Activity

Karyn's class is working with fractions that look different but show the same amount. They are called equivalent fractions.
For example, $\frac{1}{2}$ an apple is the same as $\frac{2}{4}$ of an apple.

Karyn is sorting these fraction cards into groups:

She starts to put them in columns like this:

1. Using the same fraction cards as the ones in Karyn's pile, complete each column. Compare your columns with a classmate's. Discuss with your classmate why Karyn has put her first row of fractions in this particular order.
2. When you are sure your columns are correct, put your fraction cards for these fractions in the correct columns:
a. $\frac{25}{100}$
b. $\frac{20}{60}$
c. $\quad \frac{33}{99}$
d. $\frac{45}{75}$
e. $\frac{22}{110}$
f. $\frac{43}{86}$
g. $\frac{24}{96}$
h. $\quad 569$
3. Use the chart below to find equivalent fractions for:
a. $\frac{2}{5}$
b. $\frac{3}{7}$
c. $\frac{2}{3}$

4. Give an example of two equivalent fractions and explain how you know they are equivalent.
5. Complete these equivalent fraction equations:
a. $\frac{6}{9}=\frac{\square}{3}$
b. $\frac{6}{9}=\frac{\square}{99}$
c. $\frac{6}{9}=\frac{\square}{12}$
6. Karyn has a fraction that is equivalent to $\frac{3}{8}$. It has 375 as its numerator (top number).

What is its denominator (bottom number)?

