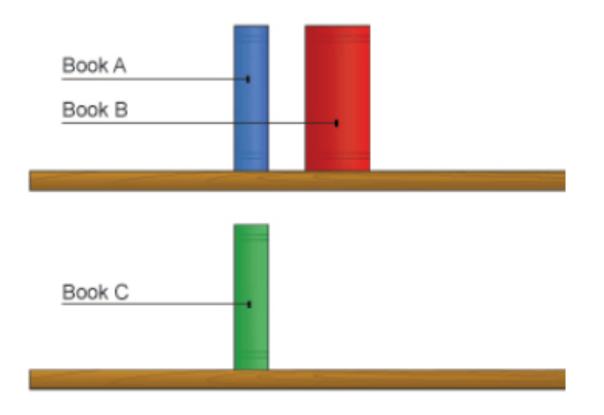
Potential and Kinetic Energy

Miss K Smith

What would the world be like if gravity worked the other way up? Explain

Learning Objectives

- To calculate gravitational potential energy
- To calculate kinetic energy
- To describe and explain conservation of energy


GPE - Key Points

- Every time you lift an object up you transfer energy by work
- Chemical energy from your muscles transfers to GPE in the object that was lifted

GPE is energy stored in an object because of its position in the Earth's gravitational field

• Earths gravitational field strength is 10N/kg

GPE (J) = mass(kg) x GFS (N/kg) x vertical height (m)

Which books have GPE?
Which book has the most GPE?
Which book has the least GPE?

Calculating GPE

• A student weights 300N climbs on a platform which is 1.2m higher than the floor. Calculate the increase in GPE

Independent Task

<u>ALL</u> Complete GPE Work sheet

Weight and Gravitational Potential Energy

 Assuming that the object was on Earth, where acceleration due to gravity is 10N/kg, calculate the gravitational potential energy that they had.

Mass (kg)	Weight (N)	Height (m)	Gravitational
			Potential energy (J)
5		2	
2		6	
8		5	
20		0.6	
5000		2	
0.2		10	
67		44	

 Re-calculate the weight for the same objects, if they were on Mercury (where the acceleration due to gravity is 4N/kg)

Mass (kg)	Weight (N)	Height (m)	Gravitational Potential energy (J)
5		2	
2		6	
8		5	
20		0.6	
5000		2	
0.2		10	
67		44	

Extension Question

Why is the force of gravity less on Mercury? ____

EXTENSION

Complete Extension question on the sheet

https://www.youtube.com/watch? v=iCQEc736G04 Kinetic Energy

What energy transfers are taking place at Ai Pioppi?

Kinetics Energy - Key Points

- Kinetic energy is energy an object has due to motion. It depends on two things:
 - The objects mass
 - The objects speed

Kinetic Energy (J) = ½ x mass(kg) x Velocity²(m/s²)

Calculating KE

 A car with a mass of 500 kg is moving at a velocity of 12 m/s². How much kinetic energy does it have?

Independent Activity & Homework

Kinetic energy calculations

This is what you really need to be able to do - use the equation exactly as it is given to you to be able to calculate kinetic energy. Try for yourself - have a goat these questions:

- 1. A carthat travels at a speed of 20m/s and has a mass of 1200 kg.
- A year 11 pupil with a mass of 55kg swinging back on their chair and failing off it at a speed of 0.6m/s.
- 2. A runner with a mass of 62kg running at a speed of 0.9m/s.
- 4. A tennic ball traveling at a speed of 46m/s with a mass of 52kg.
- 5. A dog running across a field at a speed of 2.2m/s.v8b.a.mass.of 2.2kg.

These are the tricky one: - If you can do these then you really know what you're doing. Calculating velocity:

- 5. Bus traveling through town, with a mass of \$040kg and kinetic energy of 492900J.
- A lift traveling up to the top floor of the Empire State building with a mass of 4200kg and a kinetic energy of 4115J.
- 9. Bird flying towards its next with a mass of 0.25kg and a kinetic energy of 40.5J.
- A Will remote flung from a hand through a TV, with a kinetic energy of 1.44J and a mass of 4.5kg.
- 10. Hot air balloon with a kinetic energy of 76550J and a mass of 1990kg.

Calculating mass:

Bubartetic, dopt-sizedge, 0-3m/k, with a kinetic energy of 1040400, turning at Sm/k.
Wind turbine blade with a kinetic energy of 1040400, turning at Sm/k.
Aeroplane traveling at 75m/k with a kinetic energy of 9437000.
Cance moving down the river with a kinetic energy of 50 and a speed of 0.5m/k.
Child riding a bike at a speed of 5m/k, with a total kinetic energy of 12240. If the mass of the child is 20kg, what is the mass of the bike?

<u>ALL</u>

- Complete Kinetics Energy Calculations Sheet
- Answer all questions on pages 248 - 251

DUE: Thursday 7th April

<u>Plenary</u> RAG 12345

Learning Objectives

- To calculate gravitational potential energy
- To calculate kinetic energy
- To describe and explain conservation of energy