## COMPOUND INTEREST

If the interest earned each year on an investment is reinvested, the size of the principal on which interest is calculated increases each year. Hence the amount of interest earned also increases. This is called compound interest.

## Extra Practice

## Compound interest formula

$$
A=P(1+R)^{n}
$$

where $\$ P$ is the initial amount invested (principal)
$R=\frac{r}{100}$ and $r$ is the percentage interest rate per compounding period $n$ is the number of compounding periods $\$ A$ is the final amount (includes principal and interest).

Use the compound interest formula to calculate:
a the amount to which $\$ 10000$ grows if invested for 8 years at $4.5 \%$ p.a. compound interest
b the amount of interest earned over this period.

|  | Solve | Think | Apply |
| :---: | :---: | :---: | :---: |
| a | $\begin{aligned} A & =\$ 10000\left(1+\frac{4.5}{100}\right)^{8} \\ & =\$ 10000(1.045)^{8} \\ & =\$ 14221.01 \end{aligned}$ | $\begin{aligned} & A=P(1+R)^{n} \\ & P=10000 \\ & r=4.5 \\ & n=8 \end{aligned}$ | Substitute the values into the compound interest formula $A=P(1+R)^{n}$. <br> The amount is always the original amount plus interest. |
| b | $\begin{aligned} \text { Interest } & =\$ 14221.01-\$ 10000 \\ & =\$ 4221.01 \end{aligned}$ | Subtract the original amount invested. |  |

1 Complete the following using the compound interest formula.
a Find the amount to which $\$ 6000$ grows if it is invested for 5 years at $3 \%$ p.a. compound interest.

$$
A=\ldots\left(1+\frac{\square}{100}\right)^{5}=\ldots(1.03)^{\square}=
$$

b The total amount of interest earned over this period $=$ $\qquad$ $-\$ 6000=$ $\qquad$
2 Use the compound interest formula to calculate:
a the amount to which $\$ 18000$ grows if it is invested for 7 years at $6 \%$ p.a. compound interest
b the amount of interest earned over this period.
3 a If I invest $\$ 25000$ at $6.5 \%$ p.a. compound interest, how much will I have in 10 years time?
b Calculate the amount of interest earned over this period.
4 a If I invest $\$ 5000$ at $4.7 \%$ p.a. compound interest, how much will I have in 8 years time?
b Calculate the amount of interest earned over this period.

Use the compound interest formula to calculate the amount to which $\$ 10000$ grows if it is invested for 5 years at $9 \%$ p.a. interest, compounded:
a monthly
b quarterly
c six-monthly.
a

| Solve | Think |
| :---: | :---: |
| $\begin{aligned} A & =\$ 10000\left(1+\frac{0.75}{100}\right)^{60} \\ & =\$ 10000(1.0075)^{60} \\ & =\$ 15656.81 \end{aligned}$ | In this case the time period is monthly. Hence $r=\frac{9}{12} \%=0.75 \%$ per month and $n=5 \times 12=60$ months. |
| $\begin{aligned} A & =\$ 10000\left(1+\frac{2.25}{100}\right)^{20} \\ & =\$ 10000(1.0225)^{20} \\ & =\$ 15605.09 \end{aligned}$ | The time period is quarterly. Hence $r=\frac{9}{4} \%=2.25 \%$ per quarter and $n=5 \times 4=20$ quarters. |
| $\begin{aligned} A & =\$ 10000\left(1+\frac{4.5}{100}\right)^{10} \\ & =\$ 10000(1.045)^{10} \\ & =\$ 15529.69 \end{aligned}$ | The time period is six-monthly. Hence $r=\frac{9}{2} \%=4.5 \%$ per 6 months and $n=5 \times 2=10$ six-monthly periods. |

## Apply

The compound interest formula $A=P(1+R)^{n}$ where $R=\frac{r}{100}$ can be adapted for this question by using $r$ as the interest rate per time period and $n$ as the number of time periods. Note: The more often the interest is reinvested, the greater the final value of the investment.

5 Complete the following using the compound interest formula to calculate the amount to which $\$ 10000$ grows if it is invested for 3 years at $12 \%$ p.a. interest, compounded:
a monthly: $r=\frac{\square}{12} \%=\ldots \%$ per month and $n=3 \times \ldots=\ldots$ months

$$
A=10000\left(1+\frac{\square}{100}\right)^{\square}=10000\left(\_\right)^{36}=
$$

b quarterly: $r=\frac{12}{\square} \%=$ $\qquad$ per quarter and $n=$ $\qquad$ $\times 4=$ $\qquad$ quarters

$$
A=10000\left(1+\frac{\square}{100}\right)^{12}=10000\left(\_\right)^{12}=
$$

c six-monthly: $r=\frac{\square_{2}}{2} \%=\ldots$ per 6 months and $n=\ldots \times 2=$ $\qquad$ six-month periods

$$
A=10000\left(1+\frac{\square}{100}\right)^{\square}=10000\left(\_\right)^{6}=
$$

6 Use the compound interest formula to calculate the amount to which $\$ 5000$ grows if it is invested for 4 years at $6 \%$ p.a. interest, compounded:
a monthly
b quarterly
c six-monthly

7 a Use the compound interest formula to calculate the amount to which $\$ 20000$ grows if invested for 5 years at 3\% p.a. interest, compounded:
i monthly
ii quarterly
iii six-monthly
b Calculate the amount of interest earned in each case of part a. Which time period of compounding (reinvesting) gives the greatest amount of interest?

8 Which of the following investments will earn the greatest amount of interest?
A $\$ 5000$ invested at $6 \%$ p.a. for 4 years interest compounded yearly
B $\$ 5000$ invested at $6 \%$ p.a. for 4 years interest compounded six-monthly
C $\$ 5000$ invested at $6 \%$ p.a. for 4 years interest compounded quarterly
D $\$ 5000$ invested at $6 \%$ p.a. for 4 years interest compounded monthly
E $\$ 5000$ invested at $6 \%$ p.a. for 4 years simple interest

It is possible to obtain cash advances, up to a certain limit, using a credit card. In these cases compound interest is charged daily from the time the cash is withdrawn. Calculate the interest charged on a cash advance of $\$ 400$ for 27 days when the annual interest rate is $16 \%$.

| Solve | Think | Apply |
| :---: | :--- | :--- |
| $A=\$ 400\left(1+\left(\frac{16}{365} \div 100\right)\right)^{27}$ | Use the compound interest <br> formula: <br> $=\$ 404.76$ (to the nearest cent) <br> daily interest rate $=\frac{16}{365} \%$ | Divide the percentage rate <br> by 365 to make it daily, <br> then by 100 to make it a <br> decimal. |

## 9 Complete the following to find the interest charged on a credit card cash advance of $\$ 500$ for 11 days when the annual interest

 rate is $23 \%$.Daily interest rate $=\frac{\square}{365} \%$
Using the compound interest formula:

$$
\begin{aligned}
& A=\square\left(1+\left(\frac{\square}{\square} \div 100\right)\right) \\
&= \\
&
\end{aligned}
$$

Interest charged $=$ $\qquad$

