WALT use the trig ratio to find angles
Success Criteria I know my trig formulas and I can identify sides. I know how to use the inverse operation on a calculator

## View the video first

## Using trigonometry to find angles

## EXAMPLE 1

Use the sine ratio to find the value of $\theta$ to the nearest minute.


| Solve | Think | Apply |
| :---: | :---: | :---: |
| $\begin{aligned} \sin \theta & =\frac{\text { opposite }}{\text { hypotenuse }} \\ & =\frac{28}{40} \\ \therefore \theta & =44^{\circ} 25^{\prime} 37.21 \ldots{ }^{\prime \prime} \\ & \approx 44^{\circ} 26^{\prime} \end{aligned}$ | The side opposite $\theta$ and the hypotenuse are given. | Press shilit before <br> sin to obtain an angle. |

1 Using the sine ratio, find the value of $\theta$ to the nearest minute.
a

b

c

d


e

f

h

i

$2 R Q$ is half as long as $P R$. Using the sine ratio, find the value of angle $R P Q$.


## EXAMPLE 2

Use the cosine ratio to find the value of $\theta$ to the nearest minute.


| Solve | Think | Apply |
| :---: | :---: | :---: |
| $\begin{aligned} \cos \theta & =\frac{\text { adjacent }}{\text { hypotenuse }} \\ & =\frac{4}{12} \\ \therefore \theta & =70^{\circ} 31^{\prime} 43.60 \ldots .^{\prime \prime} \\ & \approx 70^{\circ} 32^{\prime} \end{aligned}$ | The side adjacent to $\theta$ and the hypotenuse are given. | Press shilit before cos to obtain an angle. |

3 Using the cosine ratio, find the value of $\theta$ to the nearest minute.
a

b

c


e

f

g


$\underbrace{}_{0.92 \mathrm{~m}} \underbrace{}_{2.4 \mathrm{~m}}$
$4 A C$ is three times longer than $B C$. Using the cosine ratio, find the value of angle $B C A$ to the nearest minute.


## EXAMPLE 3

Use the tangent ratio to find the value of $\theta$ to the nearest minute.


| Solve | Think | Apply |
| :---: | :---: | :---: |
| $\begin{aligned} \tan \theta & =\frac{\text { opposite }}{\text { adjacent }} \\ & =\frac{5}{7} \\ \therefore \theta & =35^{\circ} 32^{\prime} 15.64 \ldots \prime \prime \\ & \approx 35^{\circ} 32^{\prime} \end{aligned}$ | The sides opposite and adjacent to $\theta$ are given. | Press shift before <br> $\tan$ to obtain an angle. |

5 Using the tangent ratio, find the value of $\phi$ to the nearest minute.
a

b

c

d

e

f

g

h



6 The ratio of $J K$ to $L K$ is 5 to 2 . Using the tangent ratio, find the value of angle $J L K$ to the nearest minute.


7 Use the sine, cosine or tangent ratios to find each unknown angle to the nearest minute.
a


d

e


g

h


k



## Check your answers

| 1 a $38^{\circ} 41^{\prime}$ | b $39^{\circ} 48^{\prime}$ | c $23^{\circ} 43^{\prime}$ |
| :--- | :--- | :--- |
| d $43^{\circ} 26^{\prime}$ | e $32^{\circ} 24^{\prime}$ | f $41^{\circ} 35^{\prime}$ |
| g $50^{\circ} 0^{\prime}$ | h $44^{\circ} 22^{\prime}$ | i $42^{\circ} 27^{\prime}$ |
| $230^{\circ}$ (exact) |  |  |
| 3 a $66^{\circ} 25^{\prime}$ | b $41^{\circ} 25^{\prime}$ | c $48^{\circ} 11^{\prime}$ |
| d $56^{\circ} 15^{\prime}$ | e $48^{\circ} 11^{\prime}$ | f $74^{\circ} 5^{\prime}$ |
| g $20^{\circ} 8^{\prime}$ | h $32^{\circ} 2^{\prime}$ | i $67^{\circ} 28^{\prime}$ |
| $470^{\circ} 32^{\prime}$ |  |  |
| 5 a $63^{\circ} 26^{\prime}$ | b $26^{\circ} 42^{\prime}$ | c $56^{\circ} 27^{\prime}$ |
| d $56^{\circ} 19^{\prime}$ | e $21^{\circ} 15^{\prime}$ | f $41^{\circ} 45^{\prime}$ |
| g $60^{\circ} 18^{\prime}$ | h $12^{\circ} 1^{\prime}$ | i $52^{\circ} 24^{\prime}$ |
| 6 $68^{\circ} 12^{\prime}$ |  |  |
| 7 a $52^{\circ} 28^{\prime}$ | b $24^{\circ} 35^{\prime}$ | c $37^{\circ} 40^{\prime}$ |
| d $18^{\circ} 1^{\prime}$ | e $49^{\circ} 40^{\prime}$ | f $17^{\circ} 51^{\prime}$ |
| g $52^{\circ} 40^{\prime}$ | h $75^{\circ} 39^{\prime}$ | i $37^{\circ} 48^{\prime}$ |
| j $41^{\circ} 25^{\prime}$ | k $17^{\circ} 33^{\prime}$ | l $20^{\circ} 6^{\prime}$ |

