\square}{2}$.

In Investigation 2 you developed a rule for finding the area of a triangle.
The area of a triangle is half the area of the rectangle enclosing it.

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2}(\text { base } \times \text { height }) \\
A & =\frac{1}{2} b h \text { or } A=\frac{b h}{2}
\end{aligned}
$$

With obtuse-angled triangles, the perpendicular height is shown outside the triangle.

Find the areas of the following triangles.

a $A=\frac{1}{2} b h$
$=\frac{1}{2} \times 6 \times 5$
b $A=\frac{1}{2} b h$
c $=\frac{1}{2} b h$
$=\frac{1}{2} \times 9 \times 4$
$=\frac{1}{2} \times 4 \times 7$
$=15 \mathrm{~cm}^{2}$
$=18 \mathrm{~mm}^{2}$
$=14 \mathrm{~m}^{2}$

View the video

1 Complete to find the areas of the following triangles.
a

b

c

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2} \times \ldots \times 8 \\
& =\ldots \mathrm{cm}^{2}
\end{aligned}
$$

$$
A=\frac{1}{2} b h
$$

$$
=\frac{1}{2} \times 5 \times
$$

$$
=\ldots \mathrm{m}^{2}
$$

$$
A=\frac{1}{2} b h
$$

$$
=\frac{1}{2} \times
$$

\qquad \times
$=$ mm^{2}

2 Find the areas of the following triangles.

e

c

f

Find the areas of the following shapes.
a

b

a This shape is made up of a rectangle and a triangle.

$$
\begin{aligned}
A & =A_{1}+A_{2} \\
& =\frac{1}{2}(8 \times 3)+(8 \times 4) \\
& =12+32 \\
& =44 \mathrm{~cm}^{2}
\end{aligned}
$$

b This shape is made up of two triangles.

$$
\begin{aligned}
A & =A_{1}+A_{2} \\
& =\frac{1}{2}(12 \times 5)+\frac{1}{2}(12 \times 4) \\
& =30+24 \\
& =54 \mathrm{~m}^{2}
\end{aligned}
$$

3 Complete the following to find the area of these shapes.
a

b

c

$A=A_{1}+A_{2}$
$=\frac{1}{2}($ $-\times$ $\times 4)+(10 \times \ldots)$
$+$ \qquad
\qquad cm^{2}
$A=A_{1}+A_{2}$
$=\left(8 \times _\right)+\frac{1}{2}(8 \times$ \qquad
$A=A_{1}+A_{2}$
\qquad
$=$ \qquad $+$
$=$ \qquad $+$
$=$ \qquad cm^{2}

4 Find the areas of the following shapes.

b

c

Check your answers

1 a $A=\frac{1}{2} \times 12 \times 8=48 \mathrm{~cm}^{2}$
b $A=\frac{1}{2} \times 5 \times 6=15 \mathrm{~m}^{2}$
c $A=\frac{1}{2} \times 6 \times 4=12 \mathrm{~mm}^{2}$

2 a $16 \mathrm{~cm}^{2}$	b $21 \mathrm{~mm}^{2}$	c $30 \mathrm{~m}^{2}$	d $40 \mathrm{~cm}^{2}$
e $24 \mathrm{~m}^{2}$	f $12 \mathrm{~km}^{2}$	g $14 \mathrm{~cm}^{2}$	h $90 \mathrm{~cm}^{2}$
i $30 \mathrm{~cm}^{2}$	j $15 \mathrm{~m}^{2}$	k $4 \mathrm{~mm}^{2}$	$116 \mathrm{~cm}^{2}$

3 a $A=\frac{1}{2}(10 \times 4)+(10 \times 5)=20+50=70 \mathrm{~cm}^{2}$
b $A=(8 \times 7)+\frac{1}{2}(8 \times 6)=56+24=80 \mathrm{~cm}^{2}$
c $A=(10 \times 5)+\frac{1}{2}(10 \times 5)=50+25=75 \mathrm{~mm}^{2}$
4 a $35 \mathrm{~cm}^{2}$
b $50 \mathrm{~cm}^{2}$
c $50 \mathrm{~m}^{2}$

