Success Criteria I know my trig formulas and I can identify sides. I know how to use the inverse operation on a calculator

View the video first

Using trigonometry to find angles

1 Using the sine ratio, find the value of θ to the nearest minute.

2 RQ is half as long as PR. Using the sine ratio, find the value of angle RPQ.

EXAMPLE 2

Use the cosine ratio to find the value of $\boldsymbol{\theta}$ to the nearest minute.

Solve	Think	Apply
$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ $= \frac{4}{12}$ $\therefore \theta = 70^{\circ}31'43.60''$ $\approx 70^{\circ}32'$	The side adjacent to θ and the hypotenuse are given. 12 m R θ θ θ θ θ θ θ	Press SHIFT before cos to obtain an angle.

3 Using the cosine ratio, find the value of θ to the nearest minute.

9 m θ 12 m

4 AC is three times longer than BC. Using the cosine ratio, find the value of angle BCA to the nearest minute.

EXAMPLE 3

Use the tangent ratio to find the value of $\boldsymbol{\theta}$ to the nearest minute.

Solve	Think	Apply
$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$ $= \frac{5}{7}$ $\therefore \theta = 35^{\circ}32'15.64''$ $\approx 35^{\circ}32'$	The sides opposite and adjacent to θ are given. $P = \frac{\theta}{7 \text{ cm}} R$ 5 cm Q SHIFT tan $(5 \div 7) = DMS$	Press SHIFT before tan to obtain an angle.

5 Using the tangent ratio, find the value of ϕ to the nearest minute.

6 The ratio of *JK* to *LK* is 5 to 2. Using the tangent ratio, find the value of angle *JLK* to the nearest minute.

7 Use the sine, cosine or tangent ratios to find each unknown angle to the nearest minute.

Check your answers

b 39°48′	c 23°43′
e 32°24′	f 41°35′
h 44°22′	i 42°27′
b 41°25′	c 48°11′
e 48°11′	f 74°5′
h 32°2′	i 67°28′
b 26°42′	c 56°27′
e 21°15′	f 41°45′
h 12°1′	i 52°24′
b 24°35′	c 37°40′
e 49°40′	f 17°51′
h 75°39′	i 37°48′
k 17°33′	1 20°6′
	e 32°24′ h 44°22′ b 41°25′ e 48°11′ h 32°2′ b 26°42′ e 21°15′ h 12°1′ b 24°35′ e 49°40′ h 75°39′