WALT

Success Criteria I know ...

- A probability is a number between 0 and 1.0 means impossible and 1 means certain
- If the outcomes are equally likely, we find the probability of an event by counting the ways it can happen and dividing it by the total number of outcomes

Let's start

Let's start: Estimating probabilities

Try to estimate the probability of the following events, giving a number between 0 and 1. Compare your answers with other students in the class and discuss any differences.
1 Flipping a 'tail' on a 50-cent coin.
2 An albino whale is born.
3 Rolling three 6 s in a row on a fair die.
4 Correctly guessing a number between 1 and 10.
5 Tomorrow being a rainy day.
6 Seeing a wombat in the Australian bush.
Are there some events for which there is more than one correct answer?

Important notes

Trial - One run of an event
Outcome- One of the possibilities from and event
Event- Collection of possible outcomes
Probability - A measure of the likelihood that an event will occur Sample Space -The list of all the possible outcomes of an event Complement - Set containing the elements that are not in a given set

Teacher discussion

- A trial could be flipping a coin, rolling a die or spinning a spinner.
- There are multiple outcomes that could occur for any trial; for example, 'rolling a 3' or 'flipping tails on the coin'.
- An event is a collection of outcomes.
- The probability of an event is a number between 0 and 1 that represents the chance that the event occurs. If all the outcomes are equally likely:

$$
\operatorname{Pr}(\text { Event })=\frac{\text { number of outcomes where the event occurs }}{\text { total number of outcomes }}
$$

- Probabilities are often written as fractions, but can also be written as decimals or percentages.

- The sample space is the set of possible outcomes of a trial or event. For example, the sample space for the roll of a die is $1,2,3,4,5,6$.
- The complement of some event E is written E^{\prime} (or not E). E^{\prime} is the event that E does not occur. For example, the complement of 'rolling the number 3 ' is 'rolling a number other than 3 '.

1 Write the missing word from each statement.
a An example of a \qquad is flipping a coin.
b After rolling a die the possible \qquad are $1,2,3,4,5$ and 6.
c The set of all possible outcomes from a trial is called the \qquad -.
d The \qquad of an event is the opposite of that event.
e If an event is called A then the complement is written as \qquad -.

2 Match each experiment with the set of possible outcomes.
a Flipping a coin
b Choosing a number between 1 and 5
c Choosing a letter of the word MATHS
d Rolling a die
A 1, 2, 3, 4, 5, 6
B Heads, Tails
C $1,2,3,4,5$
D M, A, T, H, S

3 The following events are shown with their probabilities.
Event A: 0 Event B: 0.9 Event C: $1 \quad$ Event D: 0.5
a Which of the four events is most likely to occur?
b Which of the four events is sure not to occur?
c Which is more likely - event B or event D?
d Which event is sure to occur?

3 The following events are shown with their probabilities.
Event A: 0 Event B: 0.9 Event C: 1 Event D: 0.5
a Which of the four events is most likely to occur?

Impossible events are sure not to occur.
b Which of the four events is sure not to occur?
c Which is more likely - event B or event D ?
d Which event is sure to occur?
4 The spinner is spun and could land with the pointer on any of the four sections.
Answer true or false:
a Red and blue are equally likely outcomes.
b Green is less likely to occur than blue.
c The probability of it landing orange is 0 .
d Red is less likely to occur than green.

Working with probabilities

The letters of the word PRINCE are written onto 6 equally-sized cards and one is chosen at random.
a State the sample space.
b Find Pr (the letter N is chosen).
c What is the sample space of the event $V=$ choosing a vowel?
d Find $\operatorname{Pr}(V)$.
e State the sample space of the complement of choosing a vowel, written V^{\prime}.
f Hence find $\operatorname{Pr}\left(V^{\prime}\right)$.

Solution

a P, R, I, N, C, E
b $\quad \operatorname{Pr}(N)=\frac{1}{6}$
c I, E
d $\operatorname{Pr}(V)=\frac{2}{6}$

$$
=\frac{1}{3}
$$

e V^{\prime} includes $\mathrm{P}, \mathrm{R}, \mathrm{N}, \mathrm{C}$
f $\operatorname{Pr}\left(V^{\prime}\right)=\frac{4}{6}$

$$
=\frac{2}{3}
$$

Explanation

The sample space is all the possible outcomes when a single card is chosen. In this case each of the letters in the word.

There are 6 equally likely cards and 1 of them has the letter N .

The sample space V includes all the vowels in the word PRINCE.

There are 2 cards with vowels, so probability = $2 \div 6$.

The complement of $V\left(V^{\prime}\right)$ is all the outcomes that are not in V, i.e. all the letters that are not vowels.

There are 4 cards that do not have vowels, so $\operatorname{Pr}\left(V^{\prime}\right)=4 \div 6$.

5 The letters of the word PIANO are written on 5 cards and then one card is drawn from a hat at random.
a List the sample space.
b Find Pr (the letter A is chosen).
c Find Pr (a vowel is chosen).
d Find Pr (a consonant is drawn).
e Find $\operatorname{Pr}($ the letter chosen is not an N$)$.

Write probability answers as fractions.
f State the sample space of the complement of choosing a vowel, written V^{\prime}.
g Hence find $\left(\operatorname{Pr}\left(V^{\prime}\right)\right.$
6 A fair die is rolled.
a List the sample space.
b Find $\operatorname{Pr}(5)$. That is, find the probability that a 5 is rolled.
c Find Pr (even number).
d State the sample space of the complement of 'rolling a 5'.
e State the probability that a 5 is not rolled.
f What is the probability of rolling a 14 ?

7 There are five red marbles, two green marbles and three black marbles. The 10 marbles are placed into a hat and one is picked out.

a What is $\operatorname{Pr}(\mathrm{red})$? That is, what is the probability that the picked marble is red?
b Find Pr (green).
c Find Pr (black).
d Find $\operatorname{Pr}($ a black or a red marble is drawn $)$.
e Find $\operatorname{Pr}\left(\right.$ red $\left.^{\prime}\right)$, that is find the probability of the complement of choosing a red marble.
f Find $\operatorname{Pr}($ black').
g Give an example of an event that has a probability of 0 .
8 The numbers 1 to 10 are written on cards. A card is chosen at random.
a List the sample space.
b Find the probability of choosing a 5 .
c Find $\operatorname{Pr}(7$ or 9$)$.
d Find $\operatorname{Pr}($ a multiple of 3 is chosen).
e Find Pr (prime number).
f Find Pr (a factor of 24).

A factor of 24 divides into 24 with no remainder. A prime has 2 factors. 1 is not prime.

9 A spinner has the arrangement of colours as shown.
a List the sample space when this spinner is spun.
b Find $\operatorname{Pr}($ red $)$.
c State $\operatorname{Pr}($ green $)$.
d Find Pr (blue).
e List the sample space of the complement of 'spinner landing on blue'.
f What is Pr (not blue)?
g Find Pr (red or green or blue).
h What is an event that is equally likely to 'spinning red'?
I Give an example of an event that has a probability of 0 .

Extension

10 On a game show, a wheel is spun for a prize with the options as shown.
a Joan wants to go on a $\$ 10000$ holiday so she is happy with the cash or the holiday. What is the probability she will get what she wants?
b What is the probability of getting a prize that is not the cash?
c What is Pr (car or motorbike)?
d What is the probability of winning a prize?
11 Jamie has a collection of marbles in his pocket. Four of them are blue, three are green and three are white. He chooses one

a What is the probability that a green marble is chosen?
b What is the probability that he does not choose a white marble?
c He adds two more marbles and now $\operatorname{Pr}($ blue $)=\frac{1}{2}$. What colour were the marbles he added?
d If instead of adding the two marbles he removed two, is it possible for Pr (blue) to become $\frac{1}{2}$? Explain your answer.
12 Six counters coloured red, purple or orange are placed in a pocket.

You are told that
$\operatorname{Pr}($ red or orange $)=\frac{1}{2}$ and $\operatorname{Pr}($ red or purple $)=\frac{2}{3}$.
Change the probabilities to have a
a How many counters of each colour are there?
b State Pr (red). common denominator.
c Find Pr (purple).
d Find Pr (orange').
13 Draw a spinner that has $\operatorname{Pr}($ red $)=\frac{1}{8}, \operatorname{Pr}($ blue $)=\frac{5}{8}$ and $\operatorname{Pr}($ green $)=\frac{1}{4}$.

First divide a circle into 8 equal sectors.

Changing probabilities

14 In a large bucket there are 2 red balls and 8 blue balls.
a State $\operatorname{Pr}($ red $)$.
b One of each colour is added. What is the new $\operatorname{Pr}($ red $)$?
c The procedure of adding a red ball and a blue ball is repeated several times. How many balls are in the bucket when $\operatorname{Pr}(\mathrm{red})=\frac{1}{3}$?
d Imagine the procedure is repeated many times. What value does $\operatorname{Pr}(\mathrm{red})$ eventually approach as more balls are added? It might be helpful to imagine 1000 balls of each colour are added and use decimals.

Check your answers

$$
\begin{aligned}
& 14 \text { a } \frac{1}{5} \quad \text { b } \frac{1}{4} \quad \text { c } 18 \\
& \text { d } \text { It approaches } \frac{1}{2} \text { or } 0.5 .
\end{aligned}
$$

