Fraction Frenzy

You need 🛮 a classmate 🗗 a photocopy of the fraction cards copymaster

Activity

Karyn's class is working with fractions that look different but show the same amount. They are called equivalent fractions.

For example, $\frac{1}{2}$ an apple is the same as $\frac{2}{4}$ of an apple.

Karyn is sorting these fraction cards into groups:

She starts to put them in columns like this:

1. Using the same fraction cards as the ones in Karyn's pile, complete each column. Compare your columns with a classmate's. Discuss with your classmate why Karyn has put her first row of fractions in this particular order.

- b. $\frac{20}{60}$ c. $\frac{33}{99}$ f. $\frac{43}{86}$ g. $\frac{24}{96}$

- h.

- **b.** $\frac{3}{7}$
- c. $\frac{2}{3}$

<u>1</u>																		
		1/2																
<u>1</u>				<u>1</u> 4					1/4					$\frac{1}{4}$				
1/8	1/8			1/8		1/8			1/8			1/8		1/8			1/8	
		<u>1</u> 3		1 3							1 / 3							
1/6			$\frac{1}{\epsilon}$	<u>,</u>		1 6			1 6			<u>1</u>			1/6			
<u>1</u>	<u>1</u>		<u>1</u>	<u>1</u> 12	12	2	<u>1</u> 12		<u>1</u> 12		<u>1</u> 12	12	<u>.</u>	<u>1</u> 12	<u>1</u>	2	<u>1</u>	
1/5				<u>1</u> 5				<u>1</u> 5				<u>1</u> 5				<u>1</u> 5		
1 10	0 10		10	Ō	<u>1</u> 10	1 10			<u>1</u> 10		<u>1</u>		<u>1</u> 10		<u>1</u> 10		<u>1</u>	
<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	5 1	<u>1</u> 15	<u>1</u> 15	5	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	1	<u>1</u> 5	<u>1</u> 15	<u>1</u> 15	
<u>1</u> 7		<u>1</u>			<u>1</u>		17				1 7		<u>1</u> 7				<u>1</u> 7	
1/4	<u>1</u> 14	<u>1</u>	1	4 1	1 4	<u>1</u> 14	1/2	- /4	<u>1</u>		<u>1</u> 14	<u>1</u> 14	<u>1</u> 14	1/4		<u>1</u>	14	

- Give an example of two equivalent fractions and explain how you know they are equivalent.
- Complete these equivalent fraction equations:
 - **a.** $\frac{6}{9} = \frac{\square}{3}$ **b.** $\frac{6}{9} = \frac{\square}{99}$
- c. $\frac{6}{9} = \frac{\Box}{12}$
- Karyn has a fraction that is equivalent to $\frac{3}{8}$. It has 375 as its numerator (top number). What is its denominator (bottom number)?