Worded problems using trigonometry

WALT apply the angle of elevation and the angle of depression to solve trig problems Success Criteria I know my trig ratios, I can draw a diagram and determine the sides and the ratio.
Watch the video
How to make and use a clinometer

The angle of elevation of an object from an observer is the angle between the horizontal and the line of sight $u p$ to the object.

The angle of depression of an object from an observer is the angle between the horizontal and the line of sight down to the object.

EXAMPLE 1

The angle of elevation of the top of a flagpole, as observed from a point 15 m from its base, is 63°.
Draw a diagram and find the height of the flagpole.

Solve	Think	Apply
$\begin{aligned} \tan 63^{\circ} & =\frac{x}{15} \\ x & =15 \tan 63^{\circ} \\ & \approx 29.4 \end{aligned}$ The flagpole is about 29 m high.		Elevation means looking upwards. The angle is at ground level.

EXAMPLE 2

The angle of depression from the top of a vertical cliff, 150 m above sea level, to a boat below is 50°. Draw a diagram and find the distance of the boat from the base of the cliff.

Solve	Think	Apply
$\begin{aligned} \tan 40^{\circ} & =\frac{x}{150} \\ x & =150 \tan 40^{\circ} \\ & \approx 125.86 \end{aligned}$ The boat is about 126 m out from the base of the cliff.		Depression means looking downwards. Either subtract from 90° to find the angle in the triangle or use parallel line properties to label the angle at the bottom as equal.

EXAMPLE 3

A kite is flying at a height of 45 m above the ground at the end of a string of length 70 m . Find, to the nearest minute, the angle of elevation from the ground to the string.

Solve	Think	Apply
$\begin{aligned} \sin \theta & =\frac{45}{70} \\ \therefore \theta & =40.005 \ldots{ }^{\circ} \\ & =40^{\circ} 0^{\prime} 19^{\prime \prime} \end{aligned}$ The angle of elevation is $40^{\circ} 0^{\prime}$.		Determine the sides required and select the correct ratio.

Draw a diagram for each of the following and find the unknown. For questions $\mathbf{1}$ to 5 give your answer to the nearest metre where necessary.

1 The angle of elevation of the top of a flagpole from the ground, as observed from a point 50 m from its base, is 38°. Find the height of the flagpole.

2 The angle of depression from the top of a cliff, 100 m above sea level, to a boat is 65°. Find the distance of the boat from the base of the cliff.

3 From a point 35 m from the base of a vertical cliff, the angle of elevation to the top of the cliff is 72°. Find the height of the cliff.

4 When looking down from the top of a building to a person standing in a park 150 m from the base of the building, the angle of depression is 28°. Find the height of the building.

5 The top of a tree, when viewed 40 m from the base of the tree, has an angle of elevation of 37°. Find the height of the tree.

6 A person is standing 200 m from a vertical cliff 265 m high. Find the angle of elevation to the top of the cliff to the nearest minute.

A ladder leaning against a vertical wall reaches 3.5 m up the wall and makes an angle of $55^{\circ} 16^{\prime}$ with the ground. Determine the length of the ladder.

Solve	Think	Apply
$\begin{aligned} \sin 55^{\circ} 16^{\prime} & =\frac{3.5}{x} \\ \therefore x \sin 55^{\circ} 16^{\prime} & =3.5 \\ x & =\frac{3.5}{\sin 55^{\circ} 16^{\prime}} \\ & =4.25 \ldots \\ & \approx 4.3 \end{aligned}$ The ladder is 4.3 m long.	Use the opposite side and hypotenuse. $3.5 \div \sin 55 \text { DMS } 16 \text { DMS }$	Identify the sides required and select the correct ratio.

7 A rectangle has a longer side of 9 cm . The angle between the diagonal and the shorter side is $54^{\circ} 54^{\prime}$. Find the length of the diagonal.

8 A seesaw is 6.3 m long. When one end is resting on the ground it makes an angle of $23^{\circ} 35^{\prime}$ with the ground. Find the height of the other end above ground level.

9 A rally driver travels 210 km on a bearing of $145^{\circ} \mathrm{T}$. How far east of the starting position would the rally driver be now?

10 An isosceles triangle has height 13 cm and base 20 cm . Find the value of the base angles to the nearest minute.

11 A right-angled triangle has non-hypotenuse sides of length 12 cm and 17 cm . Find the value of the other angles in degrees and minutes.

12 An isosceles triangle has a base of length 12 cm and a vertical angle of 70°. Find the lengths of the equal sides.

Extension

Example 5

A ship sails 35 km from a port A on a bearing of $318^{\circ} \mathrm{T}$ to a buoy B. Find how far the ship is north and west of A.

Solve	Think	Apply
$\cos 42^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}$	$\angle N A B=360^{\circ}-318^{\circ}=42^{\circ}$ $=\frac{x}{35}$	Let x be the distance north and y be the distance west.
$\therefore x=35 \cos 42^{\circ}$	Always draw a diagram with north in the vertical direction of the page.	
$\approx 26.01(2$ decimal places $)$		Locate all the other bearings or distances.
The ship is 26 km north of A.		
$\sin 42^{\circ}=\frac{\mathrm{opposite}}{\text { hypotenuse }}$		
$=\frac{y}{35}$		
$\therefore y=35 \sin 42^{\circ}$		
$\approx 23.42(2$ decimal places $)$		
The ship is 23 km west of A.		

EXAMPLE 6

Town A is 43 km east and 88 km south of town B. Find the bearing of A from B.

Solve	Think	Apply
$\begin{aligned} \tan \theta & =\frac{\text { opposite }}{\text { adjacent }} \\ & =\frac{88}{43} \\ \therefore \theta & \approx 64^{\circ} \end{aligned}$ The bearing of A from B is $90+64=154^{\circ} \mathrm{T}$		Draw a diagram showing all the information, then isolate the right-angled triangle.

13 A ship sails 58 km from a port A on a bearing of $262^{\circ} \mathrm{T}$ to a buoy B. Find how far the ship is west and south of A.

16 A ship sails 83 km from a port O on a bearing of 131° to another boat X. Find how far the ship is east and south of O.

15 A ship sails from a port P. It travels 55 km west then 30 km south to an atoll A. Find the bearing of A from P.

16 Town X is 185 km west and 260 km north of town Y.
a Find the bearing of Y from X.
b Find the bearing of X from Y.
17 A plane flies 800 km north and 1250 km west. Find the bearing and distance of the plane from its starting point.
$18 A$ is 40 km due north of B and C is 100 km due east of B. Find the distance and bearing of C from A.

Remember Pythagoras.
(1)

19 A kayaker paddles due west for 1.5 km , then turns due south and covers a further 800 m . How far and in what direction to the nearest degree must she travel to return to her starting point?

$$
1 h=39 \mathrm{~m} \quad 2 d=47 \mathrm{~m}
$$

$3 h=108 \mathrm{~m}$

35 m
$5 h=30 \mathrm{~m}$

$652^{\circ} 27^{\prime}$

711 cm
9120 km
$1135^{\circ} 13^{\prime}$ and $54^{\circ} 47^{\prime}$
$1357 \mathrm{~km} \mathrm{~W}, 8 \mathrm{~km} \mathrm{~S}$
$15241^{\circ} \mathrm{T}$
16 a $145^{\circ} \mathrm{T}$
$17302^{\circ} 37^{\prime} \mathrm{T}, 1484 \mathrm{~km}$
$191.7 \mathrm{~km}, 062^{\circ} \mathrm{T}$
82.5 m
$1052^{\circ} 26^{\prime}$
1210.5 cm
$1463 \mathrm{~km} \mathrm{E}, 54 \mathrm{~km} \mathrm{~S}$
b $325^{\circ} \mathrm{T}$
$18111^{\circ} 48^{\prime} \mathrm{T}, 108 \mathrm{~km}$

