
WALT practice index laws Success criteria I know how to apply the index laws Example three is covering three laws

- a) Multiply
- b) Divide
- c) Powers outside the bracket
- d) Any number raised to the power of zero is equal to 1

a	the the index laws to simplify $y^7 \times y^3$ $(b^5)^{32}$	fy the following. b $y^{18} \div y^{17}$	Index comes from the Latin word 'indicare': to point, disclose, show; as in using your index finger.
	Solve	Think	Apply
a	$y^7 \times y^3 = y^{10}$	$y^7 \times y^3 = y^{7+3}$ $= y^{10}$	When multiplying powers with the same base, add the indices.
b	$y^{18} \div y^{17} = y^1 = y$	$y^{18} \div y^{17} = y^{18-17}$ = $y^1 = y$	When dividing powers with the same base, subtract the indices.
c	$(b^5)^3 = b^{15}$	$(b^5)^3 = b^{5 \times 3}$ = b^{15}	When raising a power of a number to a higher power, multiply the indices.

5	Use the index laws to	o simplify the following	ıg.						
	a $m^3 \times m^6$	b $q^8 \times q^7$	C	$t^{10} \times t^9$		d	$b^{\scriptscriptstyle 15} imes b imes b^4$	e	$\nu \times \nu^5 \times \nu^7$
6	Use the index laws to	o simplify the following	ıg.						
	a $a^{12} \div a^{10}$	b $x^{15} \div x^5$	C	$w^8 \div w^2$		d	$b^6 \div b^5$	e	$z^{20} \div z^{19}$
7	Use the index laws to	o simplify the following	ıg.						
	a $(b^4)^2$	b $(h^5)^3$	c	$(k^8)^2$		d	$(z^{10})^6$	e	$(n^2)^4$
					8 U	se th	e index laws to sin	nnli	fy the followi

8 1	Use t	the	index	laws	to	simplify	the	following
-----	-------	-----	-------	------	----	----------	-----	-----------

B-							
a	$m^4 \times m^2$	b	$x^9 \div x^6$				
C	$(b^4)^6$	d	$m^3 \times m^6 \times m^4$				
e	$(\nu^7)^{10}$	f	$n^8 \div n^7$				
g	$b^8 \div b$	h	$(y^{5})^{5}$				

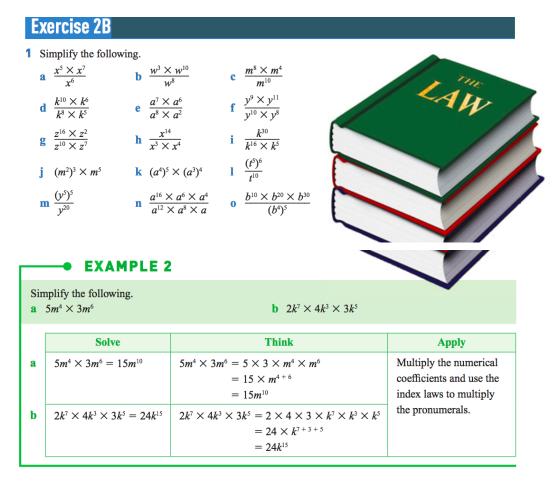
i $t^{10} \times t^{20} \times t$ j $a^{12} \div a^6$

• EXAMPLE 4

Explain why the index laws cannot be used to simplify the following. **a** $p^3 \times q^4$ **b** $m^6 \div n^4$

	Solve/Think	Apply
a	$p^3 \times q^4 = p \times p \times p \times q \times q \times q \times q$ = $p^3 q^4$ As the bases are not the same, we cannot simplify further.	The index laws can only be used if the bases are the same.
b	$m^6 \div n^4 = rac{m imes m imes m imes m imes m imes m imes m}{n imes n imes n imes n}$ = $rac{m^6}{n^4}$	
	Again, as the bases are not the same, we cannot simplify further.	

- **9** Explain why the index laws cannot be used to simplify the following.
 - **a** $k^5 \times m^3$ **b** $x^9 \div y^6$
- **10** Determine whether these statements are true or false. If they are false, rewrite the answer to make them true.


$a b^4 \times b^3 = b^7$	b $m^5 \times m^2 = m^{10}$	$p^4 \times p^5 = p^{20}$	$\mathbf{d} \ e^6 \times e^{10} = e^{16}$
$e a^4 \times b^5 = ab^9$	$\mathbf{f} z^{10} \div z^2 = z^8$	g $p^{12} \div p^3 = p^4$	h $t^8 \div t^7 = t$
$\mathbf{i} w^{15} \div w^3 = w^5$	$\mathbf{j} \frac{p^6}{q^2} = \frac{p^4}{q}$	k $(b^7)^2 = b^{14}$	$(n^{10})^3 = n^{13}$

B Applying the index laws

• EXAMPLE 1

	$\frac{p^5 \times p^6}{p^8}$	b $\frac{(a^5)^4}{a^3 \times a^2}$	
	Solve	Think	Apply
a	$\frac{p^5 \times p^6}{p^8} = p^3$	$\frac{p^{5} \times p^{6}}{p^{8}} = \frac{p^{5+6}}{p^{8}}$ $= \frac{p^{11}}{p^{8}}$ $= p^{11-8}$ $= p^{3}$	When multiplying powers with the same base, add the indices. When dividing, subtract the indices.
b	$\frac{(a^{5})^{4}}{a^{3} \times a^{2}} = \frac{a^{20}}{a^{5}} = a^{15}$	$\frac{(a^{5})^{4}}{a^{3} \times a^{2}} = \frac{a^{5 \times 4}}{a^{3 + 2}}$ $= \frac{a^{20}}{a^{5}}$ $= a^{20 - 5}$ $= a^{15}$	When raising a power to a higher power, multiply the indices.

NUMBER & ALGEBRA

2 Simplify the following.

a d

g

$4m^5 \times 3m^7$	b $5p^4 \times 2p^6$	с	$3t^8 \times 6t^4$
$10a^{12} \times 7a^4$	e $4w^9 \times 6w^{10}$	f	$5b^3 \times 6b^2 \times b^4$
$3z^6 \times 4z^8 \times 2z^3$	h $2q^5 \times 5q^7 \times 8q^6$	i	$d^4 imes 6d^6 imes 3d^8$

- **1** a Use the index laws to simplify $a^4 \div a^4$.
 - **b** Hence show that $a^0 = 1$.

• EXAMPLE 2

Eva a	luate the following. x^0	b (3 <i>x</i>) ⁰	c $3x^0$				
	Solve		Think/Apply				
a	$x^0 = 1$	Any number raised to the	Any number raised to the power zero is equal to 1.				
b	$(3x)^0 = 1$	$3x = 3 \times x$ is a number. Any number raised to the power zero is equal to 1.					
c	$3x^0 = 3$	$3x^0 = 3 \times x^0$ The 3 is not to the power zero; only the x is to the zero power. = 3×1 = 3					

2 Evaluate the following.

a y^0	b $(3y)^0$	c $3y^0$	d $4k^0$
$e 9t^0$	f $(6z)^0$	$(10m)^0$	h $10m^0$
i 8 <i>b</i> ⁰	j $(7q)^{0}$	k $3m^0 + 1$	$1 9e^0 - 3$
m $6p^0 + 7$	n $3a^0 + 2b^0$	o $6x^0 - 4y^0$	