A Complete Guide to ...

This resource contains:
\square Table of contents
\square Teaching notes
■ In class activity sheets involving

- worked examples
- basic skills
- word problems
- problem solving
- group work

\square Homework / Assessment activity sheets
■ Answers
These resources are supplied as PHOTOCOPY MASTERS
Author: A. W. Stark

Author:
A. W. Stark

Copyright \mathbb{C}_{1998}
A. W. Stark

First Published March 1998
Formatting and publishing by
Andrew Słark
Formerly trading as:

NOW trading as:

P 0 Box 21304
Edgeware
CHRISTCHURCH 8143
NEW ZEALAND
哑 +6433790516 or 国 +6433790619
This resource unit has been supplied on the understanding that copies of any part of this publication will not be given or sold to teachers or students from other schools or institutions.

This resource unit may be used as a master, and therefore can be photocopied, only by the school or institution that has purchased this resource unit.

Note from the author:

This resource ...

*A Complete Guide to Number

is one of a series of FIVE resources written utilising the objectives as stated in

Mathematics in the New Zealand Curriculum for Level 4.

With my experiences as a specialist mathematics teacher, I enjoyed mathematics as a subject, but I am aware that not all teachers feel the same way about mathematics. It can be a difficult subject to teach, especially if you are unsure of the content or curriculum and if resources are limited.

This series of resources has been written with you in mind. I am sure you will find this resource easy to use and of benefit to you and your class.

Resources in this series:

*A Complete Guide to Number

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4

A Complete Guide to Measurement

written utilising the objectives as stated in
Resource Code:
L4MM
Mathematics in the New Zealand Curriculum for Level 4.

A Complete Guide to Geometry

written utilising the objectives as stated in
Resource Code:
L4MG
Mathematics in the New Zealand Curriculum for Level 4.

A Complete Guide to Algebra

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4.

A Complete Guide to Statistics

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4.

For more information about these and other resources, please contact ...

운 +6433790516
國 +64 33790619
Acknowledgement:
I would like to thank the staff and pupils of Mairehau Primary School, Christchurch for their assistance in making these resources possible.

This resource has been divided into EIGHT sections as listed below. Although there are no page numbers, the sections follow in sequential order as listed.

Note: 'In-class' Worksheets Masters are lesson by lesson reuseable worksheets that can be photocopied or copied on to an OHP.

Homework / Assessment Worksheets Masters can be used as homework to reinforce work covered in class or they can be used for pupil assessment.

Section	
	List of Number Objectives: Table of 'In-class' Worksheets / Objectives covered
)	Table of Contents: 'In-class' Worksheets
3	'In-class' Worksheets Masters
4	Teaching Notes I Answers for 'In-class' Worksheets
	 Homework / Assessment Worksheets
	Homework / Assessment Worksheets Masters
∇	Answers for Homework / Assessment Worksheets
	Worksheet tracking sheets for teachers to record pupil names / worksheets covered

Number
The following are the objectives for Number, Level 4, as written in the
MATHEMATICS in the New Zealand Curriculum document, first published 1992. [Refer Page 44]

Exploring number

Within a range of meaningful contexts, students should be able to:

- N1 explain the meaning of negative numbers;
- N2 explain the meaning and evaluate powers of whole numbers;
- N3 find a fraction equivalent to one given;
- $\mathbf{N 4}$ express a fraction as a decimal, and vice versa;
- N5 express a decimal as a percentage, and vice versa;
- N6 express quantities as fractions or percentages of a whole.

Exploring computation and estimation

Within a range of meaningful contexts, students should be able to:

- N7 make sensible estimates and check the reasonableness of answers;
- N8 write and solve problems involving decimal multiplication and division;
- N9 find a given fraction or percentage of a quantity;
- N10 explain satisfactory algorithms for addition, subtraction, and multiplication;
- N11 demonstrate knowledge of the conventions for order of operations.

At the top of each 'In-class' worksheet and Homework / Assessment worksheet, the Number objective(s) being covered has been indicated. EXAMPLE: N1 means objective 1, N2 means objective 2, etc.

The Mathematical Processes Skills:
Problem Solving,
Developing Logic \& Reasoning,
Communicating Mathematical Ideas,
are learned and assessed within the context of the more specific knowledge and skills of number, measurement, geometry, algebra and statistics. The following are the Mathematical Processes Objectives for Level 4.
Problem Solving Achievement Objectives [Refer page 24]

- MP1 pose questions for mathematical exploration;
- MP2 effectively plan mathematical exploration;
- MP3 devise and use problem-solving strategies to explore situations mathematically;
- MP4 find, and use with justification, a mathematical model as a problem-solving strategy;
- MP6 use equipment appropriately when exploring mathematical ideas.

Developing Logic and Reasoning Achievement Objectives [Refer page 26]

- MP8 classify objects, numbers and ideas;
- MP9 interpret information and results in context;
- MP10 make conjectures in a mathematical context;
- MP15 use words and symbols to describe and generalise patterns.

Communicating Mathematical Ideas Achievement Objectives [Refer page 28]

- MP16 use their own language and mathematical language and diagrams to explain mathematical ideas;
- MP17 devise and follow a set of instructions to carry out a mathematical activity;
- MP20 record information in ways that are helpful for drawing conclusions and making generalisations;
- MP21 report the results of mathematical explorations concisely and coherently.

Note:

The codes MP1, MP2, etc. have been created by numbering the Mathematical Processes Achievement Objectives in order as listed in the MATHEMATICS in the New Zealand Curriculum document. The numbering gaps occur as not all objectives are covered at Level 4. [Refer to pages 23-29 of the Curriculum document]

'In-class’ Number Worksheets
 Table of Worksheet Number / Objectives Covered

See the opposite page for details of each objective.

	Number Objectives											Mathematical Processes Objectives												
Worksheet Number	$\begin{aligned} & \mathrm{N} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{2} \end{aligned}$	$\begin{aligned} & \hline \mathbf{N} \\ & 3 \end{aligned}$	$\begin{array}{\|c} N \\ 4 \end{array}$	$\begin{gathered} \mathbf{N} \\ 5 \end{gathered}$	$\begin{gathered} \hline N \\ \hline 6 \end{gathered}$	$\begin{aligned} & \hline N \\ & 7 \end{aligned}$	$\begin{aligned} & \hline N \\ & 8 \end{aligned}$	$\begin{aligned} & \hline \mathbf{N} \\ & 9 \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} \mathbf{N} \\ \mathbf{1 1} \end{gathered}$	1	2	3	4	6	8	9	10	15	16	17	20	21
1																		*						
2												*		*				$\boldsymbol{*}$						
3	*											*		*				$\boldsymbol{*}$						
4	$\boldsymbol{*}$											$\mathbf{*}$		*	*			$\boldsymbol{*}$			\boldsymbol{x}			
5	*											*		*	*			*						
6		$\boldsymbol{*}$												*				$\boldsymbol{*}$						
7			*											*				$\boldsymbol{*}$				*		
8				$\boldsymbol{*}$										$\boldsymbol{*}$				$\boldsymbol{*}$				$\boldsymbol{*}$		
9				*	$\boldsymbol{*}$									*				*				*		
10						*						*		*				$\boldsymbol{*}$				*		
11							*					*		*				$\boldsymbol{*}$				*		
12							*	*						*				$\boldsymbol{*}$						
13								*				*		*				$\boldsymbol{*}$				\boldsymbol{x}		
14								*				*		*				$\boldsymbol{*}$				*		
15									*			*		*				$\boldsymbol{*}$				*		
16									\boldsymbol{x}			$\boldsymbol{*}$		*				$\boldsymbol{*}$				*		
17										*								$\boldsymbol{*}$				*		
18											*	*		*				$\boldsymbol{*}$				*		

Table of Contents for the 'In-class' Worksheet Masters for Number, Level 4

Worksheet Number	Topic	Number Objective(s)				
1	Adding and subtracting whole numbers / Multiplying and dividing whole numbers	Revision				
2	Special numbers	Revision				
3	Understanding negative numbers	N1				
4	Understanding and using number lines	N1				
5	More negative numbers / Bank overdrafts	N1				
6	Squares \& square roots	N2				
7	Equivalent fractions	N3				
8	Expressing a fraction as a decimal / Expressing a decimal as a fraction	N4				
9	Expressing a decimal as a percentage / Expressing a percentage as a decimal / Converting between fractions, decimals and percentages	N4 / N5				
10	Expressing a quantity as a fraction or percentage of a whole	N6				
11	Rounding numbers and finding estimates	N7				
12	Estimating totals involving money	N7 / N8				
13	Multiplying and dividing by powers of 10	N8				
14	Multiplying and dividing decimals	N8				
15	Finding a fraction of a quantity	N9				
16	Finding a percentage of a quantity	N9				
17	Adding, subtracting and multiplying with accuracy	N10				
18	Order of operations	N11				
	Teaching Notes / Answers	$\\|\\|\\|\\|$				

Please DO NOT write on the sheets

Adding and subtracting whole numbers:

The ability to add and subtract with speed and accuracy is a useful skill.
Setting out is important, especially when a calculator is not being used.
Example: 235 + 956 could be written as ..

$$
235
$$

and 1509-986 could be written as .. 1509

$$
+956
$$

Task 1

1. Copy this 'number cross' into the squares of your maths book.
2. Use the clues for across and down to complete the number cross by working out these addition and subtraction problems.

Clues across

1. $195+378$
2. $5000-703$
3. $219+302$
4. 453-361
5. $624-575$
6. $679+233$
7. $1000-743$
8. $3604+821$

Clues down

1. $297+232$
2. 2000-1096
3. $937+1815$
4. $269+489$
5. $29765+45475$
6. 1632-1575
7. 761-726
8. $1378+776$
9. $932-683$

10. $1963+2228$
11. $54004+41866$
12. 461-389

Multiplying and dividing whole numbers:

The ability to multiply and divide with speed and accuracy is also a useful skill.
Setting out is important, to help avoid making mistakes.
Example: 135×12 could be written as ...
135 and $4816 \div 4$ could be written as ...
$4 \longdiv { 4 8 1 6 }$

Task 2

Clues down

1. Copy this 'number cross' into the squares of your maths book.
2. Use the clues for across and down to complete the number cross by working out these multiplication and division problems.

Clues across

1. 25×7
2. $960 \div 4$
3. 31×3
4. $762 \div 6$
5. 403×6
6. 820×3
7. $343 \div 7$
8. $1104 \div 3$
9. 64×9
10. 2404×5
11. $868 \div 7$
12. $468 \div 9$
13. $2476 \div 4$
14. 1604×6
15. 1718×5
16. $1016 \div 8$
17. 504×4
18. 6338×5
19. $852 \div 12$

Special numbers:

"Is the number 6 a prime number?" asked Linda.
"Can you list the first five multiples of 7?" asked Michelle.
"Can you list the factors of 12?" asked Nigel.
Prime numbers, multiples, factors and prime factors are all special types of numbers.

Discuss what makes these numbers special.

Task 3

Copy each sentence below about these special numbers, replacing the with one of the words listed below.

1. A number can only be divided by two numbers, itself and 1.
2. The of a number are found by multiplying the number by $1,2,3,4,5$, etc and recording the answers.
3. A of a given number is a whole number that divides exactly into the given number. There is no remainder.

factor
multiples
prime
prime factor

4. A is a factor that is a prime number.

Working with prime numbers.
5. List the first 10 prime numbers.
6. List the prime numbers between 40 and 50 .
7. Which numbers in this list are prime numbers? $5,8,11,15,21,23,27,31,37,42,49,51,89,91$

The number 9 can be written as two prime numbers. Example: $7+2=9$.
Write these numbers as two prime numbers.
8. 7
9. 15
10. 28
11. 32
12. 40
13. 48

Working with multiples.
List the first 10 multiples of these numbers.
14. 5
15. 9
16. 12
17. 15
18. 19
19. 23
20. List the multiples of 8 that are less than 45.
21. List the multiples of 7 that are between 20 and 60 .
22. List the multiples of 13 that are between 35 and 80 .

Working with factors.
List the factors of these numbers.
23. 6
24. 10
25. 18
26. 24
27. 27
28. 36

The number 15 can be written as two prime factors. Example: $3 \times 5=15$
Write these numbers as two prime factors.
29. 14
30. 77
31. 35
32. 65
33. 51
34. 85

Task 4

Guess the number game: Read the clues in the box below and then work out the number.
1.
2. $\begin{aligned} & \text { I am an even number. } \\ & \text { I am greater than } 40, \\ & \text { but less than } 56 . \\ & \text { I am a multiple of } 9 . \\ & \text { What number am I? }\end{aligned}$
3. Create 5 similar 'Guess the number' questions, where there is only one correct answer.
Exchange your questions with a classmate.

Understanding negative numbers:

Examples: Last night there was a 5 degree frost.
A building has two car park levels beneath the ground floor.
A diver went 30 metres below the surface of the sea.
John's bank account is in overdraft by the sum of $\$ 200$.
In these examples, the numbers mentioned could be written as negative numbers.

Answers: a ${ }^{-} 5^{\circ} \mathrm{C}$ frost, car park levels -1 and $-2,-30 \mathrm{~m}$ below the surface, and $-\$ 200$ bank balance.
Positive numbers are above zero and the positive sign does not have to be shown.
Negative numbers are below zero, and the small negative sign must be shown.

Task 5

A new 6 storey office block has been built, with two additional levels below ground level.

1. How would you label the floors of this building. $G=$ ground floor.
2. If Miri was on the 2nd floor and goes down 3 floors, which floor would she be at?
3. If Rangi was two floors below the ground floor and goes up 5 floors, which floor would he be on?

This diagram shows a sailing ship, a diver, some birds and some fish. The sea level is at zero on the scale drawn.
4. How high is the mast above the sea level?
5. State the height of each bird above the sea level as positive numbers.
6. State the depth of the 4 fish below sea level as negative numbers.
7. State the depth of the diver below sea level as a negative number.
A bird is flying 4 metres above the sea, then drops 7 metres straight down.

8. State the depth the bird reaches below the surface of the sea, as a negative number.

The temperature scale is one of the most commonly used scales that uses negative numbers, especially when recording maximum and minimum daily temperatures.
9. What is the temperature on this diagram of a thermometer?

Use the thermometer scale to calculate the new temperatures after the following changes ...
10. Starting temperature $7^{\circ} \mathrm{C}$, drops $5^{\circ} \mathrm{C}$
12. Starting temperature $5^{\circ} \mathrm{C}$, drops $9^{\circ} \mathrm{C}$
14. Starting temperature $-2^{\circ} \mathrm{C}$, rises $7^{\circ} \mathrm{C}$
16. Starting temperature $-1^{\circ} \mathrm{C}$, drops $6^{\circ} \mathrm{C}$
18. Starting temperature $4^{\circ} \mathrm{C}$, drops $10^{\circ} \mathrm{C}$
20. Starting temperature $-8^{\circ} \mathrm{C}$, rises $6^{\circ} \mathrm{C}$
11. Starting temperature $2^{\circ} \mathrm{C}$, rises $5^{\circ} \mathrm{C}$
13. Starting temperature $3^{\circ} \mathrm{C}$, drops $10^{\circ} \mathrm{C}$
15. Starting temperature $0^{\circ} \mathrm{C}$, drops $8^{\circ} \mathrm{C}$
17. Starting temperature $-6^{\circ} \mathrm{C}$, rises $9^{\circ} \mathrm{C}$
19. Starting temperature $-3^{\circ} \mathrm{C}$, drops $5^{\circ} \mathrm{C}$
21. Starting temperature $-6^{\circ} \mathrm{C}$, rises $6^{\circ} \mathrm{C}$

Understanding and using number lines:

Positive and negative numbers can be represented on a number line. A number line goes on forever, in both directions. Example:
 Example:

The first number of the question is the starting point on the number line.

When you add 9 on a number line, which direction do you move?
When you add 7 - 7 on a number line, which direction do you move?

Answer: Move 9 to the right.
Answer: Move 7 to the left.

Task 6

Use the number lines below to add these positive and negative numbers together. The starting number has been marked with a dot on the number line.

1.

5.

6.

Add these positive and negative numbers, using the number line above, if required.
7. $-5+9$
8. $4+-7$
9. $-8+9$
10. $7+-5$
11. $-9+8$
12. $7+-10$
13. $-10+9$
14. $9+-12$
15. $-9+15$
16. $9+-13$
17. $-7+16$
18. $11+-17$
19. $-12+19$
20. $10+-16$
21. $-11+16$
22. $9+-18$
23. $7+-18$
24. $6+-17$
25. $11+-19$
26. $-8+19$
27. $-7+17$
28. $-2+-6$
29. $-3+-8$
30. $-5+-4$
31. $-6+-5$

Task 7

Using a die (dice), play this game in small groups.
The odd numbers are negative, that is, $-1,-3 \&-5$. The even numbers are positive, that is, $2,4 \& 6$.
Roll the die 5 times, recording the numbers that appear, then add up the numbers.
Example: $2+-3+-1+6+-5=-1$.
Continue until each pupil has had 5 turns, then total your scores.
The winner is the pupil with the lowest combined score.

More negative numbers:

Sally drew two different coloured circles to represent positive and negative numbers.

Example: What numbers do these two groups of circles represent?

Answer: 5 and ${ }^{-6}$
(Note: The positive sign is left off the 5)

If one positive circle and one negative circle cancel each other, what number do all the circles above represent?

Answer: $5+-6=-1$

Task 8

Count the positive and negative (1D) circles in each group below and write a simple mathematical sentence for each. Remember one positive circle cancels one negative circle. Example: $4+-9=-5$.
1.

4.

Work out these questions involving adding positive and negative numbers.
5. $-6+7$
6. $9+-12$
7. $-10+9$
8. $15+-12$
9. $-11+14$
10. $20+-18$
11. $-18+12$
12. $13+-12$
13. $-14+18$
14. $19+-19$
15. $-20+25$
16. $18+{ }^{-19}$
17. $-23+21$
18. $19+-20$
19. $-24+27$
20. $31+-27$
21. $27+-30$
22. $29+-32$
23. $36+-40$
24. $50+46$
25. $-50+42$
26. $-15+-10$
27. $27+-36$
28. $-18+-23$
29. $28+-33$

Bank overdrafts:

When you spend more money than you have in your bank account, your bank account is said to be in overdraft. The balance of your account could be written as a negative number.
Banks allow you to go into overdraft, so they can charge you interest on the negative balance.
Example: - $\$ 200$ means the account is $\$ 200$ in overdraft.
If Mr Keys has $\$ 150$ in the bank and withdraws $\$ 200$, what will his bank balance be? Answer: - $\$ 50$

Task 9

When money is deposited into an account or withdrawn from an account, it is called a transaction.
Copy this table below, then calculate the new balance of this bank account after each transaction.

1. | Date | Withdrawals | | Deposits | | Balance | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $14 / 11$ | Opening balance | | | | | $\$ 250$ | 00 |
| $15 / 11$ | Bought new bike | $\$ 295$. | 00 | | | | |
| $17 / 11$ | Wages from part-time job | | | $\$ 85$ | 60 | | |
| $21 / 11$ | Bought new clothes | $\$ 75$ | 90 | | | | |
| $25 / 11$ | Garage sale profits | | | $\$ 87$ | 50 | | |

2. Create your own bank balance questions and exchange with a classmate.

Squares \& square roots:

When a number is multiplied by itself, such as ... $1 \times 1,2 \times 2,3 \times 3,4 \times 4,5 \times 5,6 \times 6,7 \times 7,8 \times 8$ etc. ... the answers that are created, are numbers known as squares. That is, $1,4,9,16,25,36,49,64, \ldots$

These can be written as $1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}$, etc., where the small number 2 is called a power.
In this case it is the power of 2 . We say 1^{2} as one squared, 2^{2} as two squared, 3^{2} as three squared, etc.
Example: Find the value of nine squared, which is written as 9^{2}
Answer: $9 \times 9=81$
The opposite of squaring a number is to find the square root. The symbol for square root is $\sqrt{ }$.
Example: If $9^{2}=81$, then $\sqrt{81}=9$. Find the square root of 144 or $\sqrt{144}$. Answer: 12
What key on a calculator would you use to find the square root of a number?
Answer: $\sqrt{ }$

Task 10

Calculate the squares of these numbers.

1. 6^{2}
2. 9^{2}
3. 12^{2}
4. 200^{2}
5. 10^{2}
6. 5^{2}
7. 7^{2}
8. 8^{2}
9. 15^{2}
10. 20^{2}
11. 30^{2}
12. 100^{2}
13. 50^{2}
14. 1000^{2}
15. 250^{2}
16. 3.4^{2}
17. 7.3^{2}
18. 4.6^{2}
19. 5.9^{2}
20. 2.8^{2}
21. 0.9^{2}
22. 0.25^{2}
23. 0.85^{2}
24. 0.12^{2}
25. 1.54^{2}

Calculate the square roots of these numbers.
26. $\sqrt{64}$
27. $\sqrt{16}$
28. $\sqrt{81}$
29. $\sqrt{121}$
30. $\sqrt{49}$
31. $\sqrt{25}$
32. $\sqrt{144}$
33. $\sqrt{225}$
34. $\sqrt{9}$
35. $\sqrt{900}$
36. $\sqrt{100}$
37. $\sqrt{196}$
38. $\sqrt{289}$
39. $\sqrt{1600}$
40. $\sqrt{2500}$

Cubes and other powers:

If 2^{2} means 2×2, what does 2^{3} mean?
Answer: 2 cubed or $2 \times 2 \times 2=8$
Discuss what $2^{4}, 2^{5}$ or 2^{6} mean.
How do you say 2^{4} ?
Answer: "two to the power of 4"

Task 11

Write the following as numbers, without working out the answers ...

1. three to the power of five,
2. four to the power of three,
3. five to the power of six,
4. seven to the power of three,
5. nine to the power of four,

6. ten to the power of six,
7. twelve to the power of three,
8. twenty to the power of five.

Calculate the following.
9. 3^{3}
10. 4^{3}
11. 5^{3}
12. 10^{3}
13. 2^{4}
14. 2^{5}
15. 2^{6}
16. 3^{5}
17. 7^{3}
18. 9^{3}
20. 9^{4}
21. 8^{4}
22. 10^{4}
23. 5^{5}

Equivalent fractions:

A fraction is part a whole.
Example: A pie is cut into four equal pieces. Each piece of the pie is one quarter of the whole pie. Written as $1 / 4$, it means 1 out of 4.

If a pie was cut into 8 equal pieces, how many pieces would make up a quarter of the pie? Answer: 2 out of $8=2 / 8$,

The fractions $1 / 4$ and $2 / 8$, are equivalent fractions, as they represent the same part or fraction of a whole. Discuss other fractions that are equivalent to $1 / 4$.

Task 12

1. What fraction of each group of diagrams $(A$ to $H)$ is shaded?
A

B

C

D

E

F

G

H

2. From your answers to question 1 above, match the equivalent fractions.

To create equivalent fractions, multiply (or divide) the top and bottom numbers of the fraction by the same number. An equivalent fraction to $1 / 4$ can be created by multiplying by 5 , or any other number.
Example: $1 / 4 \times 5 / 5=\frac{1 \times 5}{4 \times 5}=5 / 20$. Another equivalent fraction would be $\ldots 1 / 4 \times 9 / 9=\frac{1 \times 9}{4 \times 9}=9 / 36$ Complete each calculation to create equivalent fractions.
3. $1 / 4 \times 5 / 5=$
4. $1 / 2 \times \frac{8}{8}=$
5. $1 / 5 \times 5 / 5=$
6. $1 / 7 \times 4 / 4=$
7. $2 / 7 \times 4 / 4=$
8. $2 / 3 \times 7 / 7=$
9. $3 / 8 \times 7 / 7=$
10. $5 / 8 \times 5 / 5=$
11. $3 / 8 \times 3 / 3=$
12. $4 / 9 \times 5 / 5=$
13. $6 / 11 \times 3 / 3=$
14. $3 / 7 \times{ }^{11} / 11=$

Copy and complete these equivalent fractions as you replace the with a number.
15. $1 / 4=\$ / 8$
16. $1 / 2=* / 10$
17. $1 / 3=* / 9$
18. $1 / 5=* / 20$
19. $1 / 8=* / 32$
20. $3 / 4=* / 12$
21. $2 / 3=* / 12$
22. $3 / 5=* / 10$
23. $4 / 7=* / 14$
24. $5 / 6=* / 30$
25. $5 / 12=* / 24$
26. $8 / 16=* / 4$
27. $15 / 30=* / 6$
28. $5 / 20=* / 4$
29. $12 / 36=\$ / 3$

Match the fractions listed below with an equivalent fraction in the box, then create your own equivalent fraction for each.
30. $1 / 4$
31. $1 / 2$
32. $2 / 3$
33. $3 / 5$
34. $5 / 6$
35. $3 / 4$
36. $3 / 8$
37. $4 / 7$
38. $5 / 9$

Expressing a fraction as a decimal:

The top number of a fraction is called the numerator. The bottom number is called the denominator. Example: In the fraction $\frac{3}{4}, 3$ is the numerator and 4 is the denominator.

Fractions can be converted into decimals by dividing the numerator by the denominator.
Example: Convert $\frac{3}{4}$ to a decimal.

Answer: The fraction $\frac{3}{4}$ converted to a decimal is 0.75 .

Some fractions can be simplified by dividing the numerator and denominator by the same number.
Example: ${ }^{50} / 100$ (divide by 10$)=5 / 10($ divide by 5$)=1 / 2$ This will make the conversion to a decimal easier.
Some fractions create interesting decimals, with a recurring pattern of digits.
Example: $\quad 2 / 9=0.2222^{-}$This small dot means that the 2 's $g o$ on forever.
$3 / 11=0.272^{\circ} \quad$ Both the digits 2 and 7 repeat in this decimal.

Task 13

Convert these fractions to decimals. Some fractions can be simpified first. Example: $8 / 10=4 / 5$

1. $1 / 4$
2. $3 / 8$
3. $1 / 10$
4. $2 / 5$
5. $5 / 8$
6. $8 / 10$
7. $5 / 100$
8. $4 / 5$
9. $4 / 8$
10. $3 / 10$
11. $3 / 5$
12. $6 / 8$
13. $4 / 12$
14. $7 / 10$
15. $1 / 2$
16. $5 / 20$
17. $12 / 16$
18. $6 / 10$
19. $8 / 12$
20. $9 / 15$

Investigate the patterns created when you convert these fractions ...
21.
$1 / 11,2 / 11,3 / 11,4 / 11,5 / 11,6 / 11,7 / 11,8 / 11,9 / 11$ and $10 / 11$ to decimals.
22.
$1 / 9,2 / 9,3 / 9,4 / 9,5 / 9,6 / 9,7 / 9$ and $8 / 9$ to decimals.
23.
$1 / 7,2 / 7,3 / 7,4 / 7,5 / 7$ and $6 / 7$ to decimals.

Expressing a decimal as a fraction:

Decimals can be expressed as special fractions, with denominators of $10,100,1000$ etc.
Example: Convert 0.5, 0.25 and 0.013 to fractions.
Answers: One digit after the decimal point, therefore 10 is the denominator, 5/10 Two digits after the decimal point, therefore 100 is the denominator, 25/100
 Three digits after the decimal point, therefore 1000 is the denominator, ${ }^{13} / 1000$

Task 14

Convert these decimals to fractions.

1. 0.9
2. 0.09
3. 0.009
4. 0.23
5. 0.014
6. 0.12
7. 0.3
8. 0.302
9. 0.345
10. 0.0234
11. 0.95
12. 0.8
13. 0.69
14. 0.8
15. 0.635
16. 0.7
17. 0.309
18. 0.0005
19. 0.903
20. 0.63
21. 0.625

Expressing a decimal as a percentage:

Fractions which are out of 100 are commonly known as percentages.
Example: 25 out of 100 could be written as the fraction $25 / 100$ or as a percentage 25%, which is read as " 25 per cent".

To convert a decimal to a percentage, multiply the decimal by 100. Example: $0.2 \times 100=20 \%, 0.06 \times 100=6 \%, 1.25 \times 100=125 \%$

Task 15

Convert these decimals to percentages.

1. 0.25
2. 0.09
3. 0.06
4. 0.15
5. 0.014
6. 0.19
7. 0.3
8. 0.65
9. 0.42
10. 0.95
11. 0.345
12. 0.45
13. 0.095
14. 0.8
15. 0.6
16. 0.75
17. 0.635
18. 0.7
19. 0.309
20. 0.01
21. 0.045
22. 1.3
23. 2.65
24. 0.035
25. 0.065

Expressing a percentage as a decimal:

Percentages are out of 100 and can be written as a fraction. To convert a fraction to a decimal we divide the numerator by the denominator. For all percentages written as fractions, the denominator is 100.
Therefore to convert a percentage to a decimal, divide the percentage by 100.
Example: Convert 60% to a decimal.
Answer: $\quad 60 \%$ is the same as $60 / 100$, therefore $60 \div 100=0.6$
To convert a percentage to a decimal, divide the percentage by 100 .

Task 16

Convert these percentages to decimals.

1. 65%
2. 50%
3. 9%
4. 15%
5. 45%
6. 87%
7. 55%
8. 100%
9. 52%
10. 40%
11. 93%
12. 17%
13. 5%
14. 75%
15. 66%
16. 30%
17. 80%
18. 23%
19. 140%
20. 235%
21. 37.5\%
22. 80.5%
23. 1.8\%
24. 137%
25. 306\%

Converting between fractions, decimals and percentages.

Task 17

Copy this table of commonly used fractions, decimals and percentages.

Complete the table by filling in the gaps using the fractions, decimals and percentages from the box at the right.

Fraction	Decimal	Percentage
$1 / 4$		
	0.3	
		40%
$1 / 2$		
		66.6%
	0.75	

0.4	0.5	0.6
0.25	$1 / 3$	75%
25%	50%	$3 / 4$
$2 / 5$	33.3%	$2 / 3$

Expressing a quantity as a fraction or percentage of a whole:

Six pupils in a class of 24 like playing hockey.
Four out of 20 pupils were away from school today.
On 10 of the last 20 days it has rained.
In all of these statements there is information that can be expressed or written as a fraction or a percentage.
Example: $6 / 24$ or $1 / 4$ or 25% of the pupils like playing hockey,
$4 / 20$ or $1 / 5$ or 20% of the pupils were away from school today,
On ${ }^{10} / 20$ or $\frac{1}{2}$ or 50% of the last 20 days it has been raining.

Discuss events that you can express as fractions or percentages.

Task 18

Express the shaded diagrams as a fraction and as a percentage of each group of diagrams.
1.

2.

4.

Read each statement and write the information as a fraction.
5. Joanne scored 21 out of 25 in a maths test.
7. Of 50 pets, 29 were cats.
9. What fraction of your class are girls?
6. 31 pupils in a school of 250 are in Room 7.
8. It has rained on 5 days this week.
10. What fraction of the week is the weekend?

Read each statement and write the information as a percentage. Follow the steps in this example below. Example: Sally scored 15 out of 20 in a test.

Step 1: Write the information as a fraction.
Step 2: Write an equivalent fraction, with a denominator of 100.
Step 3: Write the fraction as a decimal, then multiply by 100, or 75 out of 100 is 75%.

$$
\begin{aligned}
& 15 / 20 \\
& 15 / 20 \times 5 / 5=75 / 100 \\
& 0.75 \times 100=75 \%
\end{aligned}
$$

12. 25 pupils in a school of 100 are in Room 7 .
13. Joanne scored 80 out of 100 in a maths test.
14. Of 50 pets, 24 were cats.
15. It has rained during 15 days out of 20 days.
16. 7 out of 25 pupils were away from school.
17. 2 out of 3 people watch the rugby test.

Mr Moore's car has a 50L petrol tank. He goes on a long trip and then refills the tank.
17. If the refilling of the petrol tank takes 35L, what fraction of a full tank was used during the trip? Convert your answer to a percentage.

A school cross country race is 4 laps around the school grounds.
18. If Karen has completed 3 laps, what fraction of the race has she completed so far? Convert your answer to a percentage.
19. What percentage of the race does she have left to run?

Convert your answer to a fraction.

Rounding numbers and finding estimates:

When an accurate answer is not required or when doing a quick calculation, rounding a number can be a useful skill to use.
Example: What would 19 items at $\$ 9.95$ each cost?

Answer: Round 19 to 20 and round $\$ 9.95$ to $\$ 10$, estimated price would be $20 \times \$ 10=\$ 200$.
The exact cost would be $\$ 9.95 \times 19=\$ 189.05$. How close was the estimate?

Task 19

Round these numbers to the nearest 10 .

1. 27
2. 52
3. 85
4. 71
5. 129
6. 143
7. 175
8. 231
9. 266
10. 342

Round these numbers to the nearest 100.
11. 53
12. 143
13. 251
14. 732
15. 942
16. 1346
17. 1637
18. 3248
19. 4386
20. 5084
Round these numbers to the nearest 1000.
21. 3658
22. 2423
23. 6495
24. 7510
25. 3417
26. 6709
27. 8349
28. 7362
29. 9852
30. 9234

Round these numbers to the nearest 10, 100 or 1000. before working out an estimated answer.
31. $98+183$
32. 594-209
33. 79×34
34. $495 \div 9$
35. 1186×23
36. $9568+3149$
37. $5016 \div 11$
38. 6124-3867
39. Calculate the actual answers for questions 31 to 38 above. How close were your estimates?

A truck driver records the distances he travels each day for a week as shown below.

$149 \mathrm{~km}, 205 \mathrm{~km}, 93 \mathrm{~km}, 112 \mathrm{~km}, 166 \mathrm{~km}, 131 \mathrm{~km}, 185 \mathrm{~km}$

40. Work out the estimated total distance he travelled by rounding to the nearest 10 km .
41. Calculate the exact distance travelled during this week.
42. If it costs 57 cents per kilometre to run the truck, estimate the cost of running the
 truck for this week. Calculate the exact running costs.

The length of each telephone call Brian made during the weekend has been recorded below. The time has been recorded in minutes.

$$
19,27,12,23,41,26,8,17,29,42
$$

43. Work out the estimated total time he spoke on the telephone by rounding to the nearest 10 minutes.
44. Calculate the exact time Brian spoke on the telephone.
45. If calls cost 22 cents a minute, estimate the cost of Brian's telephone calls. Calculate the exact cost of his telephone calls.
46. Create your own questions that involve estimating. Exchange your questions with a classmate so that she / he can work out the estimated answers, then the exact answers.

Estimating totals involving money:

As Jenny went around the supermarket, she kept a running total of how much she was spending. Example: The items she bought cost ... \$1.95, \$0.95, \$4.20, \$5.90, \$1.05 and \$9.95.

What totals do you think Jenny added up as she shopped?

Answer: 2, 1, 4, 6, 1 and 10, giving her a total of 24 . Therefore Jenny has spent about $\$ 24$ so far. The ability to estimate quickly and accurately can be a useful skill.

Task 20

carrots
$\$ 1.90 / \mathrm{kg}$

potatoes
$\$ 3.10 / 3 \mathrm{~kg}$ bag

broccoli $\$ 5.90 / \mathrm{kg}$

beans $\$ 2.90 / \mathrm{kg}$

corn cobs 3 for 90 cents

bananas $\$ 2.80 / \mathrm{kg}$

eggs \$2.45/doz

cereal
\$3.65 / box

mushrooms $\$ 7.90 / \mathrm{kg}$

cheese $\$ 4.60 / 1 \mathrm{~kg}$ block

Estimate the cost of buying ..

1. 4 kgs of carrots,
2. 2 dozen eggs,
3. 3 boxes of cereal.
4. Estimate the total cost of each shopping list $(A$ to $H)$ by rounding the cost of each item first.

5. Create your own shopping lists using the items above, or make up your own items and prices. Have a classmate work out the estimated cost and actual cost of each shopping list.

Multiplying and dividing by powers of 10:

Some of the powers of 10 and the numbers they represent are listed below.

$$
10^{1}=10,10^{2}=100,10^{3}=1000,10^{4}=10000
$$

To multiply and divide by the powers of 10 is not as difficult as it might seem.
Examples: $1.3 \times 10000=13000,56.2 \times 100=5620,785.4 \div 100=7.854,9.7 \div 1000=0.0097$
In each example, the digits have remained the same, but the decimal point has moved.

Task 21

Calculate the following.

1. 5.3×100
2. 7.7×1000
3. 84×100
4. 0.6×1000
5. 1.9×10000
6. 6.37×100
7. 94.3×10000
8. 8.05×10000
9. 562×100
10. 0.07×1000
11. 1.94×1000
12. 0.059×100
13. 2.6×10^{4}
14. 1.5×10^{3}
15. 9.6×10^{4}
16. 5.2×10^{5}
17. Look at the answers for the questions above involving multiplication. Can you describe a simple method for working out the answers without having to actually do the calculation?

Calculate the following.
18. $6.3 \div 10$
19. $5.1 \div 1000$
23. $4.27 \div 100$
27. $0.27 \div 1000$
31. $4.7 \div 10^{2}$
20. $97 \div 100$
24. $123.8 \div 10000$
28. $1.87 \div 1000$
32. $1.5 \div 10^{4}$
21. $165 \div 1000$
25. $12.05 \div 10000$
29. $5.3 \div 10$
33. $3.3 \div 10^{2}$
34. Look at the answers for the questions above involving division. Can you describe a simple method for working out the answers without having to actually do the calculation?

Use your methods described above to answer these questions.
35. $\quad 3.95 \times 10^{3}$
36. $\quad 6.25 \div 10^{2}$
37. 9.62×10^{5}
38. $3.091 \div 10^{2}$
39. 2.68×10^{4}
40. 9.346×10^{6}
41. $2.75 \div 10^{4}$
42. 9.785×10^{5}

In a market garden, lettuce plants are planted in rows of 100 plants.
43. Calculate the number of lettuce plants in 8 rows.
44. How many rows of lettuce plants are used up if 250 lettuces were picked last week? A school sells pens and note books to its pupils.
45 Calculate the cost of buying 100 pencils at 25 cents each.

46. If 1000 school note books cost $\$ 600.00$, what would it cost to buy one note book?

A brick fence is to be built using 10000 bricks.
47. Calculate the cost of the bricks, if each brick costs 25 cents.
48. If 1000 bricks $\$ 400.00$, calculate the cost of one brick.

In a national raffle, there are 100000 tickets to be sold.
49. If tickets sell for $\$ 1.50$, how much money will be made when all tickets are sold?

A second raffle raised $\$ 200000$ from the 100000 tickets sold.
50. What was the cost of the tickets in the second raffle?

Multiplying and dividing decimals:

When multiplying or dividing using decimals, setting out the question correctly is important, especially when a calculator is not being used.
Example: 2.38×0.9 could be rewritten as and $3.65 \div 0.5$ could be rewritten as ...
2.38
$\times 0.9$
2.142
By counting the digits to the right of
the decimal point in the question,
the answer can be found.

Task 22

Calculate the following, setting out the questions correctly to avoid mistakes.

1. 2.976×9
2. $48.4 \div 0.2$
3. 23.95×1.2
4. $68.55 \div 0.5$
5. $100.96 \div 0.04$
6. $\quad 6.47 \times 2.1$
7. $81.96 \div 1.2$
8. $50.616 \div 0.9$
9. $2.785 \div 0.05$
10. 96.8×0.12
11. 1238×0.006
12. 0.384×52
13. $71.753 \div 0.011$
14. $\quad 16.295 \times 0.025$
15. 0.096×24.8
16. $476.64 \div 0.09$
17. 36.85×2.5
18. $57.51 \div 0.9$
19. $4.352 \div 0.4$
20. 0.231×0.012

21. Calculate the cost of buying 4,7 and 12 computers.

The decimal point is moved to the right, the same number of places in both numbers, so that you are dividing by a whole number.
That is, 0.5 becomes 5 , and 3.65 becomes 36.5.

A school is charged 1.5 cents per copy, for photocopying A4 sized paper.
22. Convert 1.5 cents to dollars.
23. Calculate the cost of copying 700, 1000 and 1500 copies. State your answers in dollars.

A travelling salesman recorded the distances he travelled each day for a week, including the weekend.
24. If he travelled 612.92 km during this week, calculate the average (mean) distance he travelled each day of the week.
25. If he averaged 84.53 km each day for 15 days, calculate the total distance he would travel during this time.

26. If he used 66 L of petrol, at a cost of $\$ 0.875 / \mathrm{L}$, calculate the total cost of petrol he used.

A motor cycle race is being raced around a local street course that is 3.75 km per lap.
27. Calculate the total distance of a 20 lap, 50 lap and 100 lap race? Answer in kilometres.

The average time taken per lap is 69.3 seconds.
28. Calculate the time taken to complete a 75 lap race. Answer in seconds.
29. Convert the race time to minutes.
30. Create word problems involving the multiplication and division of decimals. Exchange your questions with a classmate and compare answers.

Finding a fraction of a quantity:

Kim has $\$ 60$ that is to be shared among 4 people. Each person will receive a quarter of the amount. Example: Find $\frac{1}{4}$ of $\$ 60.00$, then find $\frac{3}{4}$ of $\$ 60.00$.
Answers: $\quad \frac{1}{4}$ means 1 out of 4 , therefore divide the total by $4 . \$ 60 \div 4=\$ 15$
$\frac{3}{4}$ means 3 out of 4 , therefore, divide the total by 4 and multiply by $3 . \$ 60 \div 4=\$ 15, \$ 15 \times 3=\$ 45$

Task 23

Calculate the following fractions of these whole numbers.

1. $1 / 4$ of 40
2. $1 / 5$ of 60
3. $1 / 6$ of 36
4. $1 / 9$ of 45
5. $1 / 10$ of 90
6. $2 / 5$ of 40
7. $3 / 8$ of 56
8. $2 / 7$ of 42
9. $5 / 9$ of 54
10. $7 / 8$ of 56
11. $6 / 7$ of 63
12. $2 / 9$ of 45
13. $5 / 6$ of 60
14. $7 / 11$ of 77
15. $3 / 4$ of 72
16. $5 / 8$ of 96
17. $5 / 7$ of 42
18. $8 / 11$ of 88
19. $5 / 6$ of 54
20. $7 / 9$ of 81

One third of a class of 24 pupils have been involved in a Mathematics competition.
21. Calculate the number of pupils who were involved in this competition.

One quarter of a class of 28 play softball.
22. Calculate the number of pupils who play softball.

During the past 30 days, the weather conditions were recorded.
23. On $1 / 5$ on the days it rained. Calculate the number of days it rained.
24. On $3 / 5$ on the days it was sunny. Calculate the number of days it was sunny.

During the holidays, Karen has been camping with her friends.
25. On the first day they spent $3 / 8$ of the day tramping to the camp site. Calculate the number of hours they spent tramping.
26. On the second day, they spent $5 / 12$ of the day resting. Calculate the number of hours they spent resting.

A school cross country race is run over a distance of 5400 m .
27. If Rangi has completed $7 / 10$ of the course, calculate how far he has run so far.
28. How far does Rangi have left to run? Give your answer as a fraction of the total distance and state the distance he has left to run.

A 36 m long fence around a swimming pool is to be painted.
29. If $5 / 12$ of the fence has already been painted, calculate the length of the fence that has been painted.
30. What fraction of the fence has yet to be painted?

In the school library there are 480 books.

31. If $1 / 3$ of the books are suitable for pupils 9 years old or younger, how many books is that?
32. If $5 / 12$ of the books are fiction, how many books is that?
33. If $3 / 8$ of the books are non-fiction, how many books is that?
34. Create word problems involving finding fractions of a quantity.

Exchange your questions with a classmate and compare answers.

Finding a percentage of a quantity:

Finding a percentage of a quantity can be done several ways.
Example: Find 20% of $\$ 800$.

One way this could be done is by finding 10% of the quantity first, then multiply by 2 as $2 \times 10 \%=20 \%$. Example: 10% of $\$ 800$ is $\$ 80$, therefore 20% would be $\$ 80 \times 2=\$ 160$.
A second way would be to convert the percentage to a decimal, then multiply the quantity by the decimal.
Example: $20 \%=0.2$, therefore $\$ 800 \times 0.2=\$ 160$.
Which way do you think is easier? Can you think of other ways of finding the percentage of a quantity?

Task 24

Calculate the following percentages of these whole numbers.

1. 50% of 40
2. 10% of 60
3. 10% of 36
4. 20% of 45
5. 40% of 90
6. 40% of 50
7. 60% of 56
8. 60% of 90
9. 20% of 54
10. 10% of 89
11. 70% of 80
12. 60% of 50
13. 25% of 60
14. 30% of 56
15. 25% of 72
16. 75% of 96
17. 75% of 48
18. 40% of 88
19. 60% of 54
20. 90% of 80

A new computer will cost $\$ 2250$ and can be purchased with a deposit.
21. Calculate the deposit if 10% is required.
22. How much is left to pay after the deposit has been paid?

During the past 30 days, the weather conditions were recorded.
23. On 20% of the days it rained. Calculate the number of days it rained.
24. On 40% of the days it was sunny. Calculate the number of sunny days.

During the holidays, Karen has been camping with her friends.
25. On the first day they spent 25% of the day tramping to the camp site. Calculate the number of hours they spent tramping.
26. On the second day, they spent 40% of the day resting.

Calculate the number of hours they spent resting.

A school cross country race is run over a distance of 5400 m .
27. If Rangi has completed 60% of the course, calculate how far he has run so far.
28. How far does Rangi have left to run? Give your answer as a percentage of the total distance and state the distance he has left to run.

A 36 m long fence around a swimming pool is to be painted.
29. If 75% of the fence has already been painted, calculate the length of the fence that has been painted.
30. What percentage of the fence has yet to be painted?

In the school library there are 480 books.
31. If 60% of the books are suitable for pupils 9 years old or younger, calculate how many books that is.
32. If 35% of the books are fiction, calculate how many books that is.
33. Create word problems involving finding percentages of a quantity.

Exchange your questions with a classmate and compare answers.

Adding, subtracting and multiplying with accuracy:

When you are adding, subtracting or multiplying without the use of a calculator, setting out correctly is most important.
Example: $256+9+75+1368=$

	256		256	
ining up the	9	5000	+ 56	When multiplying, allow lines
gits will help	75	- 2394		for each row of digits.
subtracting.	+1368			Lining up digits will help when
subtracting.				adding up columns of digits.

Task 25

Copy each question below and show all working as you answer each question. Do not use a calculator.

1.	3569	2.	8	3.	456	4.		5.	
	133		4968		94		-3897		-9862
	9		963		4862				
	+ 958		+ 27		+ 18				
						9.	9403	10.	53241
6.	348	7.	23945	8.	64098		+246		+356
	$\times 24$		+67		+ 98				

Rewrite the information within each word problem below, as above, before you answer them.
In a local car sales yard there are several cars. The prices are listed below.
\$16950, \$9950, \$12500, \$8700, \$21500, \$13650, \$9500, \$17600
11. Calculate the total value of these cars.

Mr Williamson won $\$ 100000$ in Lotto.
12. If he bought a new car worth $\$ 21700$, calculate how much money he has left.

He then buys some new carpet costing $\$ 7450$ for his house.
13. Calculate how much money he now has left.

A large business is to replace its computers with the latest models.
Each computer will cos $\$ \$ 2450$.
14. Calculate the value of the computers if 27 new computers are purchased.
15. If the business had planned to spend $\$ 70000$ on computers, calculate how much money they will have left after purchasing the 27 computers.

A school bus travels 149 km each day of the school week.
16. Calculate the distance the school bus would travel if it makes the same trip for 40 weeks of the year, Monday to Friday.
17. Create word problems involving adding, subtracting or multiplying large numbers. Exchange your questions with a classmate and compare answers.

Order of operations:

When working out answers with questions involving a mixture of operations, the order in which they are done will affect the answer. The letters BODMAS or BEDMAS will hlep you to remember the order.

B = brackets
$O=$ of ($E=$ exponents)
$D=$ division
$M=$ multiplication
A = addition
S = subtraction
Examples:

$$
\begin{aligned}
& 6 \times 8+12 \\
= & 48+12 \\
= & 60
\end{aligned}
$$

This order means that you work out the brackets first, followed by ..
multiplying and dividing in the order they appear from left to right, followed by ...
adding or subracting in the order they appear from left to right.

$$
\begin{array}{rll}
& 13+4 \times 3 & \\
= & 36 \div 4-7 & 10+27 \div 9 \\
= & 13+12 & =9-7
\end{array}
$$

Task 26

Calculate the following.

1. $7 \times 8+10$
2. $9 \times 8-12$
3. $11+5 \times 7$
4. $32 \div 8+12$
5. $45 \div 5-7$
6. $9 \times 7+17$
7. $15+48 \div 6$
8. $55-7 \times 4$
9. $24-3 \times 6$
10. $72 \div 12+9$
11. $3 \times 12+11$
12. $12+21 \div 7$
13. $84 \div 7+13$
14. $9 \times 6+21$
15. $19+54 \div 9$
16. $63-9 \times 5$
17. $7 \times 9-37$
18. $96 \div 8+13$
19. $9 \times 11-43$
20. $10 \times 7+23$
21. $37+55 \div 11$
22. $70-6 \times 7$
23. $12 \times 5+19$
24. $108 \div 9+23$
25. $75 \div 5-12$
26. $72-9 \times 5$
27. $10 \times 6+29$
28. $96 \div 3-27$
29. $37-7 \times 5+11$
30. $11+15 \div 3+13$
31. $21+9 \times 4-12$
32. $18+42 \div 7-12$
33. $6 \times 8 \div 12+26$
34. $30 \div 5 \times 5+16$
35. $20+5 \times 4 \div 10$
36. $64-24 \div 8 \times 9$
37. $9 \times 8-7 \times 7$
38. $4 \times 5+12 \div 3$
39. $7 \times 4-3 \times 6$
40. $28 \div 7+6 \times 5$

Problems involving brackets.
Example: $3(5+4)$ means $3 \times(5+4)=3 \times 9=27$

$$
5(20-3 \times 6)=5(20-18)=5 \times 2=10
$$

Use order of operation rules to work out the answers for these questions involving brackets.
41. $2(3 \times 4+5)$
42. $3(4 \times 6-12)$
43. $5(20-3 \times 6)$
44. $6(27 \div 9+7)$
45. $4(35 \div 5-3)$
46. $7(5 \times 3+4)$
47. $2(24 \div 6+3)$
48. $8(40-4 \times 9)$
49. $9+2(15-2 \times 6)$
50. $20-2(15 \div 3+1)$
51. $12+3(3 \times 4+5)$
52. $40-4(3+16 \div 4)$

Copy and complete each statement by replacing the with,$+-\times$ or \div to make each statement true.

53.	$2 \bullet 3$ - $=11$	54.	$5 * 3 \bullet 6=9$	55.	$10 \bullet 4 \diamond 2=18$	56.	12 - 3 - $=11$
57.	$3 * 10 \bullet 2=8$	58.	20 - 3 - 5	59.	7 - 12 2 = 13	60.	$3 \bullet 3 \bullet 4=13$
61.	$15 \bullet 15 \bullet 3=10$	62.	$18 \bullet 6 \leqslant 7=10$	63.	$4-3 \bullet 6=22$	64.	$14 \bullet 6 \bullet 2=11$

65. Create 10 questions as above, where the operation signs are missing.

Exchange your questions with a classmate and have him / her add signs to make each statement true.

'In-class' Worksheet

Teaching Notes \& Answers

How to use this section:

Teaching notes are enclosed in a box with a 'push-pin' at the top left corner. The teaching notes precede the answers for each worksheet / task. The teaching notes have been included to provide assistance and background information about each topic or unit of work.

Introduction:

The topic of Number is concerned with exploring number, gaining an understanding of the meaning of negative numbers and special numbers such as prime numbers, factors, multiples, squares, square roots and other powers. The ability to convert between fractions, decimals and percentages is explored, plus activities involving the finding of fractions and percentages of a quantity. Being able to estimate quickly and accurately and checking the reasonableness of the answer is a useful skill that is explored. The setting out, and successful completion of addition, subtraction and multiplication problems involving decimals is also investigated, leading into the conventions for the order of operations.
The importance of gaining a good understanding of the 'basic number facts', the ability to add, subtract, divide and multiply with confidence, should not be underestimated, as all strands of mathematics involve some, if not all, of the four basic skills.

Adding and subtracting whole numbers:
Worksheets 182
Multiplying and dividing whole numbers:
Special numbers:
In Tasks 182 , pupils are to copy two number crosses, then complete some addition or subtraction and multiplication or division problems as a revision activity. The copying of the number crosses is also an important skill.
In Tasks 3 \& 4, pupils are to complete sentences about definitions of the special numbers; factors, multiples, prime numbers and prime factors. Pupils are then to work with each group to consolidate their understanding of the properties of these numbers.

Task 1

1. \& 2 .

Task 2

1. \& 2 .

Note:

A prime number has only two factors - itself and 1.
2 is the only even prime number. 1 is not a prime number.

Task 3

19. $23,46,69,92,115,138,161,184,207,230 \quad$ 20. $8,16,24,32,40 \quad 21.21,28,35,42,49,56$

22. $39,52,65,78$	$23.1,2,3,6$	$24.1,2,5,10$	$25.1,2,3,6,9,18$	$26.1,2,3,4,6,8,12,24$
27. $1,3,9,27$	$28.1,2,3,4,6,9,12,18,36$	$29.2 \times 7=14$	$30.7 \times 11=77$	$31.5 \times 7=35$
32. $5 \times 13=65$	$33 . ~$	$3 \times 17=51$	$34.5 \times 17=85$	

Task 4

1. 35 2. 54

Understanding negative numbers:

Understanding and using number lines:
More negative numbers:
Bank overdrafts:
In Task 5, pupils are introduced to negative numbers, by way of everyday events that can be represented as negative numbers. Calculations involving temperature changes is a particularly good way to introduce negative numbers as weather forecasts include the liklihood of frosts, thus highlighting the use of negative numbers.

In Task 6, pupils are introduced to number lines that include negative numbers. Pupils should be familiar with number lines as they form part of $x-y$ graphs. Using the number line, including negative numbers, pupils are to add positive and negative number together. Adding a negative number results in a movement to the left along the number line. The starting point on the number line is the first number that is in the question.

In Task 7, small groups of pupils are to play a number game with a die (dice). The odd numbers on the die are negative and the even numbers are positive. Pupils are to keep a running total as they roll the die 5 times. The pupil with the lowest score wins.

In Task 8, pupils are to further develop their understanding of negative numbers as they add larger positive and negative numbers.
In Task 9, pupils are to calculate a running total of a bank balance that goes in and out of overdraft. This task is a good example of negative numbers in daily use. On a bank statement, a debit balance is negative and a credit balance is positive.

Task 5

1. $5,4,3,2,1, G,-1,-2$
2. -1
3. 3
4. 9 m
5. $3 \mathrm{~m}, 6 \mathrm{~m}, 10 \mathrm{~m}$
6. $-2 m,-4 m,-7 m,-9 m$
7. $-5 m$
8. $-3 \mathrm{~m} \quad$ 9. $4^{\circ} \mathrm{C} \quad$ 10. $2^{\circ} \mathrm{C} \quad$ 11. $7^{\circ} \mathrm{C} \quad$ 12. $-4^{\circ} \mathrm{C}$
9. $-7^{\circ} \mathrm{C}$
10. $5^{\circ} \mathrm{C}$
11. $-8^{\circ} \mathrm{C} \quad$ 16. $-7^{\circ} \mathrm{C}$
12. $3^{\circ} \mathrm{C}$
13. $-6^{\circ} \mathrm{C}$
14. $-8^{\circ} \mathrm{C}$
15. $-2^{\circ} \mathrm{C}$
16. $0^{\circ} \mathrm{C}$

Task 6

Task 8

Task 9

1. Opening balance $=\$ 250,1$ s t transaction balance $=-\$ 45.00$ (overdraft),

2nd transaction balance $=\$ 40.60,3 r d$ transaction $=-\$ 35.30$, final transaction $=\$ 52.20$

Squares \& square roots:

Cubes and other powers:

In Task 10, pupils are to calculate the squares and square roots of various numbers. A calculator may be necessary when finding the square root of large numbers. The important point to stress is that for any square, such as 3^{2} means the number is multiplied by itself, that is 3×3 and not 3×2.

In Task 11 , pupils are to calculate cubes and other powers of various numbers.
Example: $3^{4}=3 \times 3 \times 3 \times 3=81$

Task 10

1. 36
2. 81
3. 144
4. 100
5. 25
6. 49
7. 64
8. 225
9. 400
10. 900
11. 10000
12. 2500
13. 40000
14. 1000000
15. 62500
16. 11.56
17. 53.29
18. 21.16
19. 34.81
20. 7.84
21. 0.81
22. 0.0625
23. 0.7225 24. 0.0144
24. 2.3716
25. 8
26. $4 \quad 28.9$
27. 11
28. 7
29. 5
30. 12
31. 15
32. 3
33. 30
34. 10
35. 14
36. 17
37. 40
38. 50

Task 11

1. 3^{5}
2. 4^{3}
3. 5^{6}
4. 7^{3}
5. 9^{4}
6. 10^{6}
7. 12^{3}
8. 20^{5}
9. 27
10. 64
11. 125
12. 1000
13. 16
14. 32
15. 64
16. 243
17. 343
18. 729 19. 1296
19. 6561
20. 4096
21. 10000
22. 3125

Worksheet 7

Equivalent fractions:

In Task 12, pupils are to explore equivalent fractions. A fraction of a group of diagrams has been shaded and pupils express the shaded diagrams as a fraction of the group and then match equivalent fractions. A series of progressive exercises guide pupils through the process of working out, matching and creating equivalent fractions. Some large fraction can be simplied to create smaller equivalent fractions. This can be done by dividing the numerator and denominator by the same number.

Task 12

1. $A=\frac{1}{2}, \quad B=4 / 10, C=3 / 5, D=3 / 6, E=6 / 10, F=2 / 3, \quad G=2 / 5, H=6 / 9 \quad 2.1 / 2=3 / 6,2 / 3=6 / 9$,

 $\begin{array}{lllllllllll}22.6 & 23.8 & 24.25 & 25.10 & 26.2 & 27.3 & 28.1 & 29.1 & 30.8 / 32 & 31 .\end{array}{ }^{17} / 34 \quad 32 .{ }^{12} / 18$ 33. ${ }^{12 / 20}$
$34 .{ }^{30} / 36$
2. ${ }^{45} / 60$
3. $9 / 24$
4. ${ }^{16} / 28$
5. ${ }^{15} / 27$

Expressing a fraction as a decimal:

Expressing a decimal as a fraction:

Expressing a decimal as a percentage:

Expressing a percentage as a decimal:
In Task 13, pupils are to convert fractions to decimals by dividing the numerator by the denominator. Setting out the division problem correctly is important and zeros are added after the decimal point, with the division continuing until there is no remainder or a repeating pattern is found, indicated by a small dot to the top right of the repeating digit(s).. Pupils are to explore the decimal patterns created when various fractions are converted to decimals.

In Task 14, pupils are to perform the opposite conversion, decimals to fractions, which is less difficult as the denominator will be $10,100,1000$, etc. depending on the number of digits after the decimal points. The fractions created will be either ${ }^{1 / 10}$'s, $1 / 100$'s, $1 / 1000^{\prime} s$ or $1 / 10000^{\prime} s^{\prime}$ etc.

Example: $0.5=5 / 10,0.05=5 / 100,0.005=5 / 1000,0.0005=5 / 10000$

In Task 15, pupils are to convert decimals to percentages. As percentages are out of 100, this can be done by multiplying the decimal by 100 , that is, move the decimal point two places to the right.
In Task 16, pupils are to convert percentages to decimals. This can be done by dividing the percentage by 100 , resulting in the decimal point moving two places to the left. Remind pupils that if there is no decimal point shown in a number, then the decimal point will be at the right hand end of the number. Example: 65% has the decimal point after the 5 , that is, 65.0%.
In Task 17, pupils are to test their skills at converting between fractions, decimals and percentages, as they match examples of fractions, decimals and percentages.

Task 13

1. 0.25
2. 0.375
3. 0.1
4. 0.4
5. 0.625
6. 0.8
7. 0.05
8. 0.8
9. 0.5 10. 0.3
10. 0.6
11. 0.75
12. 0.3°
13. 0.7
14. 0.5
15. 0.25
16. 0.75
17. 0.6
18. 0.6°
19. 0.6
20. ${ }^{1} / 11=0.090^{\circ} 9^{\circ},{ }^{2} / 11=0.181^{\circ} 8^{\circ}, 3 / 11=0.272^{\circ} 7^{\circ},{ }^{4} / 11=0.363^{\circ} 6^{\circ}, 5 / 11=0.454^{\circ} 5^{\circ}, 6 / 11=0.545^{\circ} 4^{\circ}$,
$7 / 11=0.6363^{\circ}, \quad 8 / 11=0.727^{\circ} 2^{\circ}, 9 / 11=0.818^{\circ} 1^{\circ}, 10 /{ }_{11}=0.909^{\circ} 0^{\circ}$,
Note that pairs of numbers in each decimal add to 9
21. ${ }^{1 / 2} / 9=0.1111^{\circ},{ }^{2} / 9=0.2222^{\circ},{ }^{3} / 9=0.3333^{\circ},{ }^{4} / 9=0.4444^{\circ}, 5 / 9=0.5555^{\circ},{ }^{6} / 9=0.6666^{\circ}$,
$7 / 9=0.7777^{\circ}, \quad 8 / 9=0.8888^{\circ}$,
22. $1 / 7=0.142857,2 / 7=0.285714,3 / 7=0.428571,4 / 7=0.571428,5 / 7=0.714285,6 / 7=0.857142$, Note the the first 6 digits after the decimal point for each fraction are the same, but in a different order. For each, the 6 digits repeat in the same order.

Task 14

1. $9 / 10$
2. $9 / 100$
3. $9 / 1000$
4. ${ }^{23} / 100$
5. ${ }^{14} / 1000$
6. $12 / 100$
7. $3 / 10$
8. $302 / 1000$
9. $42 / 100$
10. $3 / 10$
11. ${ }^{345} / 1000$
12. ${ }^{234} / 10000$
13. $95 / 100$
14. $8 / 10$
15. $69 / 100$
16. ${ }^{8 / 10}$
17. ${ }^{635} / 1000$
18. ${ }^{7 / 10}$
19. $309 / 1000$
20. $5 / 10000$
21. $94 / 100$
22. ${ }^{7 / 100}$
23. $903 / 1000$
24. $63 / 100$
25. $625 / 1000$

Task 15

1. 25%
2. 9%
3. 6%
4. 15%
5. 1.4%
6. 19%
7. 30%
8. 65%
9. 42%
10. 95%
11. 34.5%
12. 45%
13. 9.5%
14. 80%
15. 60%
16. 75%
17. 63.5% 18. 70%
18. 30.9%
19. 1%
20. 4.5%
21. 130%
22. 2.65%
23. 3.5%
24. 6.5%

Task 16

1. 0.65
2. 0.5
3. 0.09
4. 0.15
5. 0.45
6. 0.87
7. 0.55
8. 1.00
9. 0.17
10. 0.05
11. 0.52
12. 0.4
13. 0.8
14. 0.23 16. 0.75
15. 0.66
16. 0.3
17. 0.375
18. 0.805 21. 0.018
19. 1.4
20. 2.35
21. 1.37
22. 3.06
23. 0.805

Task 17

Fraction	Decimal	Percentage
$1 / 4$	0.25	25%
$1 / 3$	0.3	33.3%
$2 / 5$	0.4	40%
$1 / 2$	0.5	50%
$2 / 3$	0.6	66.6%
$3 / 4$	0.75	75%

Expressing a quantity as a fraction or percentage of a whole:

In Task 18, pupils are to express quantities as fractions or percentages of a whole, using the methods outlined on the worksheet. Using items within the classroom, similar questions can be created. Example: What fraction of the classroom windows are along the top of the classroom? What percentage of the class has an apple in their lunch today?

Task 18

1. $1 / 5$ or 20%
2. $3 / 4$ or 75%
3. $2 / 5$ or 40%
4. $2 / 6$ or 33.3%
5. ${ }^{21 / 25}$
6. ${ }^{31} / 250$
7. $29 / 50$
8. $5 / 7$
9. -
10. $2 / 7$
11. $80 / 100=0.8=80 \%$
12. ${ }^{25} / 100=0.25=25 \%$
13. ${ }^{24} / 50=48 / 100=0.48=48 \%$
14. ${ }^{15} / 20=75 / 100=0.75=75 \%$
15. ${ }^{7} / 25=28 / 100=0.28=28 \%$
16. ${ }^{2} / 3=66 / 100=0.66=66.6 \%$
17. ${ }^{35} / 50,70 \%$
18. $3 / 4,75 \%$
19. $25 \%, 1 / 4$

Worksheets 11 \& 12

Rounding numbers and finding estimates: Estimating totals involving money:

In Task 19, pupils are to round numbers to the nearest 10, 100 or 1000 as requested. Note that when rounding, 5's round up. Example: 25 rounds to 30,150 rounds to 200,1500 rounds to 2000 etc. If rounding decimals, the same procedure is used. Example: 1.5 rounds to $2.0,1.75$ rounds to 1.8 etc. Pupils are to estimate totals by rounding numbers and then check how accurate their estimates were by calculating the exact totals. Rounding / estimating is a useful skill, especially as pupils tend to believe answers they get on a calculator. By having an understanding of and the ability to estimate, calculator errors can be picked up. Word problems involving finding estimates and actual totals are included.
In Task 20, pupils are to estimate the cost of various shopping lists and check the reasonableness of their estimates by calculating the exact costs. Pupils are to create their own shopping lists to exchange with classmates, so that the estimates and actual cost of the lists can be worked out.

Task 19

$\begin{array}{lllllllllllll}\text { 1. } 30 & \text { 2. } 50 & 3.90 & 4.70 & 5.130 & 6.140 & 7.180 & 8 . & 230 & 9 . & 270 & 10 . & 340\end{array} 11.100$
$\begin{array}{lllllllll}\text { 12. } 100 & 13.300 & 14.700 & 15.900 & 16.1300 & 17.1600 & 18.3200 & 19.4400 & 20.5100\end{array}$
$\begin{array}{lllllllll}\text { 21. } 4000 & 22.2000 & 23.6000 & 24.8000 & 25.3000 & 26.7000 & 27.8000 & 28 . \\ 7000\end{array}$
29. 10000 30. $9000 \quad 31.100+200=300 \quad 32.600-200=400 \quad 33.80 \times 30=2400$
34. $500 \div 10=50 \quad$ 35. $1200 \times 20=24000 \quad 36.10000+3000=13000 \quad 37.5000 \div 10=500$
38. $6000-4000=2000 \quad$ 39. $281,385,2686,55,27278,12717,456,2257$
40. $150+200+90+110+170+130+190=1040 \mathrm{~km} \quad 41.1041 \mathrm{~km} \quad 42.1000 \times \$ 0.60=\$ 600, \$ 593.37$
43. $20+30+10+20+40+30+10+20+30+40=250$ minutes 44.244 minutes
45. $250 \times \$ 0.2=\$ 50.00, \$ 53.68$

Task 20

1. $4 \times \$ 2=\$ 8$
2. $2 \times \$ 2=\$ 4$
3. $3 \times \$ 4=\$ 12$
4. List A: $\$ 4+\$ 3+\$ 2+\$ 4+\$ 5=\$ 18$

List C: $\$ 6+\$ 6+\$ 4+\$ 8+\$ 6=\$ 30$
List B: $\$ 6+\$ 3+\$ 6+\$ 4.50+\$ 8=\$ 27.50$
List D: $\$ 4+\$ 12+\$ 6+\$ 6+\$ 10=\$ 38$
List E: $\$ 12+\$ 15+\$ 8+\$ 2+\$ 6+\$ 3=\$ 46$
List F: $\$ 9+\$ 4+\$ 9+\$ 10+\$ 4.50+\$ 2=\$ 38.50$
List G: $\$ 8+\$ 9+\$ 12+\$ 2+\$ 10+\$ 9=\$ 50 \quad$ List H: $\$ 16+\$ 4.50+\$ 9+\$ 5+\$ 9+\$ 15=\$ 58.50$
5. List A: $\$ 3.80+\$ 2.70+\$ 2.45+\$ 3.95+\$ 4.60=\$ 17.50$

List B: $\$ 5.90+\$ 3.10+\$ 5.80+\$ 4.20+\$ 7.30=\$ 26.30$
List C: $\$ 5.70+\$ 5.90+\$ 3.60+\$ 7.90+\$ 6.20=\$ 29.30$
List D: $\$ 4.90+\$ 11.85+\$ 6.20+\$ 5.80+\$ 9.20=\$ 37.95$
List E: $\$ 11.80+\$ 13.80+\$ 7.30+\$ 2.45+\$ 5.70+\$ 2.70=\$ 43.75$
List F: $\$ 8.70$ + $\$ 3.95+\$ 9.30+\$ 9.20+\$ 4.20+\$ 1.80=\$ 37.15$

List G: $\$ 7.60+\$ 8.85+\$ 12.40+\$ 2.45+\$ 9.20+\$ 8.70=\$ 49.20$
List H: $\$ 15.80+\$ 4.35+\$ 8.40+\$ 4.50+\$ 9.30+\$ 13.80=\$ 56.15$

Worksheet 13

Multiplying and dividing by powers of 10:

In Task 21 , pupils are to multiply and divide by powers of 10 , the first 4 are listed on the worksheet. The aim is for pupils to come up with simple rules that involve moving the decimal point left or right, a number of spaces based on the number of zeros in the power of 10 , therefore the actual calculation does not need to be done. Remind pupils where the decimal points are, if they are not shown. This task introduces the concept of standard form, that will be explored at level 5 and above. Example: $1.2 \times$ $10^{4}, 3.93 \times 10^{-2}$ Word problems are included.

Task 21

1. 530
2. 7700
3. 8400
4. 600
5. 19000
6. 637
7. 943000
8. 80500
9. 56200
10. 70
11. 1940
12. 5.9
13. 26000
14. 1500
15. 96000
16. 520000
17. Shift the decimal point right, by the same number of places as there are zeros in the power of 10 .
$\begin{array}{lllllll}\text { 18. } 0.63 & 19.0 .0051 & \text { 20. } 0.97 & \text { 21. } 0.165 & \text { 22. } 0.0038 & \text { 23. } 0.0427 & \text { 24. } 0.01238\end{array}$
$\begin{array}{lllllll}\text { 25. } 0.001205 & 26.7 .12 & 27.0 .00027 & 28.0 .00187 & 29.0 .53 & \text { 30. } 0.0096 & \text { 31. } 0.047\end{array}$
18. 0.00015 33. 0.033
19. Shift the decimal point left, by the same number of places as zeros in the power of 10 .
$\begin{array}{lllllll}35.3950 & 36.0 .0625 & 37 . & 962000 & 38.0 .03091 & 39.26800 & 40.9346000\end{array}$ 41. 0.000275
$\begin{array}{llllll}\text { 42. } 978500 & 43 . & 800 \text { plants } & 44.2 .5 \text { rows } & 45 . \$ 25 & 46.60 \text { cents each }\end{array}$ 47. $\$ 2500$
20. 40 cents each 49 . $\$ 150000 \quad 50$. $\$ 2$

Multiplying and dividing decimals:

Worksheet 14

In Task 22, pupils are to multiply and divide decimals, utilising skills they have learnt over the past few years. Setting out is important and the correct setting out will help to avoid errors.

Task 22

1. 26.784
2. 242
3. 28.74
4. 137.1
5. 2524
6. 13.587
7. 55.7
8. 11.616
9. 68.3
10. 56.24
11. 92.125
12. 63.9
13. 7.428
14. 19.968 15. 2.3808
15. 10.88
16. 6523
$\begin{array}{llllll}\text { 18. } 0.407375 & 19.5296 & 20.0 .002772 & \text { 21. } \$ 8783.60, \$ 15371.30, \$ 26350.80 & \text { 22. } \$ 0.015\end{array}$
17. $\$ 10.50, \$ 15.00, \$ 22.50 \quad 24.87 .56 \mathrm{~km} \quad 25.1267 .95 \mathrm{~km} \quad 26 . \$ 57.75 \quad 27.75 \mathrm{~km}, 187.5 \mathrm{~km}$,
$375 \mathrm{~km} \quad 28.5197 .5$ seconds $\quad 29.86 .625$ minutes

Finding a fraction of a quantity:

Finding a percentage of a quantity:
In Task 23, pupils are to find fractions of a quantity. This can be done by dividing the quantity by the denominator and then multiplying that answer by the numerator. Word problems are included and pupils are to create and exchange word problems among themselves.
In Task 24, pupils are to find percentages of a quantity. This can be done using either of the two ways illustrated on the worksheet. Word problems are included and pupils are to create and exchange word problems among themselves.

Task 23

30 18.64 19.45 20. 63 21.8 6.10 hrs 27.3780 m $28.3 / 10,1620 \mathrm{~m}$															

Task 24

1. 20
2. 6 3. 3.6
3. 9
4. 36
5. 20
6. 33.6
7. 54
8. 10.8
9. 8.9
10. 56
11. 30
12. 15
13. 16.8
14. 18
15. 72
16. 36
17. 35.2
18. 32.4
19. 72
20. \$225
21. \$2025
22. 6 days
23. 12 days
24. 6hrs
25. 9.6 hrs
26. 3240 m
27. $40 \%, 2160 \mathrm{~m}$
28. 27 m
29. 25%
30. 288 books
31. 168 books

Adding, subtracting and multiplying with accuracy:

Worksheet 17

In Task 25, pupils are to revisit the basic adding, subtracting and multiplying skills they should have developed over the past few years. Setting out the questions neatly with assist at avoiding making mistakes. Pupils should be able to explain the methods they are using.

Task 25

1. 4669
2. 5966
3. 5430
4. 1432
5. 138
6.

348	7.	23945 $\times 24$ 67 6960 8352

8.

$$
\begin{array}{r}
64098 \\
\times 98 \\
\hline 512784 \\
5768820 \\
\hline 6281604
\end{array}
$$

9.

9403	10.	53241 $\times 246$
56418		356 37619446 2662050 1880600 2313138
		15972300

11. $\$ 110350$
12. $\$ 78300$
13. $\$ 70850$
14. $\$ 66150$
15. $\$ 3850$
16. 5960 km

Order of operations:

Worksheet 17

In Task 26, pupils are to use the order of operation convention to calculate answers. The letters
BODMAS or BEDMAS are a good way to remember the order of doing the calculation. At this level, problems involving exponent (powers) have been left out.
The order implies the following ...

1. Look for brackets. If brackets are there, work out what is inside the brackets first. Example: $21+(4+3 \times 6)$
2. Look for multiplication and division next and work out each one out, as you read from left to right. Both are of equal importance. The order in which they are written in BODMAS or BEDMANS DOES NOT imply that dividing should be done before multiplying. At this point, only adding and / or subtracting will be left.
3. Look for addition and subtraction next and work these out in the order they appear as you read from left to right. Both are of equal importance. The order in which they are written in BODMAS or BEDMAS DOES NOT imply that adding should be done before subtracting.

The final part of the task has questions where the operation signs have been left out and pupils are to work out the missing signs, using the convention of order of operations.

Task 26

1. 66
2. 60
3. 46
4. 16
5. 2
6. 80
7. 23
8. 27
9. 6
10. 15
11. 47
12. 15
13. 25
14. 75
15. 25
16. 18
17. 26
18. 25
19. 56
20. 93
21. 42
22. 28
23. 79
24. 35
25. 3
26. 27
27. 89
28. 5
29. 13
30. 29
31. 45
32. 12
33. 30
34. 46
35. 22
36. 37
37. 23
38. 24
39. 10
40. 34
41. 34
42. 36
43. 10
44. 60
45. 16
46. 133
47. 14
48. 32
49. 15
50. 8
51. 63
52. 12
53. $2 \times 3+5=11 \quad 54.5 \times 3-6=9 \quad$ 55. $10+4 \times 2=18 \quad$ 56. $12 \div 3+7=11 \quad$ 57. $3+10 \div 2=8$
54. $20-3 \times 5=5 \quad 59.7+12 \div 2=13 \quad 60.3 \times 3+4=13 \quad 61.15-15 \div 3=10 \quad 62.18 \div 3+7=10$
55. $4+3 \times 6=22 \quad 64.14-6 \div 2=11$

Table of Contents for the Homework / Assessment Worksheet Masters for Number, Level 4

Worksheet Number	Topic	Number Objective(s)
1	Special numbers / Prime numbers / Multiples / Factors / Guess the number game	Revision
2	Positive and negative numbers / Temperature changes / Bank overdrafts / Number lines	N1
3	Squares and square roots / Cubes / Other powers / Guess the number game	N2
4	Diagrams and equivalent fractions / Creating equivalent fractions / Matching equivalent fractions	N3
5	Expressing a fraction as a decimal / Expressing a decimal as a fraction / Expressing a decimal as a percentage / Expressing a percentage as a decimal	N4 / N5
6	Converting between fractions, decimals and percentages / Expressing a quantity as a fraction of a whole / Expressing a quantity as a \% of a whole / Word problems	N4 / N5 / N6
7	Rounding and estimation / Word problems / Estimations involving money	N7
8	Multiplying and dividing by powers of 10 / Multiplying and dividing decimals / Word problems	N8
9	Finding a fraction of a quantity / Finding a percentage of a quantity / Word problems involving fractions and percentages	N9
10	Adding, subtracting and multiplying / Order of operations / Order of operations involving brackets / Missing signs / Word problems	N10 / N11
	Answers	

C: Expressing a decimal as a fraction

Decimals can be expressed as fractions with denominators of $10,100,1000,10000$, etc.
Convert these decimals to fractions.

1.	0.8		2.	0.08		3.	0.008	
4.	0.16	5.	0.5		6.	0.302	
7.	0.295		8.	0.0175		9.	0.95	
10	0.6	11.	0.715		12.	0.006	
13	0.72		14.	0.06		15.	0.635	
D: Expressing a decimal as a percentage Decimal $\times 100=$ percentage . Convert these decimals to percentages. E: Expressing a percentage as a decimal Percentage $\div 100=$ decimal. Convert these percentages to decimals.								
1.	0.8	.. 2.	0.64		1. 45%		2.	8\%
3.	0.16	... 4.	0.06		3. 63%		4.	14\%
5.	0.59	.. 6.	0.95		5. 9\%		6.	21\%
7.	0.6	.. 8.	0.45		7. 47%		8.	15\%
9.	0.36	- 10.	0.02		9. 23%		10	7.3\%
11.	0.72 12.	1.25		11. 5%		12.	260\%
	2.72 14.	4.32		13. 130%		1	

D: Word problems involving fractions and percentages
A school basketball team has won 60% of the 20 games it has played this season.

1. Calculate how many games they won.
2. What percentage of the games did they not win?

In Room 8 there are 30 pupils, $1 / 5$ of the pupils are aged $11,3 / 5$ of the pupils are 12 and the rest of the pupils are aged 13.
3. Calculate how many pupils are 12 years old.
4. Calculate how many pupils are 11 years old.
5. What fraction of Room 8 pupils are aged 13?
6. Calculate how many pupils are 13 years old.

In a South Island town, 1200 people went to a concert in a park. 20% were from out of town, 70% were local people and the rest were from the North Island.
7. Calculate the number of local people at the concert.
8. Calculate the number of out of town people who went.
9. What percentage of the people were from the North Island?
10. Calculate the number of North Islanders at the concert.

During one day in the holidays, James spent $1 / 6$ of the time playing computer games, $1 / 2$ of the time fishing and the rest of the time sleeping.
11. Calculate how many hours James was fishing.
12. Calculate how many hours he played on the computer.
13. Calculate how many hours James was asleep.
14. What fraction of the day did James sleep?

Homework / Assessment Worksheet Answers

Worksheet 1

A:

1. 36.3 2. 157
2. 4950
3. 4
4. pentagon
5. $\$ 44.10$
6. $08: 35$
7. $\$ 7.15$
8. 8.7 km
9. \$39.75

B:

1. prime
2. multiples
3. factor
4. prime factor
C
$2,5,11,17,19,23,29,31,37,53,59$
D:
5. $16,24,32,40,48,56$
6. $12,18,24,30,36,42$
7. $22,33,44,55,66,77$
8. $14,21,28,35,42,49$
9. $30,45,60,75,90,105$
10. $40,60,80,100,120,140$
11. $50,75,100,125,150,175$
12. $12,24,36,48$
13. $72,84,96$

E:

1. $1,2,3,4,6,12$
2. $1,3,5,15$
3. 1, 19
4. $1,2,3,4,6,8,12,24$
5. $1,2,3,5,6,10,15,30$
6. $3 \times 5=15 \quad 7.2 \times 13=26 \quad 8.3 \times 11=33$

F:

1. 37
2. 54
3. 15
4. 65

Worksheet 2

A:

1. 2917
2. 211
. 18720
3. 170
4. $\$ 40.15$
5. $\$ 29.75$
6. $\$ 6.75$
7. 6900 m 10. $\$ 32.55$

B:

1. 8 m
2. $4 \mathrm{~m}, 7 \mathrm{~m}, 10 \mathrm{~m}$
3. $-2 m,-5 m,-6 m,-7 m$
4. $-4 m$

G:

1. $-2^{\circ} \mathrm{C}$ 2. ${ }^{-} 4^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C},-3^{\circ} \mathrm{C},-8^{\circ} \mathrm{C},-3^{\circ} \mathrm{C}$

D:

1. 2
2. 2
3. -3
4. 4
5. -4
6. 1
7. -3
8. 3
9. -2
10. 5
11. 4
12. -3
13. -9 $14-11$
E:
14. $-\$ 150$
15. $\$ 25$
16. $-\$ 80$
F:
$4+-5+-1+6+-3+-3=-2$

Worksheet 3

A:
$\begin{array}{ll}\text { 1. } 52.8 & \text { 2. } 359\end{array}$
3. 2832
4. 7
5. parallelogram
6. $\$ 50.40$
7. $05: 10$
8. $\$ 4.79$
9. 7.5 kg
10. $\$ 69.20$

B:

1. $5 \times 5=25$
2. 16
3. 81
4. 64
5. 144
6. 121
7. 36
$\begin{array}{llll}\text { 8. } 169 & \text { 9. } 49 & \text { 10. } 25 & 11.100\end{array}$
$\begin{array}{lllllllllll}\text { 12. } 289 & 13.225 & 14.625 & 15.400 & 16.1600 & 17 . & 2500 & 18.8 & 19.4 & 20.5 & 21 .\end{array}$
$\begin{array}{llllll}\text { 22. } 10 & 23.9 & 24.15 & 25.20 & \text { 26. } 30 & 27 \\ 14\end{array}$
C:
8. $2 \times 2 \times 2=8$
9. 27
10. 64
11. 125
12. 216
13. 343
14. 512
15. 1000
16. 8000
$D:$
17. 3^{4}
18. 7^{5}
19. 9^{6}
20. 16
21. 81
22. 32
23. 625
24. 256
25. 10000

E:

1. 49
2. 81
3. 27
4. 125

Worksheet 4

A:

1. 2680
2. 298
3. 50320
4. 168
5. $\$ 33.12$
6. $\$ 34.00$
7.
8. $\$ 9.50$

| 9. 570 mm | 10. |
| :--- | :--- | 83.25

B:

1. $A=1 / 2, B=4 / 10, C=4 / 6, D=4 / 8, E=2 / 3, F=2 / 5$
2. $1 / 2=4 / 8,2 / 3=4 / 6,2 / 5=4 / 10$
C :
3. $3 / 12$
4. ${ }^{6} / 24$
5. ${ }^{6} / 10 \quad 4 .{ }^{12} / 28$
6. ${ }^{15} / 18$
7. ${ }^{25 / 40} \quad$ 7. ${ }^{12} / 54$
8. ${ }^{14} / 20$
9. $35 / 45$
10. $15 / 36$
$\begin{array}{llllllll}11.2 & 12.4 & 13.9 & 14.8 & 15.15 & 16.15 & 17.7 & 18.3\end{array}$
11. possible answer: $3 / 5=6 / 10=9 / 15=12 / 20=15 / 25=18 / 30$ etc.

D:

1. ${ }^{7} / 14$
2. $9 / 27$
3. $6 / 24$
4. $5 / 25$
5. ${ }^{12 / 18}$
6. ${ }^{18} / 24$
7. ${ }^{12 / 30}$
8. ${ }^{12 / 21}$
9. $20 / 36$

Worksheet 5

A:

1. 56.7
2. 297
3. 9955
4. 7
5. right angled triangle
6. $\$ 65.70$
7. $07: 35$
8. $\$ 3.65$
$\begin{array}{ll}\text { 9. } 4250 \mathrm{mg} & \text { 10. } \$ 34.65\end{array}$

B:

1. 0.5
2. 0.25
3. 0.2
4. 0.75
5. 0.375
6. 0.3
7. 0.625
8. 0.83°
9. 0.7
10. 0.6

C:

1. $8 / 10$
2. ${ }^{8 / 100}$
3. ${ }^{8 / 1000}$
4. ${ }^{16} / 100 \quad 5.5 / 10$
5. ${ }^{302 / 1000}$
6. ${ }^{295} / 1000$
7. $175 / 10000$
8. ${ }^{95} / 100$
9. $6 / 10$
10. ${ }^{715 / 1000}$
11. $6 / 1000$
12. ${ }^{72 / 100}$
13. $6 / 100$
14. ${ }^{635 / 1000}$

D:

1. 80%
2. 64%
3. 16%
4. 6%
5. 59%
6. 95%
7. 60%
8. 45%
9. 36%
10. 2%
11. 72%
12. 125%
13. 272%
14. 432%
E:
15. 0.45
16. 0.08
17. 0.63
18. 0.14
19. 0.09
20. 0.21
21. 0.47
22. 0.15
23. 0.23
24. 0.073
25. 0.05
26. 2.6
27. 1.3
28. 3.65

Worksheet 6

A:

1. 3049
2. 737
3. 18120
4. 195
5. \$33.95
6. \$35.64
7.
8. $\$ 8.50$
9. 7.25 kL
10. $\$ 38.50$

B:

Fraction	Decimal	Percentage
$1 / 4$	0.25	25%
$1 / 3$	0.3	33.3%
$2 / 5$	0.4	40%
$1 / 2$	0.5	50%
$2 / 3$	0.6	66.6%
$3 / 4$	0.75	75%

$C:$

1. $A=2 / 5, B=2 / 4=1 / 2, C=4 / 5$
2. $19 / 30$
3. ${ }^{47} / 60$
4. ${ }^{4 / 7}$
5. $10 / 24$
6. -

D:

1. $A=60 \%, B=75 \%, C=66.6 \%$
2. 84%
3. 55%
4. 25%
5. 70%
6. 32%

E:

1. 25%
2. ${ }^{7 / 10}$
3. 60%
4. $5 / 30=1 / 6$

AWS

Worksheet 7

A:

1. 286.9
2. 532
3. 8352
4. 12
5. diamond or rhombus
6. $\$ 23.60$
7. $10: 10$
8. $\$ 4.75$
9. 568 cm
10. $\$ 86.85$

B:

1. 20
2. 100
3. 80
4. 100
5. 200
6. 600
7. 1000
8. 5000
9. 5000
10. $420+660=1080$
11. $1600-1000=500$
12. $4000 \times 20=80000$
13. $2500 \div 50=50$
14. $7800+9200=17000$
15. $600 \times 100=60000$
16. $3200-1900=1300$

C:

Estimated distance \quad Actual distance $=556 \mathrm{~km}$

100
40
60
70
140
90
+60
560 km

D:

Shopping List A	Shopping List B		
Estimated total	Actual total	Estimated total	Actual total
$2 \times \$ 2=\$ 4$	$2 \times \$ 1.90=\$ 3.80$	$4 \times \$ 2=\$ 8$	$4 \times \$ 1.90=\$ 7.60$
$3 \times \$ 3=\$ 9$	$3 \times \$ 2.90=\$ 8.70$	$2 \times \$ 3=\$ 6$	$2 \times \$ 2.90=\$ 5.80$
$1 \times \$ 6=\$ 6$	$1 \times \$ 5.90=\$ 5.90$	$2 \times \$ 6=\$ 12$	$2 \times \$ 5.90=\$ 11.80$
$\frac{1}{2} \times \$ 8=\$ 4$	$\frac{1}{2} \times \$ 7.90=\$ 3.95$	$3 \times \$ 8=\$ 24$	$3 \times \$ 7.90=\$ 23.70$
$\$ 23$	$\$ 22.35$	$\$ 50$	$\$ 48.90$

Worksheet 8

A:

1. 2687
2. 71 3. 18840
3. 138
4. $\$ 45.30$
5. $\$ 15.95$
6. $\$ 12.50$
7. 8250 L 10. $\$ 21.00$
B:
8. 530
9. 0.053
10. 29000
11. 254000
12. 7.62
13. 0.056
14. 36300
15. 45.31
16. 0.0043
17. 350
18. $\$ 250$
19. $\$ 0.80$ or 80 cents
20. $\$ 40000$
C:
21. 0.54
22. 0.6
23. 0.21
24. 0.0018
25. 0.0125
26. 61
27. 0.4
28. 1.098
29. 0.0468
30. 0.7
31. 10773
32. 2.574
33. 2.7808
34. 47.85
35. 53
36. 142.1
37. 0.91
38. 2042

D:

1. 14.7 km
2. 147 km
3. $\$ 0.07$
4. $\$ 7.00, \$ 70.00, \$ 31.50, \$ 50.75$

Worksheet 9

A:

1. 106.6
2. 217
3. 7296
4. 9
5. octagon
6. $\$ 76.00$
7. $06: 55$
8. $\$ 6.35$
9. 8.625 m
10. $\$ 68.10$

B:

1. 5
2. 8
3. 8
4. 5
5. 20
6. 12
7. 40
8. 18
9. 35
10. 10

C:

1. 4
2. 9.5
3. 28
4. 48
5. 96
6. 16.2
7. 12
8. 19
9. 45
10. 43.2

D:

1. 12 games
2. 40%
3. 18 pupils
4. 6 pupils
5. $1 / 5$
6. 6 pupils
7. 840 people
8. 240 people
9. 10%
10. 120 people
11. 12 hours
12. 4 hours
13. 8 hours
14. $8 / 24=1 / 3$

Worksheet 10

A:

1. 2447
2. 121
3. 27450
4. 148
5. $\$ 44.30$
6. $\$ 25.20$
7.
8. $\$ 15.50$
9. $4.95 \mathrm{~km} \quad 10 . \$ 73.60$

B:

1. 3891
2. 2415
3. 2560
4. 5764
5. 3465

$\times 87$
24255
277200
301455

6. 43106
7. 19405

$\times 54$
172424
2155300
2327724

$\times 253$
58215
970250
3881000
4909465

C:

1. $56+10=66$
2. $19+4=23$
3. $11-8=3$
4. $24-18=6$
5. $27-20=7$
6. $48+9=57$
7. $9+11=20$
8. $72-47=25$
9. $54-41=13$
10. $7-7=0$
11. $16+4=20$
12. $23+7=30$
13. $8-6=2$
14. $36+10=46$

D:

1. $2(10+1)=2 \times 11=22 \quad$ 2. $5(7-3)=5 \times 4=20 \quad$ 3. $13+2 \times 6=13+12=25$
2. $37-3 \times 7=37-21=16 \quad$ 5. $9+2(9-2)=9+2 \times 7=9+14=23$
3. $3(10-1)+20=3 \times 9+20=27+20=47$

E:

1. $4 \times 3-5=7$
2. $20 \div 4+6=11$
3. $7+18 \div 3=13$
4. $20-2 \times 7=6$
5. $3 \times 8 \div 4=6$

F:

1. $\$ 19.50+\$ 4.40=\$ 23.90$
2. $\$ 10+\$ 6.25+\$ 2.70=\$ 18.95$

Tracking Sheet: 'In-class’ Activity Sheets

18	N11															
17	N10															
16	N9															
15	N9															
14	N8															
13	N8															
12	N7 / N8															
11	N7															
10	N6															
9	N4 / N5															
8	N4															
7	N3															
6	N2															
5	N1															
4	N1															
3	N1															
2	R															
1	R															
	$\begin{gathered} \mathbb{0} \\ \underset{\sim}{\mathbb{N}} \\ \hline \end{gathered}$															

Tracking Sheet: Homework / Assessment Worksheets

