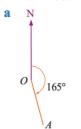
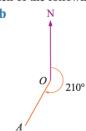
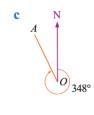

<u>Video</u>

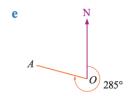
Plotting a course for a ship or an aircraft requires accurate directions. These directions are usually given in the form of bearings. The agreed convention is that the direction of travel is measured by a clockwise rotation from the true north direction. The bearing of A from O is the measure of the angle between the line OA and the line through O in the true north direction. The angles are always written using three digits.

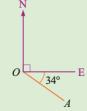


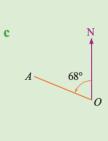

Video 2



<u>Video 3</u> <u>Video on How to calculate distance using bearings and Trigonometry</u>

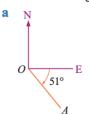

1 Write the bearings of A from O for each of the following.

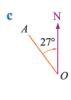

d N

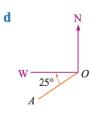

• EXAMPLE 2

Write the bearing of A from O.

c




	Solve	Think	Apply
a	Bearing is $90^{\circ} + 34^{\circ} = 124^{\circ}$ T.	The angle NOE is 90°. $O = 34^{\circ}$ E	The angle from north in a clockwise direction must be found for the bearing. Add or subtract as required. Bearings will never be greater than 360°.
b	Bearing is $180^{\circ} + 41^{\circ} = 221^{\circ}$ T.	The angle <i>NOS</i> is 180°.	


	O E A1° S
The bearing is $360^{\circ} - 68^{\circ} = 292^{\circ}$ T.	68° is anticlockwise, so subtract from 360°.

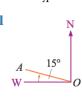
2 Write the bearing of A from O shown below.

A 62°

e

f N

g N A 38°


h N O 67°

i

j N A 12°

k N O

EXAMPLE 3

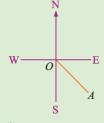
Draw a diagram to represent the position of A from O for each of the following compass bearings.

a 110°T

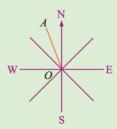
b 048°T

c 328°T

	Solve	Think	Apply
a	N 0 110° A	Clockwise 110° from north.	Always turn in a clockwise direction from north.
b	N A 48°	Clockwise 48° from north.	
с	A N 328°	Clockwise 328° from north.	


- 3 Draw a diagram to represent the position of A from O for each of these compass bearings.
 - **a** 128°T
- **b** 022°T
- c 312°T
- **d** 231°T

- e 005°T
- **f** 285°T
- **g** 185°T
- **h** 300°T


- i 073°T
- 355°T
- k 133°T
- 1 099°T

EXAMPLE 4

a

b

- i Write the compass bearing shown in each diagram.
- ii Find $\angle NOA$.
- iii Write as a true bearing.

	Solve	Think	Apply
a i	The bearing is SE.	<i>OA</i> is in the middle of south and east.	Each of the main compass points is 90°. The bearing
ii	$\angle NOA = 90^{\circ} + 45^{\circ}$ = 135°	East is 90° from north.	divides the angle into two angles of 45°.
iii	135°T	The angle from north.	

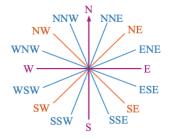
	Solve	Think	Apply
b i	The bearing is NNW.	AO is between NW and N.	The angle between
ii	$\angle NOA = 90^{\circ} + 90^{\circ} + 90^{\circ} + 45^{\circ} + 22.5^{\circ}$ = 337.5°	A is close to north, so the bearing is close to 360° .	these dividers is 22.5°.
iii	337.5°T	The angle from north.	

ii S and SW

- 4 Here is a compass rose.
 - **a** Find the angle between:

i N and E

iii W and NWiv E and ESEv SW and WSWvi W and NNW

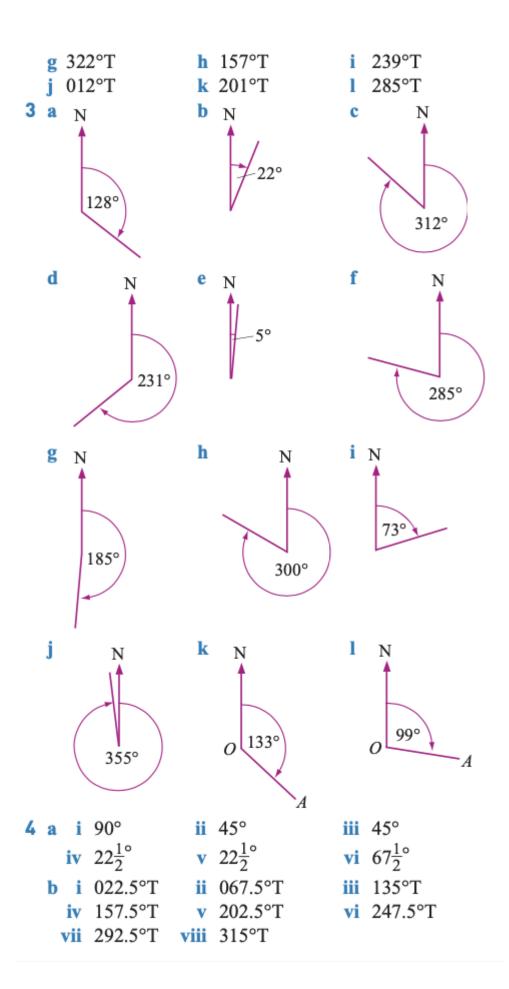

b Write each of these compass bearings as true bearings.

 i
 NNE
 ii
 ENE

 iii
 SE
 iv
 SSE

 v
 SSW
 vi
 WSW

 vii
 WNW
 viii
 NW



Always put the north or south part of the bearing first.

Check your answers

1	a 165°T	b	210°T	C	348°T
	d 038°T	e	285°T	f	008°T
2	a 141°T	b	242°T	c	333°T
	d 245°T	0	306°T	f	223°T

