Write WALT and Success Criteria in your book

WALT understand probability
Success Criteria I know

- Probability gives us a way to describe how much more like event is than another
- A probability is a number between 0 and 1
- 0 means 'impossible' and 1 means 'certain'
- If the outcomes are equally likely, we find the probability of an event by counting the ways it can happen and dividing the total number of outcomes.

Let's start: Estimating probabilities

Try to estimate the probability of the following events, giving a number between 0 and 1 . Compare your answers with other students in the class and discuss any differences.
1 Flipping a 'tail' on a 50-cent coin.
2 An albino whale is born.
3 Rolling three 6 s in a row on a fair die.
4 Correctly guessing a number between 1 and 10.
5 Tomorrow being a rainy day.
6 Seeing a wombat in the Australian bush.
Are there some events for which there is more than one

correct answer?

A few of the probability terms you need to know - You may copy this down in your notebook

1. Trial - A trial could be flipping a coin, rolling a die or spinning a spinner. So basically it's one run of an experiment.
2. Outcome - There are multiple outcomes that could occur for any tial. Example 'rolling 6 on a die' or 'flipping tails on the coin'
3. Event - An event is a collection of outcomes.
4. Probability - The probability of an event is a number between 0 and 1 that represents the chance that the event occurs. It all the outcomes are equally likely.

Pr Event)= Number of outcomes where the event occurs/total number of outcomes
5. Sample space- The list of all the possible outcomes of an event
6. Compliment - A set containing the elements that not in a given set.

Now let's start the work

1 Write the missing word from each statement.
a An example of a \qquad is flipping a coin.
b After rolling a die the possible \qquad are $1,2,3,4,5$ and 6.
c The set of all possible outcomes from a trial is called the \qquad .
d The \qquad of an event is the opposite of that event.
e If an event is called A then the complement is written as \qquad .

2 Match each experiment with the set of possible outcomes.
a Flipping a coin
b Choosing a number between 1 and 5
c Choosing a letter of the word MATHS
d Rolling a die
A 1, 2, 3, 4, 5, 6
B Heads, Tails
C $1,2,3,4,5$
D M, A, T, H, S

3 The following events are shown with their probabilities.
Event A: $0 \quad$ Event B: $0.9 \quad$ Event C: $1 \quad$ Event D: 0.5

Impossible events are sure not to occur.
a Which of the four events is most likely to occur?
b Which of the four events is sure not to occur?
c Which is more likely - event B or event D?
d Which event is sure to occur?
4 The spinner is spun and could land with the pointer on any of the four sections. Answer true or false:
a Red and blue are equally likely outcomes.
b Green is less likely to occur than blue.
c The probability of it landing orange is 0 .
d Red is less likely to occur than green.

Working with probabilities

Teacher discussion

The letters of the word PRINCE are written onto 6 equally-sized cards and one is chosen at random.
a State the sample space.
b Find $\operatorname{Pr}($ the letter N is chosen).
c What is the sample space of the event $V=$ choosing a vowel?
d Find $\operatorname{Pr}(V)$.
e State the sample space of the complement of choosing a vowel, written V^{\prime}.
f Hence find $\operatorname{Pr}\left(V^{\prime}\right)$.

Solution with explanation

Solution

a P, R, I, N, C, E
b $\quad \operatorname{Pr}(N)=\frac{1}{6}$
c I, E
d $\operatorname{Pr}(V)=\frac{2}{6}$
$=\frac{1}{3}$
e V^{\prime} includes $\mathrm{P}, \mathrm{R}, \mathrm{N}, \mathrm{C}$
f $\operatorname{Pr}\left(V^{\prime}\right)=\frac{4}{6}$

$$
=\frac{2}{3}
$$

Explanation

The sample space is all the possible outcomes when a single card is chosen. In this case each of the letters in the word.

There are 6 equally likely cards and 1 of them has the letter N .
The sample space V includes all the vowels in the word PRINCE.

There are 2 cards with vowels, so probability = $2 \div 6$.

The complement of $V\left(V^{\prime}\right)$ is all the outcomes that are not in V, i.e. all the letters that are not vowels.

There are 4 cards that do not have vowels, so $\operatorname{Pr}\left(V^{\prime}\right)=4 \div 6$.

Use the example given and answer the questions

5 The letters of the word PIANO are written on 5 cards and then one card is drawn from a hat at random.
a List the sample space.
b Find Pr (the letter A is chosen).
c Find Pr (a vowel is chosen).
d Find $\operatorname{Pr}(a$ consonant is drawn).
e Find $\operatorname{Pr}($ the letter chosen is not an N$)$.

> Pr means probability.

f State the sample space of the complement of choosing a vowel, written V^{\prime}.
g Hence find $\left(\operatorname{Pr}\left(V^{\prime}\right)\right.$
6 A fair die is rolled.
a List the sample space.
b Find $\operatorname{Pr}(5)$. That is, find the probability that a 5 is rolled.
c Find Pr (even number).
d State the sample space of the complement of 'rolling a 5^{\prime}.
e State the probability that a 5 is not rolled.
Write probability
answers as fractions.
f What is the probability of rolling a 14 ?

7 There are five red marbles, two green marbles and three black marbles. The 10 marbles are placed into a hat and one is picked out.

a What is $\operatorname{Pr}(\mathrm{red})$? That is, what is the probability that the picked marble is red?
b Find Pr (green).
c Find Pr (black).
d Find $\operatorname{Pr}($ a black or a red marble is drawn $)$.
e Find $\operatorname{Pr}\left(\mathrm{red}^{\prime}\right)$, that is find the probability of the complement of choosing a red marble.
f Find $\operatorname{Pr}\left(\right.$ black' $\left.^{\prime}\right)$.
g Give an example of an event that has a probability of 0 .
8 The numbers 1 to 10 are written on cards. A card is chosen at random.
a List the sample space. b Find the probability of choosing a 5.
c Find $\operatorname{Pr}(7$ or 9$)$. d Find $\operatorname{Pr}($ a multiple of 3 is chosen $)$.
e Find Pr (prime number). f Find $\operatorname{Pr}($ a factor of 24$)$.

A factor of 24 divides into 24 with no remainder. A prime has 2 factors. 1 is not prime.

9 A spinner has the arrangement of colours as shown.
a List the sample space when this spinner is spun.
b Find $\operatorname{Pr}(\mathrm{red})$.
c State Pr (green).
d Find Pr (blue).
e List the sample space of the complement of 'spinner landing on blue'.
f What is Pr (not blue)?
g Find Pr (red or green or blue).
h What is an event that is equally likely to 'spinning red'?
i Give an example of an event that has a probability of 0 .

10 On a game show, a wheel is spun for a prize with the options as shown.
a Joan wants to go on a $\$ 10000$ holiday so she is happy with the cash or the holiday. What is the probability she will get what she wants?
b What is the probability of getting a prize that is not the cash?
c What is Pr (car or motorbike)?
d What is the probability of winning a prize?
11 Jamie has a collection of marbles in his pocket. Four of them are blue, three are green and three are white. He chooses one at random.

a What is the probability that a green marble is chosen?
b What is the probability that he does not choose a white marble?
c He adds two more marbles and now $\operatorname{Pr}($ blue $)=\frac{1}{2}$. What colour were the marbles he added?
d If instead of adding the two marbles he removed two, is it possible for Pr (blue) to become $\frac{1}{2}$? Explain your answer.

12 Six counters coloured red, purple or orange are placed in a pocket.

You are told that
$\operatorname{Pr}($ red or orange $)=\frac{1}{2}$ and $\operatorname{Pr}($ red or purple $)=\frac{2}{3}$.
a How many counters of each colour are there?
b State $\operatorname{Pr}($ red $)$.
c Find Pr (purple).
d Find Pr (orange').
13 Draw a spinner that has $\operatorname{Pr}($ red $)=\frac{1}{8}, \operatorname{Pr}($ blue $)=\frac{5}{8}$ and $\operatorname{Pr}($ green $)=\frac{1}{4}$.

Changing probabilities

14 In a large bucket there are 2 red balls and 8 blue balls.
a State $\operatorname{Pr}(\mathrm{red})$.

Check your answers

	9 a red, green, blue, yellow, purple, blue, green, blue b $\frac{1}{8}$ C $\frac{1}{4}$ d $\frac{3}{8}$ e green, green, red, yellow, purple f $\frac{5}{8}$ g $\frac{3}{4}$ h spinning purple (or spinning yellow) i spinning orange 10 a $\frac{1}{3}$ b $\frac{5}{6}$ C $\frac{1}{3}$ d $\frac{5}{6}$ 11 a $\frac{3}{10}$ b $\frac{7}{10}$ c Both were blue. d Yes, for instance if he removed two green marbles. 12 a 1 red, 2 orange, 3 purple b $\frac{1}{6}$ C $\frac{1}{2}$ d $\frac{2}{3}$ 13 14 a $\frac{1}{5}$ b $\frac{1}{4}$ c 18 d It approaches $\frac{1}{2}$ or 0.5 .

