Determine whether the objects in the following problems have kinetic or potential energy. Then choose the correct formula to use:

$$
\begin{gathered}
\text { KE }=1 / 2 \mathrm{~m} \mathrm{v}^{2} \\
\mathbf{P E}=\text { mass } \mathrm{x} \text { gravitational acceleration }\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{x} \text { height } \mathbf{O R} \text { Weight } X \text { Height }
\end{gathered}
$$

Energy= joules
Weight= Newton
Mass= kilograms
Velocity $=\mathrm{m} / \mathrm{s}$
Gravitational acceleration=($\left.9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

1. You serve a volleyball with a mass of 2.1 kg . The ball leaves your hand with a speed of $30 \mathrm{~m} / \mathrm{s}$. The ball has
\qquad energy. Calculate it.
2. A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby weighs 12 N . The carriage has \qquad energy. Calculate it.
3. A car is traveling with a velocity of $40 \mathrm{~m} / \mathrm{s}$ and has a mass of 1120 kg . The car has \qquad energy. Calculate it.
4. A cinder block is sitting on a platform 20 m high. It weighs 79 N . The block has \qquad energy. Calculate it.
5. There is a bell at the top of a tower that is 45 m high. The bell weighs 190 N . The bell has \qquad energy. Calculate it.
6. A roller coaster is at the top of a 72 m hill and weighs 966 N . The coaster (at this moment) has \qquad energy. Calculate it.
7. What is the kinetic energy of a 3-kilogram ball that is rolling at 2 meters per second?
8. Two objects were lifted by a machine. One object had a mass of 2 kilograms, and was lifted at a speed of $2 \mathrm{~m} / \mathrm{sec}$. The other had a mass of 4 kilograms and was lifted at a rate of $3 \mathrm{~m} / \mathrm{sec}$.
a. Which object had more kinetic energy while it was being lifted?
b. Which object had more potential energy when it was lifted to a distance of 10 meters? Show your calculation.
