Walt complete the table to values by viewing a graph Success criteria I can identify coordinates and the y-intercept. The rate of increase is the value that can guide me to the equation.

9

This may be completed using a graphics calculator.
c

f

i

Extension

Investigation 2 Linear relationships

1 a Using a 0.5 cm grid, draw these graphs on the same number plane. $y=3 x+1, y=3 x-1, y=3 x, y=3 x+2$
b What do you notice about all four graphs? Explain.
c Without plotting points, add the graph of $y=3 x+3$ to your number plane in part \mathbf{a}. Explain how you knew what to draw.

2 a On the number plane from question 1, draw these graphs

$$
y=2 x+1, y=3 x+1, y=x+1
$$

b What do you notice about all three graphs? Explain.
c Without plotting points, add the graph of $y=4 x+1$ to your number plane. Explain how you knew what to draw.

3 a On another number plane draw the graphs of $y=x+1, y=-x+1$.
b What do you notice about these two graphs? Explain.
c On a second number plane draw graphs of $y=x$ and $y=-x$.
d What do you notice about these two graphs? Explain.
e On a third number plane draw graphs of $y=2 x+1$ and $y=-2 x+1$.
f What do you notice about these two graphs? Explain.
g How can you decide if a graph is increasing or decreasing based on the equation?

In Investigation 2 you found the following properties of straight-line graphs.
1 If the coefficient of x is the same in each equation, the lines are parallel. For example, $y=2 x+1$ and $y=2 x-3$ are parallel.

2 The constant term (the term without x) is where the line cuts the y-axis.
For example, $y=-2 x+1$ cuts the y-axis at $y=1$. This is the y-intercept.

3 Lines with the coefficient of x equal but opposite in sign have the same slope but in opposite directions.
4 As we move from left to right, lines with a positive coefficient of x have an 'uphill' slope. Lines with a negative coefficient of x have a 'downhill' slope.

The coefficient of x is the number in front of the x.

6 a $y=2 x-1$

x	-2	-1	0	1	2
y	-5	-3	-1	1	3

b $y=3 x+2$

x	-2	-1	0	1	2
y	-4	-1	2	5	8

c $y=2 x+3$

x	-2	-1	0	1	2
y	-1	1	3	5	7

d $y=4 x+1$

x	-2	-1	0	1	2
y	-7	-3	1	5	9

$$
y=4 x-3
$$

x	-2	-1	0	1	2
y	-11	-7	-3	1	5

f $y=-2 x+1$

x	-2	-1	0	1	2
y	5	3	1	-1	-3

$$
\text { g } y=-3 x+2
$$

x	-2	-1	0	1	2
y	8	5	2	-1	-4

h $y=2 x-3$

x	-2	-1	0	1	2
y	-7	-5	-3	-1	1

i $y=-2 x+5$

x	-2	-1	0	1	2
y	9	7	5	3	1

