Do now

Expand: 3(7-q)	Expand: $9(n+3)$	$\begin{aligned} & \text { Expand: } \\ & 10(7+6 j) \end{aligned}$	Expand: $8(8 r+4)$
Expand: $4(7-g)$	Expand: $10(9+10 q)$	Expand: $8(f+g-6)$	$\begin{array}{lc}8.0 & \text { Expand: } \\ & 5(\mathrm{~h}-\mathrm{j}+3)\end{array}$
Expand: $7(10-2 k)$	Expand: $5 t^{2}\left(8 u v-9 t^{3}\right)$	Expand: $-8(r+t-10)$	Expand: $-7 f^{2}\left(8 g h+9 f^{4}\right)$
Expand: $-5(y-a-9)$	Expand: $-6(h+j-2)$	15.. Expand: $-8 x^{3}\left(5 y a+2 x^{2}\right)$	$\begin{aligned} & \text { Expand: } \\ & -8 m^{5}\left(3 m^{5}+6 n p\right) \end{aligned}$

Walt Factorise algebraic terms

Success criteria I know how to find the highest common factor I need to put a bracket after removing the common factor to keep the remaining terms inside the bracket.

Factorisation is the reverse process of expansion.
For example: $\quad 3(x+2)=3 x+6$ is expansion

$$
3 x+6=3(x+2) \quad \text { is factorisation } .
$$

In the factorisation of an algebraic expression we have to insert a bracket.
To do this we find the HCF (highest common factor) of all terms in the expression and place it before the bracket to be inserted.

Example 34

Find the HCF of:
a $3 a$ and 9
b $\quad 4 a b$ and $2 b$
c $5 x^{2}$ and $10 x$
$\begin{aligned} 3 a & =3 \times a \\ 9 & =3 \times 3\end{aligned} \quad$ b $\begin{array}{rlrl}4 a b & =2 \times 2 \times a \times b \\ 2 b & =2 \times b & \text { c } & \\ \therefore \quad \text { HCF } & =3\end{array}$

Introduction to factorisation

1 Find the missing factor:
a $3 \times \square=3 x$
b $3 \times \square=12 b$
c $\quad 5 \times \square=10 x y$
d $\square \times 4 x=4 x^{2}$
e $\square \times 5 y=10 y^{2}$
f $\square \times 3 a=3 a^{2}$
g $x \times \square=2 x y$
h $\square \times 2 x=6 x^{2}$
| $6 y \times \square=12 y^{2}$

2 Find the HCF of:
a $\quad 4 x$ and 12
b $\quad 3 x$ and 6
c $4 y$ and 14
d $3 a b$ and $6 b$
e $4 y$ and $4 x y$
f $5 a d$ and $10 a$
g $6 x^{2}$ and $2 x$
h $3 y$ and $9 y^{2}$
I $12 a$ and $3 a^{2}$

7xample 35

Factorise: a $2 a+6$
b $a b-b d$
a $\quad 2 a+6$
b $a b-b d$
$=2 \times a+2 \times 3$
$=a \times b-b \times d$
$=2(a+3)$
$=b(a-d)$
$\{\operatorname{In} \mathrm{a}, 2$ is the HCF of $2 a$ and 6$\}$
$\{$ In \mathbf{b}, b is the HCF of $a b$ and $b d\}$

3 Factorise:
a $5 a+10$
e $11 a+22 b$
b $6 a+8$
I $25 x+20$
f $16 x+8$
c $\quad 6 a+12 b$
d $4+8 x$
j $x+a x$
g $4 a+8$
h $10+15 y$
k $3 x+m x$
\| $a c+a n$

4 Factorise:
a $2 a-10$
b $4 y-20$
c $3 b-12$
d $6 x-24$
e $6 x-14$
f $14 y-7$
g $5 a-15$
h $10-15 b$
I $20 b-25$
j $16 b-24$
k $\quad x-x y$
| $a b-a c$

Example 36

Factorise: a $\quad 3 x^{2}+12 x$
b $4 y-2 y^{2}$

$$
\begin{aligned}
& \text { a } \quad 3 x^{2}+12 x \\
& \text { b } \quad 4 y-2 y^{2} \\
& =3 \times x \times x+4 \times 3 \times x \\
& =2 \times 2 \times y-2 \times y \times y \\
& =3 x(x+4) \quad=2 y(2-y)
\end{aligned}
$$

5 Factorise:
a $x^{2}+3 x$
b $2 x^{2}+8 x$
c $3 x^{2}-12 x$
d $6 x-x^{2}$
e $8 x-4 x^{2}$
f $15 x-6 x^{2}$
g $2 x^{3}+4 x^{2}$
h $2 x^{3}+2 x^{2}+4 x$

Factorise expressions simple examples

- $21-3 q$	2.0 $9 n+27$	3.0	4.v $64 r+32$
5. $28-4 \mathrm{~g}$	6.v $90+100 q$	7.v $8 f+8 g-48$	8.0 \% 5 - $5 j+15$
. $70-14 k$	10.e $40 t^{2} u v-45 t^{5}$	${ }^{11.0}-8 r+-8 t--80$	${ }^{12.0}-56 f^{2} g h+-63 f^{6}$
${ }^{3.0}-5 y--5 a-45$	${ }^{14.0}-6 h+-6 j--12$	${ }^{15.0}-40 x^{3} y a+-16 x^{5}$	$-24 m^{10}+-48 m^{5} n p$

Answers
$\begin{array}{lllllllllllll}\mathbf{1} & \mathbf{a} & x & \mathbf{b} & 4 b & \mathbf{c} & 2 x y & \mathbf{d} & x & \mathbf{e} & 2 y & \mathbf{f} & a\end{array}$ g $2 y$ h $3 x$ i $2 y$
$\mathbf{2} \quad \mathbf{a} \quad 4 \quad \mathbf{b} \quad 3 \begin{array}{llllllll} & \mathbf{c} & 2 & \mathbf{d} & 3 b & \mathbf{e} & 4 y & \mathbf{f}\end{array} 5 a$ g $2 x$ h $3 y$ i $3 a$
3 a $5(a+2)$ b $2(3 a+4)$ c $6(a+2 b)$
d $4(1+2 x)$ e $11(a+2 b)$ f $8(2 x+1)$
g $4(a+2)$ h $\quad 5(2+3 y) \quad \mathbf{i} \quad 5(5 x+4)$
$\mathbf{j} \quad x(1+a) \quad \mathbf{k} \quad x(3+m) \quad$ l $\quad a(c+n)$
4 a $2(a-5)$ b $4(y-5)$ c $3(b-4)$
d $6(x-4)$ e $2(3 x-7)$ f $7(2 y-1)$
g $5(a-3)$ h $5(2-3 b)$ i $5(4 b-5)$
$\mathbf{j} \quad 8(2 b-3) \quad \mathbf{k} \quad x(1-y) \quad \mathbf{l} \quad a(b-c)$
5 a $x(x+3)$ b $2 x(x+4)$ c $3 x(x-4)$
d $x(6-x)$ e $4 x(2-x)$ f $3 x(5-2 x)$
g $2 x^{2}(x+2)$ h $2 x\left(x^{2}+x+2\right)$

