WALT - apply negative Indices
Success Criteria I know negative power means it changes to the denominator for a decimal value

Recap on indices rules

$$
\begin{array}{ll}
\text { Lif of andice LaWS } \\
\bullet x^{0}=1 & \bullet x^{n} \div x^{\mathrm{m}}=x^{n-m} \\
\cdot x^{-n}=\frac{1}{x^{n}} & \bullet\left(x^{n}\right)^{m}=x^{n \cdot \mathrm{~m}} \\
\bullet x^{n} \cdot x^{m}=x^{n+m} & \bullet x^{\frac{n}{m}}=\sqrt[m]{x^{n}}
\end{array}
$$

## EXTRA Practice

https://drive.google.com/file/d/16oth8EX9OPbEw087jNc-S53cMrtaHBRx/view?usp=sharing
Use the link to practice more indices

View
Negative Indices explained - Fractional for extra information
The correct negative indices We saw
Play Kahoot on the previous learning

## EXAMPLE 1

Complete the table to find the meaning of $3^{-1}, 3^{-2}, 3^{-3}$.

| $3^{3}$ | $3^{2}$ | $3^{1}$ | $3^{0}$ | $3^{-1}$ | $3^{-2}$ | $3^{-3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | 9 | 3 |  |  |  |  |

## Check your answers

| Solve |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3^{3}$ | $3^{2}$ | $3^{1}$ | $3^{0}$ | $3^{-1}$ | $3^{-2}$ | $3^{-3}$ |
| 27 | 9 | 3 | 1 | $\frac{1}{3}$ | $\frac{1}{9}=\frac{1}{3^{2}}$ | $\frac{1}{27}=\frac{1}{3^{3}}$ |

Think/Apply
Each number in the second row can be found by multiplying the number before it by $\frac{1}{3}$.

Multiplying a number by $\frac{1}{3}$ is
the same as dividing it by 3 .

1 Multiply the numbers in the second row by $\frac{1}{2}$ to complete the table. Hence find the meaning of $2^{-1}, 2^{-2}, 2^{-3}$.

| $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ | $2^{-1}$ | $2^{-2}$ | $2^{-3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | $8 \times \frac{1}{2}=-$ | $-\times \frac{1}{2}=-$ |  |  |  |  |

Hence
$2^{-1}=\frac{1}{\square}=\frac{1}{2^{\square}}$
$2^{-2}=\frac{1}{\square}=\frac{1}{2^{\square}}$
$2^{-3}=\frac{1}{\square}=\frac{1}{2^{\square}}$

2 Multiply the numbers in the second row by $\frac{1}{10}$ to complete the table and find the meaning of $10^{-1}, 10^{-2}, 10^{-3}$.

| $10^{3}$ | $10^{2}$ | $10^{1}$ | $10^{0}$ | $10^{-1}$ | $10^{-2}$ | $10^{-3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 |  |  |  |  |  |  |

Hence
$10^{-1}=\frac{1}{\square}=\frac{1}{10^{\square}}$
$10^{-2}=\frac{1}{\square}=\frac{1}{10^{\square}}$
$10^{-3}=\frac{1}{\square}=\frac{1}{10^{\square}}$

1

| $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ |
| :---: | :---: | :---: | :---: |
| 8 | $8 \times \frac{1}{2}=4$ | $4 \times \frac{1}{2}=2$ | $2 \times \frac{1}{2}=1$ |


| $2^{-1}$ | $2^{-2}$ | $2^{-3}$ |
| :---: | :---: | :---: |
| $1 \times \frac{1}{2}=\frac{1}{2}$ | $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$ | $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$ |

Hence $2^{-1}=\frac{1}{2}=\frac{1}{2^{1}}$
$2^{-2}=\frac{1}{4}=\frac{1}{2^{2}}$
$2^{-3}=\frac{1}{8}=\frac{1}{2^{3}}$

2

| $10^{3}$ | $10^{2}$ | $10^{1}$ | $10^{0}$ |
| :---: | :---: | :---: | :---: |
| 1000 | $1000 \times \frac{1}{10}=100$ | $100 \times \frac{1}{10}=10$ | $10 \times \frac{1}{10}=1$ |


| $10^{-1}$ | $10^{-2}$ | $10^{-3}$ |
| :---: | :---: | :---: |
| $1 \times \frac{1}{10}=\frac{1}{10}$ | $\frac{1}{10} \times \frac{1}{10}=\frac{1}{100}$ | $\frac{1}{100} \times \frac{1}{10}=\frac{1}{1000}$ |

Hence $10^{-1}=\frac{1}{10}=\frac{1}{10^{1}}$

$$
\begin{aligned}
& 10^{-2}=\frac{1}{100}=\frac{1}{10^{2}} \\
& 10^{-3}=\frac{1}{1000}=\frac{1}{10^{3}}
\end{aligned}
$$

## EXAMPLE 2

a Use the index laws to simplify $3^{4} \div 3^{6}$.
b Write in expanded form and show that $3^{4} \div 3^{6}=\frac{1}{3^{2}}$.
c Hence show that $3^{-2}=\frac{1}{3^{2}}$.

## Solve/Think

## Apply

Simplify using the index laws and by writing in expanded form and cancelling. In general:

$$
3^{-n}=\frac{1}{3^{n}}
$$

3 a Use the index laws to simplify $5^{3} \div 5^{7}$.
b By writing in expanded form, show that $5^{3} \div 5^{7}=\frac{1}{5^{4}}$.
c Hence show that $5^{-4}=\frac{1}{5^{4}}$.
4 Write the following with positive indices.
a $3^{-1}$
b $4^{-3}$
c $2^{-5}$
d $8^{-2}$
e $5^{-4}$
f $12^{-1}$
$\begin{array}{ll}\text { g } & 9^{-2} \\ 1 & 5^{-1}\end{array}$
h $6^{-1}$
i $7^{-3}$
$\begin{array}{ll}\text { j } & 3^{-6} \\ 0 & 4^{-15}\end{array}$

## Check your answers

$$
\begin{aligned}
& 3 \text { a } 5^{3} \div 5^{7} \\
&=5^{3-7}=5^{-4} \\
& \text { b } 5^{3} \div 5^{7}=\frac{5 \times 5 \times 5}{5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5}=\frac{1}{5^{4}}
\end{aligned}
$$

c From parts a and b, $5^{-4}=\frac{1}{5^{4}}$
4 a $\frac{1}{3} \quad$ b $\frac{1}{4^{3}} \quad$ c $\frac{1}{2^{5}} \quad$ d $\frac{1}{8^{2}} \quad$ e $\frac{1}{5^{4}}$
f $\frac{1}{12}$
g $\frac{1}{9^{2}}$
h $\frac{1}{6}$
i $\frac{1}{7^{3}}$
j $\frac{1}{3^{6}}$
k $\frac{1}{2^{8}}$
$1 \frac{1}{5}$
$\mathrm{m} \frac{1}{10^{5}}$
n $\frac{1}{5^{10}}$
o $\frac{1}{4^{15}}$


## EXAMPLE 3

| Write the following as simplified fractions or mixed numerals. a $5^{-2}$ <br> b $3^{-5}$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Solve | Think | Apply |
| a | $s^{-2}=\frac{1}{25}$ | $\begin{aligned} S^{-2} & =\frac{1}{5^{2}} \\ & =\frac{1}{25} \end{aligned}$ | Write with a positive index then evaluate using a calculater if necessary. |
| b | $3^{-5}=\frac{1}{243}$ | $\begin{aligned} 3^{-5} & =\frac{1}{3^{3}} \\ & =\frac{1}{243} \end{aligned}$ |  |

Write the following as simplified fractions or mixed numerals.
a $3^{-2}$
$\begin{array}{ll}\text { b } & 2^{-9} \\ \text { g } & 9^{-2} \\ 1 & 4^{-4}\end{array}$
c $4^{-3}$
h $3^{-4}$
m $3^{-5}$
$\begin{array}{ll}\text { d } & 5^{-4} \\ \text { i } & 5^{-5}\end{array}$
$\begin{array}{ll}\text { e } & 2^{-10} \\ \text { j } 2^{-9}\end{array}$
$\begin{array}{llll}\mathrm{f} & 6^{-3} & \text { g } & 9^{-2} \\ \mathrm{k} & 7^{-3} & 1 & 4^{-4}\end{array}$
m $3^{-5}$
n $\left(\frac{2}{5}\right)^{-1}$
o $\left(1 \frac{3}{4}\right)^{-1}$

## EXAMPLE 4

Write the following with negative indices.
$\begin{array}{lll}\text { a } \frac{1}{3} & \text { b } \frac{1}{3^{2}} & \text { c } \frac{1}{3^{8}}\end{array}$


6 Write the following with negative indices.
a $\frac{1}{2}$
f $\frac{1}{5}$
k $\frac{1}{3^{10}}$
b $\frac{1}{2^{2}}$
g $\frac{1}{7^{2}}$
1 $\frac{1}{6}$
c $\frac{1}{2^{8}}$
h $\frac{1}{4^{3}}$
m $\frac{1}{7^{3}}$
d $\frac{1}{2^{3}}$
i $\frac{1}{3^{4}}$
n $\frac{1}{4^{3}}$
e $\frac{1}{2^{3}}$
j $\frac{1}{5^{6}}$
o $\frac{1}{10}$

## Check your answers

| 5 | a $\frac{1}{9}$ | b $\frac{1}{32}$ | c $\frac{1}{64}$ | d $\frac{1}{625}$ | e $\frac{1}{1024}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| f $\frac{1}{216}$ | g $\frac{1}{81}$ | h $\frac{1}{81}$ | i $\frac{1}{3125}$ | j $\frac{1}{512}$ |  |
| k $\frac{1}{343}$ | l $\frac{1}{256}$ | m $\frac{1}{729}$ | n $2 \frac{1}{2}$ | o $\frac{4}{7}$ |  |
| 6 a $2^{-1}$ | b $2^{-2}$ | c $2^{-8}$ | d $2^{-5}$ | e $2^{-3}$ |  |
| f $5^{-1}$ | g $7^{-2}$ | h $4^{-3}$ | i $3^{-4}$ | j $5^{-6}$ |  |
| k $3^{-10}$ | l $6^{-1}$ | m $7^{-5}$ | n $4^{-9}$ | o $10^{-1}$ |  |

## EXAMPLE 5

Write $\frac{1}{5^{-3}}$ with a positive index.

| Solve/Think | Apply |
| :---: | :---: |
| $\begin{aligned} & \begin{aligned} \frac{1}{5^{-3}} & =\frac{1}{\frac{1}{5^{3}}} \\ & =1 \times \frac{5^{3}}{1} \\ & =5^{3} \end{aligned} \\ & \text { Or } \begin{aligned} \frac{1}{5^{-3}} & =\frac{5^{0}}{5^{-3}} \\ & =5^{0-(-3)} \\ & =5^{3} \end{aligned} \end{aligned}$ | Write $5^{-3}$ with a positive index and divide the fractions. Or write 1 as $5^{0}$ and divide using the index laws. <br> To divide by a fraction, invert the fraction (turn it upside down) and multiply. |

7 Write the following with positive indices.
a $\frac{1}{3^{-4}}$
b $\frac{1}{2^{-7}}$
c $\frac{1}{7^{-2}}$
d $\frac{1}{6^{-1}}$
e $\frac{1}{4^{-5}}$

## EXAMPLE 6

Evaluate $\left(\frac{3}{7}\right)^{-1}$.

| Solve/Think | Apply |
| :--- | :--- |
| $\left(\frac{3}{7}\right)^{-1}$ | $=\frac{1}{\frac{3}{7}}$ |
|  | $=1 \times \frac{7}{3}$ |
|  | $=\frac{7}{3}$ or $2 \frac{1}{3}$ |

8 Evaluate the following.
a $\left(\frac{2}{3}\right)^{-1}$
b $\left(\frac{3}{4}\right)^{-1}$
c $\left(\frac{7}{8}\right)^{-1}$
d $\left(\frac{1}{5}\right)$
e $\left(\frac{1}{10}\right)^{-1}$
f $\left(1 \frac{1}{2}\right)^{-1}$
g $\left(2 \frac{3}{4}\right)^{-1}$

9 Using the results of questions 7 and 8 , simplify $\left(\frac{a}{b}\right)^{-1}$.

## Check your answers

```
7 a 34
b 2
c 7 }\mp@subsup{}{}{2
d 6 }=6\mathrm{ e 4 }\mp@subsup{4}{}{5
8 a \(1 \frac{1}{2}\)
b \(1 \frac{1}{3}\)
c \(1 \frac{1}{7}\)
d 5
e 10
f \(\frac{2}{3}\)
g \(\frac{4}{11}\)
\(9 \frac{b}{a}\)
```

Next session We will work with variables for negative indices

## Day two Week two

## WALT solve linear equations

Success criteria I can add and subtract numbers to both sides until variable/unknown/pronumeral is one side and the number is on the other side

## EXAMPLE 1

Solve these linear equations.
a $7 x-9=-5$
b $17=8-4 x$

| Solve | Think | Apply |
| :---: | :---: | :---: |
| $\begin{aligned} 7 x-9 & =-5 \\ 7 x-9+9 & =-5+9 \\ 7 x & =4 \\ \frac{7 x}{7} & =\frac{4}{7} \\ x & =\frac{4}{7} \end{aligned}$ | Add 9 to both sides. <br> Divide both sides by 7 . | Add or subtract numbers to both sides until the pronumeral is on one side and a number is on the other side. Multiply or divide to solve. |
| $\begin{aligned} 17 & =8-4 x \\ 17-8 & =8-4 x-8 \\ 9 & =-4 x \\ \frac{9}{-4} & =\frac{-4 x}{-4} \\ \frac{-9}{4} & =x \\ x & =-\frac{9}{4} \\ & =-2 \frac{1}{4} \end{aligned}$ | Subtract 8 from both sides. <br> Divide both sides by -4 . <br> Write the solution with $x$ on the left-hand side. |  |

## Exercise 12A

1 Solve for $x$ in the following equations.

| a $x+3=10$ | b $3 x=-9$ |
| :--- | :--- |
| c $3 x+6=0$ | d $3 x-4=-6$ |
| e $5 x+8=2$ | f $4 x-9=1$ |
| g $8 x-6=10$ | h $3 x+6=7$ |
| i $6+7 x=-2$ | j $5=3 x+7$ |
| k $6 x-7=-1$ | l $-1=2 x+6$ |
| m $6-x=-5$ | n $-4 x=15$ |
| o $3-2 x=7$ | p $5-4 x=-7$ |
| q $3-7 x=-2$ | r $17-2 x=-1$ |
| s $11=3-2 x$ | t $15-2 x=-1$ |
| u $8=3-2 x$ | v $6=-1-7 x$ |
| w $-15=3-6 x$ | x $11=-4-3 x$ |

## EXAMPLE 2

Solve for $m$ in the equation $\frac{m}{3}-5=-2$.

| Solve | Think | Apply |
| :---: | :--- | :--- |
| $\frac{m}{3}-5=-2$ |  | Add or subtract numbers first, <br> then multiply to solve. <br> $\frac{m}{3}-5+5$$=-2+5$ |
| $\frac{m}{3}$ | $=3$ | Add 5 to both sides. |
| $\frac{m}{3} \times 3$ | $=3 \times 3$ |  |
| $m$ | $=9$ | Multiply both sides by 3. |

2 Solve these equations for $x$.
a $\frac{x}{2}+3=8$
b $\frac{x}{3}-1=4$
c $\frac{x}{5}+2=-3$
d $\frac{x}{6}+3=-4$
e $\frac{x}{7}-2=4$
f $\frac{x}{10}-6=-1$

3 Check the given solution by substitution and say whether or not it is correct.
a $2 x+8=15$
( $x=7$ )
b $7+5 x=9 \quad(x=2)$
c $-15=6-7 x \quad(x=3)$
d $\frac{x}{5}-3=6 \quad\left(x=\frac{9}{5}\right)$

Check your

## EXAMPLE 3

If $y=5 x-3$ find $x$ when $y=-18$.

| Solve | Think | Apply |
| :---: | :---: | :---: |
| $\begin{aligned} y & =5 x-3 \\ -18 & =5 x-3 \\ -18+3 & =5 x-3+3 \\ -15 & =5 x \\ \frac{-15}{5} & =\frac{5 x}{5} \\ -3 & =x \\ x & =-3 \end{aligned}$ | Substitute $y=-18$. <br> Add 3 to both sides. <br> Divide both sides by 5 . | Often when substituting and solving an equation, the pronumeral is on the righthand side. Solve as normal and then write the pronumeral on the left-hand side. |

4 a Given that $y=3 x-5$, find $x$ when $y=5$.
b Given that $y=4 x+2$, find $x$ when $y=11$.
c Given that $y=7-5 x$, find $x$ when $y=0$.
d Given that $y=4-3 x$, find $x$ when $y=-3$.
e Given that $y=5-7 x$, find $x$ when $y=-5$.
f Given that $y=3 x-5$, find $x$ when $y=8$.

Exercise 12A

$$
\begin{array}{lll}
1 \text { a } x=7 & \text { b } x=-3 & \text { c } x=-2 \\
\text { d } x=-\frac{2}{3} & \text { e } x=-\frac{6}{5} & \text { f } x=\frac{5}{2} \\
\text { g } x=2 & \text { h } x=\frac{1}{3} & \text { i } x=-\frac{8}{7} \\
\text { j } x=-\frac{2}{3} & \text { k } x=1 & \text { l } x=-\frac{7}{2} \\
\text { m } x=11 & \text { n } x=-\frac{15}{4} & \text { o } x=-2 \\
\text { p } x=3 & \text { q } x=\frac{5}{7} & \text { r } x=9 \\
\text { s } x=-4 & \text { t } x=8 & \text { u } x=-\frac{5}{2} \\
\text { v } x=-1 & \text { w } x=3 & \text { x } x=-5 \\
2 \text { a } x=10 & \text { b } x=15 & \text { c } x=-25 \\
\text { d } x=-42 & \text { e } x=42 & \text { f } x=50 \\
3 \text { a No } & \text { b No } & \text { c Yes }
\end{array}
$$

