Its electron arrangement is 2,6 which means it has six electrons in its outer shell.

To become stable, oxygen could lose all 6 electrons but it is easier for it to gain two electrons instead to fill its outer shell.

i.e. The O atom gains two electrons to form an oxide ion.

oxygen atom:	<u>oxide ion</u> :
8 protons (+)	8 protons (+)
8 electrons (-)	10 electrons (-)
overall charge = 0	overall charge = 2-

We write the oxide ion as **O**²- showing it has a charge of 2-The electron arrangement of the oxide ion is now 2,8.

Ion questions

- Draw the orbital diagrams and electron configurations of the <u>ions</u> that these elements form and state their charge.
- 1. Li
- 2. O
- 3. CI
- 4. Mg
- 5. Al
- 6. Will neon form an ion?

- We can use the periodic table to help us work out the charges on ions.
- Atoms with 1,2 or 3 electrons in their outer shell (groups 1,2 and 3) lose electrons to become positive ions.
- Atoms with 5,6 or 7 electrons in their outer shell (groups 15,16 and 17) gain electrons to become negative ions.
- Atoms with 4 electrons in their outer shell do not gain or lose electrons but <u>share</u> electrons with other atoms.
- Group 18 atoms do not form ions at all because they already have full outer shells and are stable.

lons

- Positive ions are also called CATIONS
- Negative ions are also called ANIONS

- Positive ions keep their same name.
- Negative ions change the end of their name.
 - O2- S2- CI- all end in -ide
- Some ions contain more than one type of atom. These are called <u>polyatomic ions</u>. (polyatomic = many atoms). The atoms in polyatomic ions are all non-metals.
 - CO_3 2- SO_4 2- NO_3 and HCO_3 all end in -ate

How to write chemical

formulae using ions

Step 1.

Write the name of the compound and use your ion table to write the ions for each part of the name underneath.

Example:

What is the formula of aluminium sulfide?

Al 3+ S2

Step 2.

Add more of each ion so that the total charges are equal.

Al 3+ S 2-

Al 3+ S 2-

S 2-

= 6+ = 6-

This tells you how many lots of each ion are needed in the chemical formula.

2 lots of 3 lots of S

Show this in the chemical formula

Al₂S₃

Write formula for these compounds following the rules

- 1. Barium oxide
- 2. Lithium chloride
- 3. Aluminium chloride
- 4. Calcium chloride
- 5. Iron (III) oxide
- 6. Sodium oxide
- 7. Aluminium oxide

Answers

- 1. BaO
- 2. LiCl
- 3. AICI₃
- 4. CaCl₂
- 5. Fe₂O₃
- 6. Na₂O
- Na₂O
 Al₂O₃

Ionic compounds

- Positive and negative ions join together to form ionic compounds.
- The forces holding the ions together are called ionic bonds.
- Ionic compounds are easy to recognise because they contain both positive metal ions and negative nonmetal ions.
- MgO = magnesium oxide
- NaCl = sodium chloride
- CaCO₃ = calcium carbonate
- CuSO₄ = copper sulfate

Circle the metal ion in each of the above examples.