### *`Powerful numbers'*

Daniel drew



and



This figure has 16 small squares.

His teacher said that these figures model the square numbers

$$2 \times 2 = 2^2, \quad 3 \times 3 = 3^2$$

$$3 \times 3 = 3$$

$$4 \times 4 = 4^2$$
.

So, 
$$2^2 = 4$$
,

$$3^2 = 9$$

$$4^2 = 16.$$

### **EXERCISE 1C.10**

- a Draw a figure to represent  $5^2$ .
- **b** What is the value of  $5^2$ ?

- a Find
- $6^{2}$
- $7^{2}$
- $8^{2}$
- $\mathbf{v}$   $9^2$
- $v 10^2$
- **b** Check your answer to a using the  $x^2$  key of a calculator.
- a  $4^2=16$ . Use your calculator to find  $\sqrt{16}$  by pressing  $\boxed{\ \ \ }$  16  $\boxed{\ \ \ }$  . What do you
  - **b** Looking at the figures above, what does  $\sqrt{16}$  give you?
  - Repeat **a** for  $6^2 = 36$ .
- 4 Use your calculator to find:
  - $12^{2}$
- $20^{2}$
- c  $50^{2}$
- $\sqrt{64}$
- $\sqrt{576}$
- $\sqrt{5184}$
- 5 What sized square would have 5184 small squares on subdivision?
- Copy and complete this table:

| Number | $2^1$ | $2^2$ | $2^3$ | $2^4$ | $2^5$ | $2^6$ | $2^7$ | 28 | $2^9$ | $2^{10}$ |
|--------|-------|-------|-------|-------|-------|-------|-------|----|-------|----------|
| Value  |       | 4     | 8     |       | 32    |       |       |    |       | 1024     |

- **b** Notice that as  $4 \times 8 = 32$ ,  $2^2 \times 2^3 = 2^5$ .
  - Is it true that

- $\mathbf{i} \quad 2^2 \times 2^4 = 2^6 \qquad \mathbf{ii} \quad 2^3 \times 2^4 = 2^7 \qquad \mathbf{iii} \quad 2^4 \times 2^5 = 2^9$ ?

 $27^{2}$ 

- Explain to your neighbour what you have discovered in **b**.
- **d** Use your discovery to calculate:
  - $8 \times 32$
- $4 \times 128$
- $8 \times 64$
- iv  $16 \times 64$

Copy and complete 7 this table:

|   | Number | $3^1$ | $3^2$ | $3^3$ | $3^4$ | $3^5$ | $3^6$ | $3^7$ | $3^8$ |
|---|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| I | Value  | 3     |       | 27    |       |       |       |       |       |

- **b** Use your table to explain that  $3^2 \times 3^4 = 3^6$ .
- Use your table to find:  $9 \times 81$
- $3 \times 243$

## `Little bites at big multiplication'

In this strategy we split one of the numbers into its factors and then multiply by each factor in turn.

For example,  $4 \times 9 = 4 \times 3 \times 3$  and  $17 \times 6 = 17 \times 2 \times 3$ =  $12 \times 3$  =  $34 \times 3$ = 36 = 102

#### **EXERCISE 1C.11**

1 Split into factors which are as small as possible:

For example,  $12 = 2 \times 6$ , but 6 could be written as  $2 \times 3$ 

So,  $12 = 2 \times 2 \times 3$  where the factors are as small as possible.

**a** 15 **b** 30 **c** 8 **d** 24

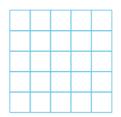
2 Use the above strategy to find:

**a**  $25 \times 8$  **b**  $5 \times 42$  **c**  $17 \times 6$  **d**  $13 \times 12$ 

3 Also use the method above to find:

**a**  $16 \times 63$  **b**  $58 \times 24$  **c**  $143 \times 9$ 

#### **EXERCISE 1C.12**


- 1 Luke saves \$6 from his earnings every week for 64 weeks. How much does he save?
- 2 Slade drives 98 kilometres every hour for 9 hours. How far does he travel?
- 3 Four trucks each carry 278 sheep to a market. How many sheep are carried altogether?

#### NUMERACY STRATEGIES (Chapter 1)

- 4 Karina picks 23 cartons of apples. Each carton holds 375 apples. How many apples did she pick altogether?
- 5 Joseph scored 94 baskets in a basketball season. 61 of them were two pointers and the rest were three pointers. How many points did he score in the season?
- 6 Hamish has 782 two dollar coins in a tin. What is their total value?
- 7 Greer is training for a mini-marathon on the school's 400 m track.
  - a If she runs around the track 24 times, how far does she run?
  - **b** If she does this every day for one week, what is her total training distance?
- **8** Lisa washes dishes in a local cafe. If she washes 183 dishes each night for three weeks, how many does she wash altogether?

## **EXERCISE 1C.10**

1 a



**b** 25

- 2 a i 36 ii 49 iii 64 iv 81 v 100
- 3 **a**  $\sqrt{16} = 4$  is the reverse of  $4^2 = 16$ .
  - **b**  $\sqrt{16}$  is the length of the side of the 4 by 4 square.
  - **c** As  $6^2 = 36$ ,  $\sqrt{36} = 6$ .
- **4 a** 144 **b** 400 **c** 2500 **d** 8 **e** 24 **f** 72
- 5 72 units by 72 units

6 a

| Number | $2^1$ | $2^2$ | $2^3$ | $2^4$ | $2^5$    |
|--------|-------|-------|-------|-------|----------|
| Value  | 2     | 4     | 8     | 16    | 32       |
| Number | $2^6$ | $2^7$ | $2^8$ | $2^9$ | $2^{10}$ |
| Value  | 64    | 128   | 256   | 512   | 1024     |

- b i yes ii yes iii yes
- c i 256 ii 512 iii 512 ii 1024

7 a

| Number | $3^1$ | $3^2$ | $3^3$ | $3^4$ | $3^5$ |
|--------|-------|-------|-------|-------|-------|
| Value  | 3     | 9     | 27    | 81    | 243   |
| Number | $3^6$ | $3^7$ | $3^8$ |       |       |
| Value  | 729   | 2187  | 6561  |       |       |

c i 729 ii 729 iii 729

# **EXERCISE 1C.11**

- 1 **a**  $15 = 3 \times 5$  **b**  $30 = 2 \times 3 \times 5$  **c**  $8 = 2 \times 2 \times 2$  **d**  $24 = 2 \times 2 \times 2 \times 3$  **e**  $36 = 2 \times 2 \times 3 \times 3$
- **2 a** 200 **b** 210 **c** 102 **d** 156
- **3 a** 1008 **b** 1392 **c** 1287

# EXERCISE 1C.12

- 1 \$384 **2** 882 km **3** 1112 sheep
- **4** 8625 apples **5** 221 points **6** \$1564
- 7 a 9600 m b 67200 m 8 3843 dishes