#### STANDARD DIVISIBILITY TESTS

| Number | Divisibility test                                                                                                                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | If the last digit is 0 or even, then the original number is divisible by 2.                                                                                                                                                         |
| 3      | If the sum of the digits is divisible by 3, then the original number is divisible by 3.                                                                                                                                             |
| 5      | If the last digit is 0 or 5 the number is divisible by 5.                                                                                                                                                                           |
| 7      | Write down all the digits except the last one. Take twice the last digit from this number. Keep doing this until you end up with a 2 digit number. If this 2 digit number is divisible by 7, the original number is divisible by 7. |
| 11     | Add the digits in odd positions. Add the digits in the even positions. Find the difference between your two answers. If the difference is 0 or a multiple of 11, the original number is divisible by 11.                            |

# **INVESTIGATION 3**

### **DIVISIBILITY BY 4 AND 9**



One of the joys of mathematics comes from investigating and discovering things for yourself. In this investigation you should discover rules for divisibility by 4 and by 9.

#### What to do:

1 Copy the following table:

| Number | Divisibility by 4 (Yes/No) | Last 2 digits |
|--------|----------------------------|---------------|
| 81     |                            |               |
| 154    |                            |               |
| 252    |                            |               |
| 3624   |                            |               |
| 8185   |                            |               |
| 9908   |                            |               |

- **2** Fill out the second column using your calculator (or using simple division) and fill out the third column, writing down the last two digits of each number.
- **3** Copy and complete: "A natural number is divisible by 4 if .....".
- **4** Copy and complete the following table:

| Number | Divisibility by 9 (Yes/No) | Sum of its digits |
|--------|----------------------------|-------------------|
| 81     |                            | 8 + 1 = 9         |
| 154    |                            |                   |
| 252    |                            |                   |
| 3624   |                            |                   |
| 8185   |                            |                   |
| 9908   |                            |                   |

**5** Copy and complete: "A natural number is divisible by 9 if .....".

# **EXERCISE 2E**

by 3, 4 and 5.

| •  | ERCISE ZE                                                                                                                                                                                                                                                                                                                                   |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1  | Answer <i>true</i> or <i>false</i> for the following: <b>a</b> 45 is divisible by 5 <b>b</b> 70 is divisible by 5 <b>c</b> 402 is divisible by 5 <b>d</b> 75 is divisible by 2 <b>e</b> 96 is divisible by 2 <b>f</b> 2338 is divisible by 2 <b>g</b> 92 is divisible by 3 <b>h</b> 126 is divisible by 3 <b>i</b> 56 235 is divisible by 3 |  |
| 2  | Which of the following are divisible by 3?                                                                                                                                                                                                                                                                                                  |  |
|    | <ul> <li>a 87</li> <li>b 153</li> <li>c 512</li> <li>d 861</li> <li>e 977</li> <li>f 1002</li> <li>g 111111</li> <li>h 56947</li> <li>i 12321</li> <li>j 778899</li> <li>k 123456789</li> <li>l 124124124</li> </ul>                                                                                                                        |  |
| 3  | Decide whether the following are divisible by 4: (Use <b>Investigation 3</b> result.) <b>a</b> 1250 <b>b</b> 4234 <b>c</b> 30420 <b>d</b> 315422                                                                                                                                                                                            |  |
| 4  | Decide whether the following are divisible by 9: (Use <b>Investigation 3</b> result.) <b>a</b> 801 <b>b</b> 2979 <b>c</b> 35 533 <b>d</b> 59 283                                                                                                                                                                                            |  |
| 5  | Determine by which of the numbers 2, 3, 4, 5, 9, 10 the following are divisible: <b>a</b> 120 <b>b</b> 616 <b>c</b> 960 <b>d</b> 1443                                                                                                                                                                                                       |  |
| 6  | Find all possible values of the missing digit if the following are divisible by 3:<br><b>a</b> $1\Box 3$ <b>b</b> $\Box 36$ <b>c</b> $6\Box 34$ <b>d</b> $89\Box 12$                                                                                                                                                                        |  |
| 7  | Discuss and then write down concise divisibility tests for divisibility by:<br><b>a</b> $10$ <b>b</b> $6$ <b>c</b> $8$ <b>d</b> $12$ <b>e</b> $24$                                                                                                                                                                                          |  |
| 8  | A four digit number has digit form ' $a2b4$ ' and is divisible by 3. What are the possible values of $a+b$ ?                                                                                                                                                                                                                                |  |
| 9  | I am the smallest positive integer which is divisible by the numbers 2, 3, 7, 10, 15 and 21. What am I?                                                                                                                                                                                                                                     |  |
| 10 | Find all possible values for the digits $p$ and $q$ if the number with digit form ' $p132q$ ' is divisible by $24$ .                                                                                                                                                                                                                        |  |

Write down the smallest positive integer which has a remainder of 1 when it is divided

### **Factors of Natural Numbers**

#### **EXERCISE 2F.1**

- 1 a List all the factors of 9. b List all the factors of 12.
  - Copy and complete this equation:  $12 = 2 \times ...$
  - d Write another pair of factors which multiply to give 12.
- 2 List *all* the factors of each of the following numbers:

| a | 10 | Ь | 18 | C | 30 | d | 35 |
|---|----|---|----|---|----|---|----|
| 2 | 44 | f | 56 | 9 | 50 | h | 84 |
|   | 39 | j | 42 | k | 66 |   | 75 |

3 Complete the factorisations below:

```
24 = 6 \times ....
                                        25 = 5 \times ....
                                                                           28 = 4 \times ....
d
     100 = 5 \times ....
                                 2 88 = 11 × ....
                                                                           88 = 2 \times ....
                                  h
     36 = 2 \times ....
                                       36 = 3 \times ....
                                                                           36 = 9 \times ....
     49 = 7 \times ....
                                 k 121 = 11 \times ....
                                                                           72 = 6 \times ....
                                 48 = 12 \times ....
                                                                       96 = 8 \times ...
     60 = 12 \times ....
```

Write the largest factor (not itself) of each of the following numbers:

```
a 12 b 18 c 27 d 48 e 44 f 75 g 90 h 39
```

### **EXERCISE 2F.2**

- 1 a Beginning with 8, write three consecutive even numbers.
  - **b** Beginning with 17, write five consecutive odd numbers.
- 2 a Write two even numbers which are not consecutive and which add to 10.
  - **b** Write all the pairs of two non-consecutive odd numbers which add to 20.
  - Write all the triplets of three different even numbers which add to 20.
- 3 Use the words "even" and "odd" to complete these sentences correctly:
  - a The sum of two even numbers is always .....
  - **b** The sum of two odd numbers is always .....
  - The sum of three even numbers is always .....
  - d The sum of three odd numbers is always ......
  - The sum of an odd number and an even number is always .....
  - When an even number is subtracted from an odd number the result is .....
  - When an odd number is subtracted from an odd number the result is .....
  - h The product of two odd numbers is always ......
  - The product of an even and an odd number is always .....

#### **HIGHEST COMMON FACTOR**

A number which is a factor of two or more other numbers is called a **common factor** of these numbers.

For example, 7 is a common factor of 28 and 35.

We can use the method of finding prime factors to find the **highest common factor** (HCF) of two or more natural numbers.

#### Example 12

Find the highest common factor (HCF) of 18 and 24.

 $2 \times 3$  is common to both and  $2 \times 3 = 6$ 

:. 6 is the highest common factor of 18 and 24.

### **EXERCISE 2F.4**

1 Find the highest common factor of:

**a** 9, 12 **b** 8, 16 **c** 18, 24 **d** 14, 42 **e** 18, 30 **f** 24, 32 **g** 12, 36 **h** 15, 33

2 Find the highest common factor of:

**a** 25, 50, 75 **b** 22, 33, 44 **c** 21, 42, 84 **d** 39, 13, 26

**3** Find the highest common factor of:

**a** 25, 35, 50, 60 **b** 36, 44, 52, 56 **c** 10, 18, 20, 36 **d** 32, 56, 72, 88

#### **Answers**

#### **EXERCISE 2E**

```
false
        true
                    true
                               false
    f
               g
2
    \mathbf{a}
        yes
               b
                   yes
                              no
                                   d
                                       yes
                                                            yes
    \mathbf{g}
        yes
                   no
                            yes
                                       yes
                                                            yes
3
                            yes
              b
                  no
                                  d
                   yes
              b
    a
        yes
                              no
5
                                        2, 3, 4, 5, 10
        2, 3, 4, 5, 10
                          b
                              2, 4
                       3, 6, 9 c
                                     2, 5, 8
                                               d
```

- 7 a last digit is 0
  - **b** divisible by 2 and divisible by 3
  - c number formed by last three digits is divisible by 8
  - **d** divisible by 3 and divisible by 4
  - e divisible by 3 and divisible by 8
- **8** 3, 6, 9, 12, 15, 18 **9** 210

## **11** 61

### **EXERCISE 2F.1**

- 1 **a** 1, 3, 9 **b** 1, 2, 3, 4, 6, 12 **c**  $12 = 2 \times 6$  **d**  $3 \times 4$
- **2 a** 1, 2, 5, 10 **b** 1, 2, 3, 6, 9, 18
  - **c** 1, 2, 3, 5, 6, 10, 15, 30 **d** 1, 5, 7, 35
  - e 1, 2, 4, 11, 22, 44 f 1, 2, 4, 7, 8, 14, 28, 56
  - **g** 1, 2, 5, 10, 25, 50
  - **h** 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84
  - i 1, 3, 13, 39 j 1, 2, 3, 6, 7, 14, 21, 42
  - **k** 1, 2, 3, 6, 11, 22, 33, 66
  - 1 1, 3, 5, 15, 25, 75
- 3 a 4 b 5 c 7 d 20 e 8 f 44 g 18
  - h 12 i 4 j 7 k 11 l 12 m 5 n 4
  - **o** 12
- **4 a** 6 **b** 9 **c** 9 **d** 24 **e** 22 **f** 25 **g** 45 **h** 13

# **EXERCISE 2F.2**

- **1 a** 8, 10, 12 **b** 17, 19, 21, 23, 25
- **2 a** 2+8 **b** 1+19, 3+17, 5+15, 7+13
  - 0+2+18, 0+4+16, 0+6+14, 0+8+12, 2+4+14, 2+6+12, 2+8+10, 4+6+10
- 3 a even b even c even d odd e odd f odd g even h odd i even

# **EXERCISE 2F.3**

- **1 a** 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
  - b No, a prime has exactly two factors, 1 and itselfc Yes, 2
- **2 a**  $5485 = 5 \times 1097$  **b**  $8230 = 2 \times 4115$ 
  - **c**  $7882 = 2 \times 3941$  **d**  $999 = 3 \times 333$
- 3 a  $2 \times 2 \times 2 \times 3$  b  $2 \times 2 \times 7$  c  $3 \times 3 \times 7$ 
  - d  $2 \times 2 \times 2 \times 3 \times 3$  e  $2 \times 2 \times 2 \times 17$ f  $2 \times 2 \times 3 \times 7$  g  $2 \times 2 \times 2 \times 3 \times 3 \times 3$
  - **h**  $2 \times 2 \times 2 \times 2 \times 3 \times 11$  **i**  $3 \times 3 \times 3 \times 3 \times 5$
  - $\mathbf{j} \quad 2 \times 2 \times 2 \times 2 \times 7 \times 7$
- 4 a 3 b 11 c 15 d 17, 71, 35, 53 e 5

# **EXERCISE 2F.4**

- 1 a 3 b 8 c 6 d 14 e 6 f 8 g 12 h 3
- **2 a** 25 **b** 11 **c** 21 **d** 13
- $\textbf{3} \quad \textbf{a} \quad 5 \quad \textbf{b} \quad 4 \quad \textbf{c} \quad 2 \quad \textbf{d} \quad 8$