A Complete Guide to ...

This resource contains:
\square Table of contents
\square Teaching notes
\boxtimes In class activity sheets involving

- worked examples
- basic skills
- word problems
- problem solving
- group work

\square Homework / Assessment activity sheets
\square Answers
These resources are supplied as PHOTOCOPY MASTERS
Author: A. W. Stark

Author:
A. W. Stark

Copyright $©_{1998}$
A. W. Stark

First Published March 1998
Formatting and publishing by
Andrew Słark

NOW trading as:

P 0 Box 21304
 Edgeware CHRISTCHURCH 8143
 NEW ZEALAND

盆 +6433790516 or 國 +6433790619
This resource unit has been supplied on the understanding that copies of any part of this publication will not be given or sold to teachers or students from other schools or institutions.

This resource unit may be used as a master, and therefore can be photocopied, only by the school or institution that has purchased this resource unit.

Note from the author:
This resource ...

*A Complete Guide to Number

is one of a series of FIVE resources written utilising the objectives as stated in

Mathematics in the New Zealand Curriculum for Level 3.

With my experiences as a specialist mathematics teacher, I enjoyed mathematics as a subject, but I am aware that not all teachers feel the same way about mathematics. It can be a difficult subject to teach, especially if you are unsure of the content or curriculum and if resources are limited.

This series of resources has been written with you in mind. I am sure you will find this resource easy to use and of benefit to you and your class.

Resources in this series:

*A Complete Guide to Number

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 3.

A Complete Guide to Measurement

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 3.

A Complete Guide to Geometry

written utilising the objectives as stated in
Resource Code:
L3MG
Mathematics in the New Zealand Curriculum for Level 3.

A Complete Guide to Algebra

written utilising the objectives as stated in Mathematics in the New Zealand Curriculum for Level 3.

A Complete Guide to Statistics

written utilising the objectives as stated in

Mathematics in the New Zealand Curriculum for Level 3.

For more information about these and other resources, please contact ...

[^0]This resource has been divided into EIGHT sections as listed below. Although there are no page numbers, the sections follow in sequential order as listed.

Note: 'In-class' Worksheets Masters are lesson by lesson reuseable worksheets that can be photocopied or copied on to an OHP.

Homework / Assessment Worksheets Masters can be used as homework to reinforce work covered in class or they can be used for pupil assessment.

Section	
	List of Measurement Objectives: Table of 'In-class' Worksheets / Objectives covered
)	Table of Contents: 'In-class’ Worksheets
3	'In-class' Worksheets Masters
4	Teaching Notes I Answers for 'In-class' Worksheets
	 Homework / Assessment Worksheets
	Homework / Assessment Worksheets Masters
∇	Answers for Homework / Assessment Worksheets
	Worksheet tracking sheets for teachers to record pupil names / worksheets covered

Number
The following are the objectives for Number, Level 3, as written in the MATHEMATICS in the New Zealand Curriculum document, first published 1992. [Refer Page 40]

Exploring number

Within a range of meaningful contexts, students should be able to:

- N1 explain the meaning of digits in any whole number;
- N2 explain the meaning of the digits in decimal numbers with up to 3 decimal places;
- N3 order decimals with up to 3 decimal places.

Exploring computation and estimation

Within a range of meaningful contexts, students should be able to:

- N4 make sensible estimates and check the reasonableness of answers;
- N5 recall the basic multiplication facts;
- N6 write and solve problems which involve whole numbers and decimals and which require a choice of one or more of the four arithmetic operations;
- N7 solve practical problems which require finding fractions of whole number and decimal amounts.

At the top of each 'In-class' worksheet and Homework / Assessment worksheet, the Number objectives) being covered has been indicated. EXAMPLE: N1 means objective 1, N2 means objective 2, etc.

The Mathematical Processes Skills: Problem Solving,
Developing Logic \& Reasoning, Communicating Mathematical Ideas, are learned and assessed within the context of the more specific knowledge and skills of number, measurement, geometry, algebra and statistics. The following are the Mathematical Processes Objectives for Level 3.

Problem Solving Achievement Objectives [Refer page 24]

- MP1 pose questions for mathematical exploration;
- MP2 effectively plan mathematical exploration;
- MP3 devise and use problem-solving strategies to explore situations mathematically;
- MP6 use equipment appropriately when exploring mathematical ideas.

Developing Logic and Reasoning Achievement Objectives [Refer page 26]

- MP8 classify objects, numbers and ideas;
- MP9 interpret information and results in context;
- MP14 use words and symbols to describe and continue patterns.

Communicating Mathematical Ideas Achievement Objectives [Refer page 28]

- MP15 use their own language and mathematical language and diagrams to explain mathematical ideas;
- MP16 devise and follow a set of instructions to carry out a mathematical activity;
- MP18 record, in an organised way, and talk about the results of mathematical exploration.

[^1]
'In-class' Number Worksheets
 Table of Worksheet Number / Objectives Covered

See the opposite page for details of each objective.

	Number Objectives							Mathematical Processes Objectives									
Worksheet Number	$\begin{gathered} \hline \mathbf{N} \\ 1 \end{gathered}$	$\begin{aligned} & \hline N \\ & 2 \end{aligned}$	$\begin{gathered} \hline N \\ 3 \end{gathered}$	$\begin{aligned} & \hline N \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} \hline N \\ 5 \end{gathered}$	$\begin{gathered} \hline N \\ 6 \end{gathered}$	$\begin{aligned} & \hline N \\ & 7 \end{aligned}$	$\begin{gathered} \text { MP } \\ 1 \end{gathered}$	$\begin{gathered} M P \\ 2 \end{gathered}$	$\begin{array}{c\|} \hline \text { MP } \\ 3 \end{array}$	$\begin{gathered} M P \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{MP} \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \text { MP } \\ 9 \end{gathered}$	$\begin{aligned} & \hline \mathrm{MP} \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \mathrm{MP} \\ & 15 \end{aligned}$	$\begin{array}{l\|} \hline \mathrm{MP} \\ 16 \end{array}$	$\begin{aligned} & \hline \mathrm{MP} \\ & 18 \end{aligned}$
1	*							\times									
2	*									*			*				
3		*						\times									
4		*								*			*				
5			*							*			*				
6			*							*			*		*		
7				\times						\times			*				
8					*			\times									
9						*				*			*				
10						*				*			*				
11			*			*		\times		*			*				
12				*		*		*		*			*				
13				*		*		*		*			*				
14							*	\times		*			*				
15							*	*		*			*			*	
16							*	*		*			*			*	
17							\times	*		\times			*				

Table of Contents for the 'In-class' Worksheet Masters for Number, Level 3

Worksheet Number	Topic	Number Objective(s)
1	Reading and writing whole numbers	N1
2	Place value in whole numbers / Adding and subtracting whole numbers	N1
3	Reading and writing decimal numbers	N2
4	Place value and decimals / Adding and subtracting decimal numbers	N2
5	Ordering decimal numbers	N3
6	Creating decimal numbers / Renaming numbers using decimals	N3
7	Estimation involving money	N4
8	Basic multiplication facts	N5
9	Adding and subtracting whole numbers	N6
10	Multiplying and dividing whole numbers	N6
11	Adding and subtracting decimals	N3 / N6
12	Multiplying and dividing decimals	N4 / N6
13	Problems involving money	N4 / N6
14	Introduction to fractions	N7
15	Working with fractions (numerators $=1$)	N7
16	More fractions (numerators > 1)	N7
17	Fractions, decimals and money	N7
	Teaching Notes / Answers	

Reading and writing whole numbers:

"Mum, are there two or three zeros in one thousand and four?" asked Alf.
"Only two," said his mother.

How would Alf write this number?
Answer: 1004
"Can you now write 2352 in words?" asked Alf's mother.

"Easy," said Alf, as he writes, 'two thousand, three hundred and fifty two' "There!"

Task 1

1. Copy this 'number cross' into the squares of your maths book.
2. Use the clues for across and down to complete the number cross by writing these number words as numerals.

Clues across

1. six hundred and fifty-two
2. five thousand, three hundred and forty-nine
3. nine hundred and seventy-two
4. eighty-five
5. twenty-eight
6. one hundred and seventy-four
7. seven hundred and twenty-four
8. one hundred and sixty-five
9. four thousand, four hundred and seven
10. thirty thousand and fifty-two

Clues down

1. six hundred and eight
2. twenty-nine
3. five thousand, two hundred and seven
4. five thousand and twenty-four
5. four thousand one hundred and seventy
6. forty
7. four hundred and sixty-two
8. eighty-one thousand, five hundred and forty-two
9. seven hundred and forty-one
10. seventy-three

Write these numbers in words.
3. 81
4. 513
7. 6008
8. 8654
11. 15469
12. 90006

5.	706	6.	2050
9.	12050	10.	13009
13.	102000	14.	115062

Task 2

For this task, work in small groups of 3 or 4 pupils.
Each pupil writes out 10 large numbers.
Example: 15026
Each pupil calls out his / her numbers and the other pupils write them down.

When each pupil has had a turn, check your answers with each other.
How many did you get right?

Place value in whole numbers:

When 'digits' are written side by side a number is created. The order and position of a digit in a number affects its value. Each position of a digit in a number has a particular place value.

Example: What is the value of the digit ' 9 ' in each of these numbers? 8952 and 7196

Answer: The digit '9' in 8952 stands for 900. The digit '9' in 7196 stands for 90.

Some of the place values for whole numbers are shown in this chart below.

100000 hundred thousands	10000 ten thousands	1000 thousands	100 hundreds	10	1 tens
ones (units)					

Task 3

What is the place value of the digit that is high-lighted and what does it mean?
Example: In 2569, the $\mathbf{6}$ has a place value of ten and it means 60.

1. 2569
2. 1396
3. 869
4. 12695
5. 563
6. 145620
7. 36528
8. 691598
9. 15469
10. 692369
11. 26987
12. 36594
13. 236134
14. 314166

Adding and subtracting whole numbers:

Jillian was asked to add up these whole numbers, $345,23,9,123,1004 \& 65$. So that she does not make a mistake, she writes the numbers one under each other, lining up the digits with the same place value.

Example:

345
When Jillian does a subtraction problem, she also lines up the digits with the same place value.

Task 4

Rewrite each of the problems as above, lining up the digits before you work out the answers.

1. $215+27=$?
2. $9+502+69=$?
3. $512-98=$?
4. $26+2368=$?
5. $6325-84=$?
6. $865+7+1025=$?
7. $156200+5411=$?
8. $25+538+6+8695=$?
9. $18569-6048=$?
10. $125+25+1025+9=$?
11. $23658-6847=$?
12. $6532+56+7+125=$?
13. $36+9+1005+536=$?
14. $963+452100+56=$?
15. $3690+50+687+8=$?
16. $63900-695=$?
17. $3+9853+65+357=$?
18. $36985-6841=$?
19. $36+123+8+3697=$?
20. $200000-5629=$?
21. $60000-1365=$?

Reading and writing decimal numbers:

"How do you say this number, 32.45?" asked Geoff.
"Is it thirty-two point forty-five or thirty-two point four five?," asked Paul.

What do you think is the correct way to say 32.45?
Answer: Thirty-two point four five
"Can you now write 305.108 in words?" asked Geoff.

"Easy," said Paul, as he wrote 'three hundred and five point one zero eight' "There!"

Task 5

1. Copy this 'number cross' into the squares of your maths book.
2. Use the clues for across and down to complete the number cross by writing these decimal number words as numerals.

Clues across

1. three hundred and fifty-nine point seven one
2. three point seven
3. sixty point four
4. fifteen point five nine two
5. two hundred and seventy-five point three
6. ninety-four point three
7. four hundred and ninety-two point three zero three
8. twenty-five point nine
9. three hundred and forty point nine

Clues down

1. three point six seven
2. one point nine five three
3. seven point one two
4. two hundred and sixty-nine point five
5. thirty-one point nine
6. ninety-one point zero seven
7. three thousand and five point four
8. one point zero three five
9. ninety-three point four

Write these decimal numbers in words.
3. 23.9
4. 502.7
7. 164.26
8. 240.079
11. 1546.693
12. 10456.62
5. 25.04
9. 125.009
13. 12365.304
6. 138.509
10. 1050.080
14. 100256.007

Task 6

For this task, work in small groups of 3 or 4 pupils.
Each pupil writes out 10 decimal numbers. Example: 231.604
Each pupil calls out his / her numbers and the other pupils write them down.

When each pupil has had a turn, check your answers with each other. How many did you get right?

Place value and decimals:

As we have seen, the 'digits' in a whole number all have a place value.
Numbers involving decimals also have particular place values.
Example: What is the value of the digit '9' in each of these numbers? 20.95 and 7.196

Answer: The digit '9' in 20.95 stands for 9 tenths. The digit '9' in 7.196 stands for 9 hundredths.

Some of the place values for numbers involving decimals are shown in this chart below.

| 100 | 10 | 1 | $\frac{1}{10}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| hundreds | tens | $\frac{1}{100}$
 (units) | $\frac{1}{1000}$
 hundredths | thousandths |

Task 7

What is the place value of the digit that is high-lighted and what does it mean?
Example: In 2.569, the $\mathbf{6}$ has a place value of hundredths and it means 6 hundredths.

1. 2.569
2. 49.913
3. 3.957
4. 2728.23
5. 36.289
6. 692.369
7. 471.04
8. 578.45
9. $\quad 36.486$
10. 3.659
11. 286.214
12. 2781.347
13. $\quad 369.166$
14. 96.508
15. 78.594
16. $\quad 31.166$

Adding and subtracting decimal numbers:

Jillian was asked to add up these decimal numbers, 1.23, 15.6, 0.365 \& 125.7. So that she does not make a mistake, she writes the numbers one under each other, lining up the digits with the same place value. The decimal points will also be in line. Adding zeros after the decimal point can be helpful.
Example:
1.230

When Jillian does a subtraction problem, she also lines up the digits with the same place value and the decimal points.
Example: 15.9-2.36 would be written as ..
15.90
$\begin{array}{r}-2.36 \\ \hline 13.54 \\ \hline\end{array}$

Where is the decimal point for the number 154?
Answer: After the number 4, so the number 154 could be written as 154.0

Task 8

Rewrite each of the problems as above, lining up the decimal points before you work out the answers.

1. $25.9+53.7=$?
2. $102.3+5.3+15.8=$?
3. $56.9-8.7=$?
4. $2.68+14.38=$?
5. $257.68-63.57=$?
6. $12.56+9.3+4.35=$?
7. $126.56+15.68=$?
8. $5.32+9.7+15.96=$?
9. $562.65-46.8=$?
10. $1.368+6.8+24=$?
11. $\quad 125.5-25.31=$?
12. $5.23+12+8.6+2.354=$?
13. $8.4+9.23+124+0.9=$?
14. $0.125+125.6+5.37=$?
15. $36.901+0.08+9.7+8=$?
16. $45.625-9.45=$?
17. $15+1.068+1.6+4.68=$?
18. $\quad 369.85-256.7=$?

Ordering decimal numbers:

Jack measured four lengths of string. They measured $5.23 \mathrm{~m}, 5.27 \mathrm{~m}, 5.28 \mathrm{~m}$ \& 5.21 m . Order these lengths of string, from shortest to longest.

Answer: $\quad 5.21 \mathrm{~m}, 5.23 \mathrm{~m}, 5.27 \mathrm{~m}$ \& 5.28m

Jenny weighed five coins. They weighed $1.037 \mathrm{~g}, 1.046 \mathrm{~g}, 1.057 \mathrm{~g}, 1.032 \mathrm{~g}, 1.049 \mathrm{~g}$ \& 1.051 g Order these weights from heaviest to lightest.

Answer: $\quad 1.057 \mathrm{~g}, 1.051 \mathrm{~g}, 1.049 \mathrm{~g}, 1.046 \mathrm{~g}, 1.037 \& 1.032 \mathrm{~g}$

Task 9

Order these decimals from smalles \dagger to largest.

1. $2.6,5.7,1.9,8.4,7.3,4.9,6.7,7.7$
2. $5.7,5.8,5.3,5.6,5.4,5.9,5.1$
3. $2.34,2.45,2.16,2.75,2.47,2.27,2.54$
4. $1.126,1.352,1.245,1.342,1.049,1.276,1.165$
5. 1.2, 2.4, 1.6, 2.0, 1.8, 0.9, 2.1, 1.9
6. $1.08,1.07,1.02,1.06,1.01,1.05,1.09$
7. $12.56,13.75,11.98,12.84,13.24,12.67$
8. $9.532,9.842,9.325,9.348,9.428,9.468$

The results of a 100 m race is shown in this table.
9. What was Shane's time?
10. Name the runners who came 1st, 2nd and 3rd.
11. Order these times from fastest to slowes \dagger time.
12. What was the difference between the fastest and slowest time?

Runner	Time (seconds)
David	13.6
Andrew	13.7
Rangi	12.6
John	13.9
Quentin	12.9
Shane	13.0
Bevan	13.4
Sam	14.1

Karen competed in a high jump competition. She was allowed six jumps and these were her results, $1.53 \mathrm{~m}, 1.27 \mathrm{~m}, 1.61 \mathrm{~m}, 1.42 \mathrm{~m}, 1.35 \mathrm{~m} \& 1.50 \mathrm{~m}$.
13. What was the height of her worst jump?
14. What was the height of her 5 th jump?
15. Place her jump heights in order of highest to lowest jump.
16. What was the difference between her best and worst jump?

In a tomato growing competition, pupils were allowed to enter three tomatoes. Each tomato was weighed and the results are shown in this table.
17. What was the weight of the heaviest tomato?
18. What was the weight of the lightest tomato?
19. List all the tomato weights in order from lightest to heaviest.
20. For each pupil, add up their three tomato weights.

Name	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Miri	15.3 g	14.7 g	12.9 g
James	14.8 g	13.2 g	15.0 g
Fred	13.6 g	13.9 g	14.9 g
Kim	16.2 g	11.5 g	13.4 g

21. List your four totals in order of largest to smallest.

In a cycling race, the following times were recorded for the 1 kilometre distance.
22. List these times in order from slowest to fastest.

Creating decimal numbers:

Using the five digits in this box and a decimal point, create the largest number closest to 30 .

2	4	5	7	9

Answer: 29.754
Using the same digits and decimal point, create five numbers between 50 and 40 , starting with the largest number first. Each number is to have two decimal places.

Answer: $49.75,49.72,49.57,49.52,49.27$, etc.

Task 10

Using the digits and decimal point in the box make ...

2	6	7	5	0

1. the 3-digit number closest to 60 .
2. the 4-digit even number closest to 70 .
3. the 2-digit odd number closest to 8 .
4. the 4-digit number closest to 7 .
5. the 5-digit even number closest to 2.
6. the 4-digit even number closest to 250 .
7. Using all digits, make the first 5 numbers between 25 and 30 . Start with the smallest number first.
8. the 3-digit odd number closest to 30 .
9. the 5-digit number closest to 50 .
10. the 5-digit odd number closest to 1.

Renaming numbers using decimals:

A good example of renaming whole numbers as decimals is when using money.
Example: $\$ 2.00$ could be renamed as $\$ 0.50+\$ 0.50+\$ 0.50+\$ 0.20+\$ 0.20+\$ 0.10$
Renaming whole numbers is not difficult.

Example: 12 could be renamed as $0+12,10+2,14-2,24 \div 2,4 \times 3$ or 6×2 etc.
Renaming a number using decimals requires more effort.
Example: 12 could be renamed as $9.8+2.2,15.8-3.8,2.5 \times 4.8$ or $38.4 \div 3.2 \mathrm{etc}$.
Using a calculator can make this task less difficult.

Task 11

Rewrite each of these money values, three different ways, using $\$ 2.00, \$ 1.00,50$ cent, 20 cent, 10 cent or 5 cent coins. Example: $\$ 7.00=3 \times \$ 2.00+\$ 1.00$ coins

1. 50 cents
2. 80 cents
3. $\$ 1.00$
4. $\$ 1.50$
5. $\$ 2.00$
6. $\$ 2.40$
7. $\$ 3.00$
8. $\$ 3.60$
9. $\$ 4.80$
10. $\$ 5.00$
11. $\$ 6.00$
12. $\$ 10.00$

Rename each number four times as decimal numbers, using the four operations (,,$+- \times$ and \div).
Use a calculator if needed. Example: $1=0.6+0.4,1=1.52-0.52,1=2.0 \times 0.5,1=2.64 \div 2.64$
13. 2
14. 4
15. 5
16. 7
17. 8
18. 10
19. 12
20. 15
21. 20
22. 25
23. 50
24. 100

Estimation involving money:

Linda went shopping and bought items worth \$1.95, \$8.95, \$5.25 and \$19.95.
How could you estimate how much she spent, without having to add up the actual price of each item?

Answer: Round the price of each item to the nearest dollar.

The prices would be $\$ 2.00, \$ 9.00, \$ 5.00$ and $\$ 20.00$. Add these totals to get an estimate. The estimate total is $\$ 36.00$. To check if this is a reasonable answer, the exact prices can be added together. The exact cost is $\$ 36.10$, so the estimate was very good.

For larger money values, the amounts could be rounded to the nearest $\$ 10.00$ or $\$ 100.00$.
Example: $\quad \$ 26.95$ rounds to $\$ 30.00, \$ 52.60$ rounds to $\$ 50.00$ $\$ 140.50$ rounds to $\$ 100, \$ 275.80$ rounds to $\$ 300.00$

Task 12

Round these money amounts to the nearest $\$ \mathbf{1 . 0 0}$.

1. $\$ 5.85$
2. $\$ 14.25$
3. $\$ 19.80$
4. $\$ 16.40$
5. $\$ 25.75$
6. $\$ 36.14$
7. $\$ 89.35$
8. $\$ 109.85$

Round these money amounts to the nearest $\$ \mathbf{1 0 . 0 0}$.
9. $\$ 16.95$
10. $\$ 28.45$
11. $\$ 67.95$
12. $\$ 45.90$
13. $\$ 97.15$
14. $\$ 64.60$
15. $\$ 109.60$
16. $\$ 127.20$

Round these money amounts to the nearest $\mathbf{\$ 1 0 0 . 0 0}$.
17. $\$ 124.60$
18. $\$ 180.95$
19. $\$ 340.60$
20. $\$ 684.50$
21. $\$ 815.65$
22. $\$ 486.50$
23. $\$ 630.45$
24. $\$ 775.95$

Sally and nine of her friends each had a hamburger for tea. The hamburger costs $\$ 2.95$ each.
25. Estimate the total cost of buying these hamburgers.
26. Check how close your estimate was, by calculating the exact cost.

Adam bought some new clothes. They cos $\dagger \$ 9.95, \$ 15.10, \$ 19.95$ and $\$ 10.40$.
27. Estimate the total cost of these clothes.
28. Check how close your estimate was, by calculating the exact cost.

Judith has been saving money in her bank account. She has $\$ 78.20$ saved in her account, but she takes out $\$ 25.80$ to buy some Christmas presents.
29. Estimate how much money she has left in her account.
30. Check how close your estimate was, by calculating the exact bank balance.

At a school mufti day, $\$ 23.80, \$ 18.90, \$ 20.40, \$ 19.75$ and $\$ 20.85$ was collected from five classes.
31. Estimate the total money raised from the mufti day.
32. Check how close your estimate was, by calculating the exact total of money raised.

Basic multiplication facts:

At the start of each day, Harry's class is asked 10 basic multiplication facts.
Example:

1.	$3 \times 6=\ldots \ldots$
2.	$7 \times 9=\ldots \ldots$
3.	$8 \times 3=\ldots .$.
4.	$6 \times 4=\ldots .$.
5.	$10 \times 7=\ldots .$.
6.	$4 \times 10=\ldots .$.
7.	$11 \times 12=\ldots .$.
8.	$5 \times 5=\ldots .$.
9.	$12 \times 8=\ldots .$.
10.	$9 \times 11=\ldots \ldots$

How long would it take you to do these questions?

Would you get them all correct?

Task 13

Below are several sets of ' 10 basic multiplication facts'.
Draw a table with the numbers 1 to 10 going down the side and the days 1 to 15 going across the top. Use this to record your answers. Now complete each set as quickly as you can.

Task 14

Work in groups of 3 or 4.
Create your own set of '10 basic multiplication facts'. Make sure you know the answers to your questions.
Each pupil has a turn at asking his / her set of 10 questions, for the other pupils in the group to answer.
When each pupil has asked his /her questions, mark the answers. How did you get on?

Adding and subtracting whole numbers:

Being able to add and subtract numbers confidently is an important skill. How confident are you?

Task 15

1. Copy this 'number cross' into the squares of your maths book.
2. Use the clues for across and down to complete the number cross by writing your answers in the spaces. Rewrite the questions, lining up the digits, to help you work them out.

Clues across

1.	$165+256=$?	6.	278
8.	113-94 = ?	9.	658
10.	$4185-461=$?	12.	652
15.	$17+13+23+9+19+24=$?		
18.	$1257+986+678=?$		
21.	$10000-3676=$?		
22.	$142+98+7+67+160=$?		
24.	$56+127+29+102+42=?$		
26.			
27.	$4560-4488=$	28.	3108

Clues down

2. $5236-2480=$?
3. $5123-5053=$?
4. $12+11+9+23+72=$?
5. $1269+876=$?
6. $410-387=$?
7. $1251-1005=$?
8. $8+12+35+9+28=$?
9. $97+146+872+7+218=$? 7
10. $1000-563=$?
11. $976+1347+1844=$?
12. $8+7+6+9+11+13+7+11=$?
13. $6348+526+68+6303=$? 16. $2143-2091=$?
14. $1200-263=$? 20. $16000-1268=$?
15. $531-317=$?
16. $341-329=$?

James likes collecting cards from potato chip packets. So far he has collected 15, 13, 9 and 17 cards during the past four weeks.
3. How many cards does James have so far?
4. If James would like to collect 100 cards, how many more cards does he need to collect?

At Mairehau Primary School there are ten classes.
The number of pupils in each class is shown in this table.
5. Which class has the greatest number of pupils?
6. Which class has the least number of pupils?

Room	Number of pupils
1	17
2	23
3	27
4	25
5	31
6	29
7	25
8	21
10	26

Multiplying and dividing whole numbers:

Being able to multiply and divide numbers confidently is an important skill. How confident are you?

Task 16

1. Copy this 'number cross' into the squares of your maths book.
2. Use the clues for across and down to complete the number cross by writing your answers in the spaces. Rewrite the questions, lining up the digits, to help you work them out.

Clues across

1. $40 \times 3=$?
2. $210 \times 5=$?
3. $368 \div 4=$?
4. $210 \times 6=$?
5. $\quad 821 \times 4=$?
6. $1152 \div 6=$?
7. $771 \div 3=$? 18. $756 \times 3=$?
8. $364 \times 8=$? 22. $462 \div 3=$?
9. $894 \times 4=$? $25 . \quad 1002 \times 7=$?
10. $1296 \div 6=$?
11. $552 \div 8=$?
12. $904 \times 6=$?

Clues down

2. $706 \times 4=$?
3. $490 \div 7=$?
4. $1812 \div 6=$?
5. $707 \times 7=$?
6. $219 \times 5=$?
7. $3180 \div 6=$?
8. $648 \div 8=$?
9. $348 \div 12=$?
10. $68 \times 9=$?
11. $4824 \times 5=$?
12. $1650 \div 6=$?
13. $40812 \times 2=$?
14. $790 \div 10=$?

At a country school, seven buses are used to transport pupils to and from school.
3. If each bus can carry 32 pupils, how many pupils can be carried by all seven buses?

A local movie theatre holds 480 people.
4. If there are 20 equal rows of seats, how many seats are there in each row?
5. If 72 people go to the movies, how many full rows of seats would they take up?

In the spring time. carrots are sold in bunches of 12 carrots, tied up with string.
6. How many carrots are there in 30 bunches of carrots?
7. How many bunches of carrots could be made from 192 carrots?
8. If the bunches of carrots sell for $\$ 1.50$ each, what would it cost to buy 7 bunches of carrots?

A new school is to be built. There will be 180 pupils going to this new school.
9. How many classrooms are needed, if each class is to have 20 pupils?
10. In each classroom there are 18 windows and 2 doors.

What is the total number of windows and doors for all classrooms?
11. 75 more pupils will be coming to the school next year.

How many more classrooms will need to be built in time for next year?

Adding and subtracting decimals:

Being able to add and subtract decimal numbers confidently is an important skill. How confident are you?

Task 17

Material for making dresses comes in a 25 metre roll. During the past week, Mrs Fidow sold $3.4 \mathrm{~m}, 2.1 \mathrm{~m}, 4.6 \mathrm{~m}$ and 1.8 m of this material.

1. How much material did Mrs Fidow sell during the week?
2. What length of material is left on the roll?

As a holiday job, Karen picks strawberries. She fills a container with strawberries which is then weighed. She fills six containers which weighed $345 \mathrm{~g}, 360 \mathrm{~g}, 327 \mathrm{~g}, 354 \mathrm{~g}, 347 \mathrm{~g}$ and 340 g . 3. If the container weighs 58 grams, what is the weight of strawberries in each container?

The table below shows the results of three throwing events, shot put, discus and javelin, for 5 competitors.

	shot put throw (\mathbf{m})	discus throw (\mathbf{m})	javelin throw (\mathbf{m})	Combined total (\mathbf{m})
Andrew	11.2	32.6	58.4	$?$
Geoff	10.6	35.3	52.9	$?$
Mark	14.3	38.3	60.4	$?$
Jason	13.7	37.6	57.6	$?$
John	12.4	36.8	56.7	$?$

4. Who were the first three place-getters in each of the three throwing events?

The overall winner is the competitor whose combined total for all three throwing events is the greatest.
5. Add each competitors 3 throws to come up with a 'combined to tal'.
6. List the competitors in order from 1st to 5 th.

Below is a table showing the results of four mountain bike races. The times are in seconds.

		Rider A	Rider B	Rider C	Rider D	Rider E	Rider F	Rider G	Rider H
	Race 1	56.86	64.36	55.71	60.45	63.23	59.24	54.95	61.34
	Race 2	84.35	81.67	82.67	80.09	83.65	81.91	86.49	85.23
	Race 3	43.72	45.81	44.16	43.84	42.95	44.06	43.23	44.14
	Race 4	76.03	75.87	73.27	74.64	73.86	74.11	75.34	76.32

7. How many competitors took part in each race?
8. Name the winner of each race.
9. List the competitors for each race in order from fastest to slowest.
10. The winning rider is the rider with the lowest total time for the four races.

Add up the four times for each rider, then list the riders in order from 1st to 8th.
11. What is the difference in time between the fastes t and slowest rider's combined times?

Task 18

Make up 5 word problems of your own involving adding and subtracting of decimals.
Exchange your questions with 3 or 4 other pupils in your class.
Remember, you must be able to answer your own questions.

Multiplying and dividing decimals:

Being able to multiply and divide decimal numbers confidently is an important skill. How confident are you? Example:

52.3
$\times 8$
4184

Answer: Estimate the answer. 52.3×8 is almost the same as $50 \times 8=400$.
Therefore the decimal point in 4184 would go between the 8 and $4,52.3 \times 8=418.4$,
or count the number of digits to the right of the decimal point in the question, then place the decimal point after the same number of digits in the answer, starting from the right. Therefore, one decimal point. $52.3 \times 8=418.4$

Task 19

Rewrite each question as whole numbers to find an estimated answer and then calculate the exact answer. Remember to work out the correct place for the decimal point.
1.
48.3
2.
12.75
$\times 8$
3. \qquad
4.
4

$\times 9$ \qquad
\qquad
5. $\quad 673.14$
$\begin{array}{r}673.14 \\ \times 8 \\ \hline\end{array}$
\qquad

8. A carton holds 20 bottles of soft drink. If each soft drink bottle contains 1.5 litres, what volume of soft drink is in a carton?
9. If Mr Richards buys 60 litres of soft drink, how many cartons must he have bought? Explain how you worked out this problem.

Four families bought a large sack of wheat that weighed 25 kg .
10. Estimate the weight of wheat, to the nearest kg , that each family will get if the wheat is shared equally.
11. Calculate the exact weight each family will get.

Jenny had six attempts at the long jump.
The jumps were $4.68 \mathrm{~m}, 4.32 \mathrm{~m}, 4.72 \mathrm{~m}, 4.61 \mathrm{~m}, 4.56 \mathrm{~m}$ and 4.77 m .
12. Add together all of Jenny's six jumps, then divide your total by 6 to find the 'average' length of her jumps.

Task 20

Make up 5 word problems of your own involving multiplying and dividing decimals.
Exchange your questions with 3 or 4 other pupils in your class.
Remember, you must be able to answer your own questions.

Problems involving money:

Example: Mr Murray buys a class set of new books. There are 20 pupils in Mr Murray's class. If each book costs $\$ 3.95$, what is an estimated cost of the books?

Calculate the exact cost of these new books.

Answer: $\quad \$ 3.95$ is about $\$ 4.00$, therefore an estimated cost is $\$ 4.00 \times 20=\$ 80.00$. The exact cost is $\$ 3.95 \times 20=\$ 79.00$

Task 21

Round each money value to the nearest $\$ \mathbf{1 0}, \mathbf{\$ 1 0 0}$ or $\$ 1000$ to find an estimated answer and then calculate the exact answer. Remember to work out the correct place for the decimal point.

2. $\$ 20.40$
3. $\$ 99.95$
4. $\$ 272.50$
5. $\$ 1025.60$
 $\times 8$
7.

8. $\begin{array}{r}\$ 512.09 \\ \times 25 \\ \hline\end{array}$
9. $\begin{array}{r}\$ 985.50 \\ \times 32 \\ \hline\end{array}$
10. $\$ 1985.75$
\qquad
The cost of developing films is $\$ 9.90$ for each roll.
11. Estimate the cost of developing 4 rolls of film.
12. Calculate the exact cost of developing 4 rolls of film.

Mrs Jones bought 5 kilograms of meat for a school camp. The meat cost her \$59.75.
13. Estimate the cost per kilogram of the meat.
14. Calculate the exact cost per kilogram of the meat.

A local school bought 5 new soccer balls for $\$ 14.95$ each and 3 new rugby balls for $\$ 20.95$ each.
15. Estimate the cost of buying the 5 soccer balls and 3 rugby balls.
16. Calculate the exact cost of buying the 5 soccer balls and 3 rugby balls.

Sally has $\$ 98.60$ in her savings account. During the next month she added $\$ 14.80, \$ 20.50$ and $\$ 9.80$ to her account, but withdraw $\$ 24.95$.
17. Estimate the new total of her account after the money has been put in and taken out.
18. Calculate the exact total of her account.

James had a birthday party with six of his friends. They all had 1 fish and a scoop of chips. The total cost was $\$ 13.65$
19. Estimate the cost of buying 1 fish and a scoop of chips.
20. Calculate the exact cost of buying 1 fish and a scoop of chips.

Task 22

Make up 5 word problems of your own involving,,$+- \div$ and \times of money.
Exchange your questions with 3 or 4 other pupils in your class.
Remember, you must be able to answer your own questions.

Introduction to fractions:

A fraction is part of a whole. In the box are some examples of fractions, but what exactly do they mean?

Answer: $\frac{\mathbf{1}}{\mathbf{2}}$ means 1 out of 2 .
$\frac{4}{7}$ means 4 out of 7 .

How do you say these fractions above?
Answer: one half, three fifths, four sevenths, one tenth

Here are some diagrams of a panda bear, some of which are shaded black. How many diagrams are there? What fraction is shaded black?

Answer: 7 diagrams, 3 shaded. Written as a fraction, that would be $3 / 7$.

Task 23

What do these fractions mean and write in words, how you would say each fraction.

1. $\frac{1}{3}$
2.

2.
7.

3.

8.

4.

5. $\quad \frac{\mathbf{3}}{\mathbf{4}}$
9. $\frac{2}{3}$
10.
10

Write these fraction as numbers.
11. one fifth
14. six tenths
17. seven eighths
20. three sevenths
12. three eighths
15. four sixths
18. three quarters
13. five sevenths
16. two thirds
19. four tenths

Look at each group of diagrams. What fraction of each group is shaded?

This box contains some mathematical shapes.
24. How many mathematical shapes inside this box?
25. What fraction of the shapes are squares?
26. What fraction of the shapes are circles?
27. What fraction of the shapes are triangles?
28. What fraction of the shapes are pentagons?

Using the squares in your maths book, draw diagrams to show you understand these fractions.
29.
$\frac{3}{5}$
30.
5
9
31.
32.
$\frac{5}{12}$
33. $\quad 9$

Working with fractions:

We know that the fraction '112' means 1 out of 2 and we say ' one half', but how do you find $\frac{1}{2}$ of any number?
Example: Find $\frac{1}{2}$ of 20 . Is there an easy way to work this out?

Answer: As the fraction is $\frac{1}{2}$, divide the number by $2.20 \div 2=10$, so $\frac{1}{2}$ of 20 is 10 .

Look at these fractions.

What do they all have in common?
Answer: These fractions all have the 'number 1' as the 'top' number.
To find $1 / 2$ of a number, divide the number by 2 . To find $1 / 3$ of a number divide the number by 3 .
How would you find $1 / 5,1 / 8,1 / 10$ or $1 / 50$ of any number? Example: Find $1 / 5$ of 20 etc.
Answer: Divide the number by the 'bottom' numbers $5,8,10$ or 50 .

Task 24

Find the following fraction of these whole numbers.

1. Find $1 / 4$ of 20
2. Find $1 / 3$ of 30
3. Find $1 / 6$ of 48
4. Find $1 / 4$ of 48
5. Find $1 / 3$ of 36
6. Find $1 / 9$ of 27
7. Find $1 / 7$ of 42
8. Find $1 / 11$ of 66
9. Find $1 / 5$ of 25
10. Find $1 / 8$ of 40
11. Find $1 / 10$ of 20
12. Find $1 / 12$ of 72

In Miri's class there are 24 pupils.
13. If $1 / 3$ of the class go to the library, how many pupils is this?

Linda goes on a 36 km mountain bike ride.
14. If she has travelled $1 / 4$ the distance so far, how far has she gone?

David likes collecting model boats, cars, planes and trains.
He has a total of 72 models in his collection.
15. If $1 / 6$ of the models are planes, how many planes does he have?
16. If $1 / 4$ of the models are cars, how many cars does he have?

During the month of February (28 days) Gavin recorded the temperature at 3:00 p.m. each day.
17. On $1 / 7$ of the days the temperature was below $10^{\circ} \mathrm{C}$. How many days was this?
18. $\mathrm{On} \frac{1}{4}$ of the days the temperature was above $20^{\circ} \mathrm{C}$. How many days was this?

Task 25

Make up 5 word problems of your own involving fractions of whole numbers.
Exchange your questions with 3 or 4 other pupils in your class.
Remember, you must be able to answer your own questions.

More fractions:

If the fraction ' $1 / 4$ ' means 1 out of 4 and we say 'one quarter', what does '3/4' mean and how do you work out ' $3 / 4$ ' of a number?

Answer: \quad ' $3 / 4$ ' means 'three quarters' (a quarter is the same as a fourth) There are two steps involved to find ' $3 / 4$ ' of a number.
Step 1: Divide the number by the 'bottom' number of the fraction.
Step 2: Multiply your answer by the 'top' number of the fraction.
Example: Find ' $3 / 4$ ' of 20.
$\begin{array}{ll}\text { Divide } 20 \text { by } 4 . & (20 \div 4=5) \\ \text { Multiply } 5 \text { by } 3 & (5 \times 3=15)\end{array}$

Answer: $\quad 3 / 4$ ' of 20 is 15

What numbers would you 'divide by' and 'multiply by', if you were using the following fractions?

$$
2 / 5,5 / 8,7 / 10 \text { and } 23 / 50
$$

Answer: $\div 5 \& \times 2, \div 8 \& \times 5, \div 10 \& \times 7, \div 50 \& \times 23$

Task 26

Find the following fraction of these whole numbers.

1. Find $3 / 4$ of 20
2. Find $2 / 5$ of 30
3. Find $5 / 6$ of 48
4. Find $3 / 8$ of 48
5. Find $2 / 3$ of 36
6. Find $5 / 9$ of 27
7. Find $4 / 7$ of 42
8. Find $4 / 11$ of 66
9. Find $4 / 5$ of 25
10. Find $5 / 8$ of 40
11. Find $^{3} / 10$ of 20
12. Find $^{7} / 12$ of 72

In Miri's class there are 27 pupils.
13. If $2 / 3$ of the class go to the library, how many pupils is this?

Linda goes on a 36 km mountain bike ride.
14. If she has travelled $3 / 4$ the distance so far, how far has she gone?

David likes collecting model boats, cars, planes and trains. He has a total of 72 models in his collection.
15. If $2 / 9$ of the models are boats, how many planes does he have?
16. If $5 / 9$ of the models are trains, how many cars does he have?

During the month of November (30 days) Gavin recorded the temperature at 3:00 p.m. each day.
17. On $\frac{1}{5}$ of the days the temperature was below $15^{\circ} \mathrm{C}$. How many days was this?
18. $\mathrm{On}^{3} / 5$ of the days the temperature was above $20^{\circ} \mathrm{C}$. How many days was this?

Task 27

Make up 5 word problems of your own involving fractions of whole numbers.
Exchange your questions with 3 or 4 other pupils in your class.
Remember, you must be able to answer your own questions.

Fractions, decimals and money:

Finding a fraction of a decimal or of money is no different from finding a fraction of a whole number.
Example: Find $1 / 2$ of 48.6 cm
Answer: As the fraction is $1 / 2$, divide the number by 2 . $48.6 \mathrm{~cm} \div 2=24.3 \mathrm{~cm}$

Example: Find $3 / 4$ of $\$ 24.80$

Answer: As the fraction is $3 / 4$, divide the number by 4 , then multiply your answer by 3 .

$$
\$ 24.80 \div 4=\$ 6.20, \quad \$ 6.20 \times 3=\$ 18.60
$$

Task 28

Find the following fraction of these whole numbers.

1. Find $1 / 4$ of 16.4 cm
2. Find $1 / 3$ of 36.12 mm
3. Find $2 / 3$ of $\$ 12.90$
4. Find $3 / 4$ of $\$ 16.48$
5. Find $3 / 5$ of $\$ 32.00$
6. Find $4 / 9$ of $\$ 27.09$
7. Find $4 / 7$ of 50.4 mL
8. Find $7 / 11$ of $\$ 57.20$
9. Find $1 / 5$ of 20.5 km
10. Find $1 / 8$ of 6.48 kg
11. Find $^{7} / 10$ of $\$ 2.50$
12. Find $5 / 12$ of 26.4 km

At a local school $\$ 6000$ was raised from a school fair.
13. If $3 / 4$ of this money is to go towards some new play ground equipment, how much money is that?

The school cross-country race is 1200 m . After $2 / 3$ of the distance was run, Jim moved into 1st place.
14. How far had the race gone, when Jim moved into 1st place and went on to win the race?
15. For how many metres did Jim lead in the race?

Three sisters, Karen, Jane and Gail all have some money. Karen has $\$ 12.50$, Jane has $\$ 10.40$ and Gail has $\$ 13.70$. They are going to buy their mother a birthday present.
16. How much money do they have altogether?
17. If they decide to spent $2 / 3$ of this money on the present, how much do they spend?

18. How much money is left over?

Michelle is going to paint a fence that is 24.60 metres long.
19. During the morning she paints $3 / 5$ of the fence. How many metres of the fence has Michelle painted so far?
20. What fraction of the fence has yet to be painted?

Task 29

Make up 5 word problems of your own involving fractions of decimals and money.
Exchange your questions with 3 or 4 other pupils in your class.
Remember, you must be able to answer your own questions.

'In-class' Worksheet

Teaching Notes \& Answers

How to use this section:

Teaching notes are enclosed in a box with a 'push-pin' at the top left corner. The teaching notes precede the answers for each worksheet / task. The teaching notes have been included to provide assistance and background information about each topic or unit of work.

Introduction:

Worksheet 1

The topic of Number is concerned with exploring number, gaining an understanding of the meaning of place value of the 'digits' written as whole numbers and decimals, ordering numbers, writing and solving word problems involving the four basic operations, plus simple problems involving fractions of whole numbers and decimals.
The importance of gaining a good understanding of the 'basic number facts', the ability to add, subtract, divide and multiply with confidence, should not be underestimated, as all strands of mathematics involve some, if not all, of the four basic skills.

Reading and writing whole numbers:

The purpose of having a number system is to provide uniformity when reading and writing whole numbers.

Task 1 is designed to give practice at reading whole numbers written as words. Having to copy the number cross provides pupils with a problem solving task in itself. A second part of this task is, given whole numbers as digits, to write the whole numbers in words.
Task 2 provides pupils with an opportunity to work co-operatively in small groups, as pupils create their own questions involving the reading and writing of whole numbers.

Task 1

1. \& 2.

3. eighty-one 4. five hundred and thirteen
5. seven hundred and six
6. two thousand and fifty
7. six thousand and eight
8. eight thousand, six hundred and fifty-four
9. twelve thousand and fifty 10. thirteen thousand and nine
11. fifteen thousand, four hundred and sixty-nine
12. ninety thousand and six 13. one hundred and two thousand
14. one hundred and fifteen thousand and sixty-two

Worksheet 2

Place value in whole numbers:
The position of a 'digit' in a number affects its place value. In order to be able to add or subtract whole numbers successfully, an understanding of place value is important.
Task 3 is designed togive practice at naming place values for high-lighted digits in whole numbers and stating the value of the digit. Example: 345, the 4 stands for 'tens' and means 40.
Task 4 is designed to give pupils practice at adding and subtracting whole numbers. When the whole
numbers contain different numbers of digits and the addition and subtraction problems are written across the page, to avoid making simple mistakes, pupils are encouraged to rewrite the problems going 'down' the page, lining up the digits with the same place value.

Task 3

1. 6 , place value ten, means 60
2. 9 , place value units, means 9
3. 5 , place value hundreds, means 500
4. 2, place value tens, means 20
5. 5 , place value thousands, means 5000
6. 2 , place value ten thousands, means 20000
7. 0 , place value tens, means 0
8. 3, place value tens, means 30
9. 3 , place value hundreds, means 300
10. 2, place value thousands, means 2000
11. 4, place value ten thousands, means 40000
12. 6 , place value hundred thousands, means 600000
13. 9 , place value units, means 9
14. 9 , place value tens, means 90
15. 3 , place value hundred thousands, means 300000
16. 1, place value ten thousands, means 10000

Task 4

1.	215	2.	9	3.	512	4.	26	5.	6325	6.	865
	+ 27		502		-98		+ 2368		-84		7
	242		+ 69		414		2394		6241		+ 1025
			580								1897
7.	156200	8.	25	9.	18569	10.	125	11.	23658	12.	6532
	+ 5411		538		-6048		25		-6847		56
	161611		6		12521		1025		16811		7
			+ 8695				+ 9				+ 125
			9264				1184				6720
13.	36	14.	963	15.	3690	16.	63900	17.	3	18.	36985
	9		452100		50		-695		9853		-6841
	1005		+ 56		687		63205		65		30144
	+ 536		453119		+ 8				+ 357		
	1586				4435				10278		
19.	36	20.	200000	21.	60000						
	123		- 5629		-1365						
	8		194371		58635						

Worksheet 3

Reading and writing decimals

Where a group of digits are written with a point between digits, it is known as a decimal number. All whole numbers could be written as decimals, with a decimal point after the last digit at the right followed by zeros. However, if there are no digits to the right of the decimal point, the number is usually written as a whole number without the decimal point and zeros.

Task 5 is designed to give practice at reading decimal numbers written as words. Having to copy the number cross provides pupils with a problem solving task in itself. A second part of this task is, given decimal numbers as digits, to write the decimal numbers in words. Remember that digits to the right of the decimal point are said or written as individual numbers. Example: 5.62 is five point six two, NOT five point sixty-two.
Task 6 provides pupils with an opportunity to work co-operatively in small groups, as pupils create their own questions involving the reading and writing of decimal numbers.

1. \& 2 .

2. twenty-three point nine 4. five hundred and two point seven
3. twenty-five point zero four
4. one hundred and thirty-eight point five zero nine
5. one hundred and sixty-four point two six
6. two hundred and forty point zero seven nine
7. one hundred and twenty-five point zero zero nine
8. one thousand and fifty point zero eight zero
9. one thousand, five hundred and forty-six point six nine three
10. ten thousand, four hundred and fifty-six point six two
11. twelve thousand, three hundred and sixty five point three zero four
12. one hundred thousand, two hundred and fifty-six point zero zero seven

Place value in decimal numbers:

Worksheet 4

As with whole numbers, the position of a 'digit' in a decimal number will affect its place value. All digits to the left of the decimal point are greater than one and have the same place values as whole numbers. All digits to the right of the decimal point are less than one. The further to the right, the smaller the place number. In order to be able to add or subtract decimal numbers successfully, an understanding of place value is important.
Task 7 is designed to give practice at naming place values for high-lighted digits in decimal numbers and stating the value of the digit. Example: 3.45, the 4 stands for 'tenths' and means 4 tenths.
Task 8 is designed to give practice at adding and subtracting decimal numbers. Numbers should be written vertically down the page, lining up the decimal points. Adding 0's may help in lining up digits.

Task 7

1. 6 , place value hundredths, means 6 hundredths
2. 4 , place value tenths, means 4 tenths
3. 7 , place value thousandths, means 7 thousandths
4. 9 , place value thousandths, means 9 thousandths
5. 2 , place value tenths, means 2 tenths
6. 2 , place value hundreds, means 200
7. 0 , place value tenths, means 0 tenths
8. 3, place value tenths, means 3 tenths
9. 3, place value thousandths, means 3 thousandths
10. 6 , place value hundredths, means 6 hundredths
11. 2, place value tens, means 20
12. 0 , place value hundredths, means 0 hundredths
13. 9, place value thousandths, means 9 thousandths
14. 9 , place value hundredths, means 9 hundredths
15. 7 , place value tens, means 70
16. 1, place value units, means 1

Task 8

1.	25.9	2.	102.3	3.	56.9	4.	2.68	5.	257.68	6.	12.56
	+ 53.7		5.3		-8.7		+ 14.38		-63.57		9.30
	79.6		+ 15.8		48.2		17.06		194.11		+4.35
			123.4								26.21
7.	126.56	8.	5.32	9.	562.65	10.	1.368	11.	125.50	12.	5.230
	+ 15.68		9.70		-46.8		6.800		-25.31		12.000
	142.24		+ 15.96		515.85		+24.000		100.19		8.600
			30.98				32.168				+ 2.354
											28.184

13.	8.40	14.	0.125	15.	36.901	16.	45.625	17.	15.000	18.	369.85
	9.23		125.600		0.080		-9.450		1.068		- 256.70
	124.00		+ 5.370		9.700		36.175		1.600		113.15
	+ 0.90		131.095		+ 8.000				+ 4.680		
	142.53				54.681				22.348		

Worksheet 5

Ordering decimals:

Ordering decimal numbers is very much like placing words in alphabetical order. If the digits after the decimal point are the same, then the next digit is looked at. Example: 1.62, 1.69
Task 9 is designed to give practice at ordering decimal numbers, including word problems involving decimal numbers.

Task 9

1. $1.9,2.6,4.9,5.7,6.7,7.3,7.3,8.4$
2. $5.1,5.3,5.4,5.6,5.7,5.8,5.9$
3. $2.16,2.27,2.34,2.45,2.47,2.54,2.75$
4. $1.049,1.126,1.165,1.245,1.276,1.342,1.352$
5. 13.0 seconds 10. Rangi, Quentin, Shane
6. 1.27 m
7. 1.35 m
8. $1.61 \mathrm{~m}, 1.53 \mathrm{~m}, 1.50 \mathrm{~m}, 1.42 \mathrm{~m}, 1.35 \mathrm{~m}, 1.27 \mathrm{~m}$
9. 0.34 m or 34 cm
10. 16.2 g
11. 11.5 g
12. $11.5 \mathrm{~g}, 12.9 \mathrm{~g}, 13.2 \mathrm{~g}, 13.4 \mathrm{~g}$
13. Miri 42.9 g , James 43.0 g , Fred 42.4 g , Kim 41.1 g
14. $43.0 \mathrm{~g}, 42.9 \mathrm{~g}, 42.4 \mathrm{~g}, 41.1 \mathrm{~g}$
15. $1 \mathrm{~min} 7.2 \mathrm{sec}, 1 \mathrm{~min} 7.0 \mathrm{sec}, 1 \mathrm{~min} 6.7 \mathrm{sec}, 1 \mathrm{~min} 6.4 \mathrm{sec}, 1 \mathrm{~min} 5.9 \mathrm{sec}, 1 \mathrm{~min} 5.6 \mathrm{sec}$

Creating decimal numbers:

Creating decimal numbers, given certain conditions, can be a challenge and a good problem solving exercise. This will help to reinforce the ordering of decimal numbers in a fun way.
Example: Create a 4 digit number closest to 60 using the digits 5, 6, $0,1,9$ and a decimal point. The decimal point can go anywhere and the number can be either larger or smaller than the nominated number. Answer: 60.159.

Task 10 is designed to give practice at creating decimal numbers, given certain conditions. Note, there will be only one correct answer and it will be above or below the number requested.

Renaming numbers using decimals:

Renaming money using different coins is very much the same as renaming whole numbers using decimals except the coins are restricted to coins in use today. To rename whole numbers using decimals and the four basic operations will provide an opportunity for pupils to develop good problem solving skills.
Example: Rename 4 as decimal numbers. $4-2.4=1.7$, therefore $1.7+2.4=4 \quad$ (addition)
$7.53-4=3.53$, therefore $7.53-3.53=4 \quad$ (subtraction)
$4 \div 2.5=1.6$, therefore $2.5 \times 1.6=4$
$20.4 \div 4=5.1$, therefore $20.4 \div 5.1=4$

Task 11 is designed to give practice at renaming money totals and whole numbers. There will be an infinite number of answers to questions 13 to 24.

Task 10

1. 60.2
2. 70.26
3. 250.6
4. 7.5
5. 27.5
6. 7.025
7. 50.267
8. 2.0567
9. 0.765
10. $25.067,25.076,25.607,25.670,25.706$

Task 11

Possible answers for questions 1 to 12 , but there with be other possibilities.

1. $50 c=20 c+20 c+10 c, 50 c=20 c+20 c+5 c+5 c, 50 c=10 c+10 c+10 c+10 c+10 c$
2. $80 c=50 c+20 c+10 c, 80 c=20 c+20 c+20 c+20 c, \quad 80 c=50 c+10 c+10 c+10 c$
3. $\$ 1.00=50 c+50 c, \quad \$ 1.00=50 c+20 c+20 c+10 c, \quad \$ 1.00=10 \times 10 c$
4. $\$ 1.50=\$ 1.00+50 c, \quad \$ 1.50=50 c+50 c+50 c, \quad \$ 1.50=15 \times 10 c$
5. $\$ 2.00=\$ 1.00+\$ 1.00, \quad \$ 2.00=\$ 1.00+50 c+50 c, \quad \$ 2.00=20 \times 10 c$
6. $\$ 2.40=\$ 2.00+20 c+20 c, \$ 2.40=\$ 1.00+\$ 1.00+20 c+20 c, \quad \$ 2.40=24 \times 10 c$
7. $\$ 3.00=3 \times \$ 1.00, \quad \$ 3.00=6 \times 50 c, \quad \$ 3.00=15 \times 20 c$
8. $\$ 3.60=3 \times \$ 1.00+50 c+10 c, \quad \$ 3.60=18 \times 20 c, \quad \$ 3.60=36 \times 10 c$
9. $\$ 4.80=4 \times \$ 1.00+4 \times 20 c, \quad \$ 4.80=24 \times 20 c, \quad \$ 4.80=48 \times 10 c$
10. $\$ 5.00=5 \times \$ 1.00, \quad \$ 5.00=10 \times 50 c, \quad \$ 5.00=25 \times 20 c$
11. $\$ 6.00=6 \times \$ 1.00, \quad \$ 6.00=30 \times 20 c, \quad \$ 6.00=60 \times 10 c$
12. $\$ 10.00=5 \times \$ 2.00, \quad \$ 10.00=10 \times \$ 1.00, \quad \$ 10.00=20 \times 50 c$

Estimation involving money:

Worksheet 7

How often do you see prices advertised as $\$ 9.95$ or $\$ 19.95$. Prices such as these can easily be rounded to the nearest whole number, thus making adding up several prices much easier. When prices are rounded up or down the resulting total is an estimate.

Task 12 is designed to give practice at estimating money, by rounding to the nearest $\$ 1.00, \$ 10.00$ or $\$ 100.00$. Example: $\$ 4.35$ round to $\$ 4.00, \$ 4.85$ rounds to $\$ 5.00$. Estimate answers for word problems first, then calculate the exact answer calculated, to check if the estimate answer is reasonable. There will be more than one way to estimate answers. Look for the quickest and easiest way.

Task 12

1. $\$ 6$
2. $\$ 14$
3. $\$ 20$
4. $\$ 16$
5. $\$ 26$
6. $\$ 36$
7. $\$ 89$
8. $\$ 110$
9. $\$ 20$
10. $\$ 30$
11. $\$ 70$ 12. $\$ 50$ 13. $\$ 100 \quad 14$.
$\begin{array}{lll}\$ 60 & 15 . \\ \$ 110 & 16 .\end{array}$
12. $\$ 100$
13. $\$ 200$
14. $\$ 300$
$\begin{array}{lll}\text { 20. } \$ 700 & \text { 21. } \$ 800 & \text { 22. } \$ 500\end{array}$
15. $\$ 600$
16. $\$ 800$
17. $\$ 3 \times 10=\$ 30 \quad 26 . \$ 2.95 \times 10=\$ 29.50 \quad 27 . \$ 10+\$ 15+\$ 20+\$ 10=\$ 55$
18. $\$ 55.40$
19. $\$ 78-\$ 26=\$ 52$
20. $\$ 52.80$
21. $\$ 20+\$ 20+\$ 20+\$ 20+\$ 20=\$ 100$
22. $\$ 103.70$

Basic multiplication facts:

Worksheet 8

Success and enjoyment in mathematics relies on pupils knowing there basic number facts, especially the multiplication facts. If pupils can learn the multiplication facts and have instance recall, then they will perform mathematical tasks with confidence. Daily revision is highly recommended.
Tasks 13 \& 14 are designed to give practice at learning the multiplication facts, plus an opportunity to work together in small groups to assist each other to improve their knowledge of the multiplication facts.

Task 13

Day 1: 30, 108, 27, 12, 49, 80, 72, 50, 32, 121
Day 3: 54, 27, 21, 32, 42, 100, 48, 55, 40, 132
Day 5: $42,72,18,40,28,110,60,60,72,33$
Day 7: $36,90,12,44,35,120,108,15,56,88$
Day 9: $24,99,15,48,63,30,84,40,48,110$
Day 11: $99,12,120,42,32,70,24,99,72,25$
Day 13: 90, 18, 96, 49, 12, 90, 96, 55, 66, 20
Day 15: $72,21,36,63,48,50,88,44,60,30$

Day 2: 72, 81, 9, 28, 56, 60, 120, 20, 88, 55
Day 4: 18, 63, 24, 24, 70, 40, 132, 25, 96, 99
Day 6: 48, 54, 30, 16, 77, 50, 144, 45, 24, 77
Day 8: $60,36,33,20,84,90,36,35,64,66$
Day 10: $66,45,36,36,21,70,96,30,80,44$
Day 12: 36, 30, 72, 56, 28, 30, 72, 132, 30, 55
Day 14: 54, 24, 84, 21, 36, 120, 40, 121, 24, 50

Adding and subtracting whole numbers:

Success and enjoyment in mathematics relies on pupils being able to add and subtract quickly and confidently. Copying and completing the number cross provides an opportunity to enhance pupil skills.
Tasks 15 is designed to give practice at basic addition and subtraction, plus experience at solving word problems.

Task 15

1. \& 2.

2. 54 cards 4. 46 cards
3. Room 5
4. Room 1 7. 92 pupils
5. 12 pupils
6. 18 pupils
7. 102 pupils
8. 254 pupils

Multiplying and dividing whole numbers:
Worksheet 10
Success and enjoyment in mathematics relies on pupils being able to multiply and divide quickly and confidently. Copying and completing the number cross provides an opportunity to enhance pupil skills.

Tasks 16 is designed to give practice at basic multiplication and division, plus experience at solving word problems.

Task 16

1. \& 2.

3. 224 pupils
4. 24 seats 5.3 full rows
6. 360 carrots 7. 16 bunches 8. $\$ 10.50$
9. 9 classrooms 10. 162 windows $\& 18$ doors
11. 4 more classrooms

Adding and subtracting decimals:

Pupils deal with decimals in everyday situations, especially if money is involved. Provided pupils remember to line up the decimal point when adding or subtracting decimals, this task is no more difficult than working with whole numbers.

Tasks 17 is designed to give practice at interpreting and using data which involves adding or subtracting decimals, plus revision of ordering decimal numbers.
Task 18 provides pupils with an opportunity to work co-operatively in small groups, as pupils create their own questions involving the addition and subtraction of decimal numbers.

Task 17

1. $11.9 \mathrm{~m} \quad$ 2. $13.1 \mathrm{~m} \quad$ 3. $287 \mathrm{~g}, 302 \mathrm{~g}, 269 \mathrm{~g}, 296 \mathrm{~g}, 289 \mathrm{~g}, 282 \mathrm{~g}$
2. shot put: Mark, Jason, John discus: Mark, Jason, John javelin: Mark, Andrew, Jason
3. Andrew 102.2 m , Geoff 98.8 m , Mark 113.0 m , Jason 108.9 m , John 105.9 m
4. Mark, Jason, John, Andrew, Geoff
5. 8 competitors 8. Race 1: Rider G, Race 2: Rider D, Race 3: Rider E, Race 4: Rider C
6. Race 1: Riders G, C, A, F, D, H, E, B Race 2: D, B, F, C, E, A, H, G

Race 3: Riders E, G, A, D, F, H, C, B Race 4: C, E, F, D, G, B, A, H
10. Rider A 260.96 seconds, Rider B 267.71 seconds, Rider C 255.81 seconds, Rider D 259.02 seconds Rider E 263.69 seconds, Rider F 259.32 seconds, Rider G 260.01 seconds, Rider H 267.03 seconds Riders in order, fastest to slowest. Riders C, D, F, G, A, E, H, B 11. 11.90 seconds

Multiplying and dividing decimals:

Worksheet 12
When multiplying or dividing by any number, being able to quickly work out an estimated answer can be helpful. When working with decimals, the estimate answer can be used to work out where the decimal point goes in the answer. To work out the exact position of the decimal point in the answer, count the digits to the right of the decimal point in the decimal numbers in the question. When the answer has been worked out, start counting off digits from the right; place the decimal point between the appropriate digits.
Tasks 19 is designed to give practice at estimating answers to assist when working out where the decimal points go in the answers. Pupils are then to calculate the exact answers to these decimal problems involving multiplication and division of decimals.
Task 20 provides pupils with an opportunity to work co-operatively in small groups, as pupils create their own questions involving the multiplication and division of decimal numbers.

Task 19

Estimated answers: (There will be different ways to work out the estimated answers)

1. $50 \times 9=450$
2. $13 \times 8=104$
3. $100 \times 9=700$
4. $2 \times 9=18$
5. $700 \times 8=5600$

Exactanswers:
1.

2.
$\begin{array}{r}12.75 \\ \times 8 \\ \hline 102.00 \\ \hline\end{array}$
3.

4. $\quad 1.948$
$\times 9$
17.532
5. $\quad 673.14$
$\times 8$ 5385.12
6. 5.7 km 7. estimate answer 5 laps, total race distance of 9.5 km is about 10 km \& each lap of 1.9 is about 2 km . Estimate answer would be $10 \mathrm{~km} \div 2 \mathrm{~km}=5$ laps.
8. 30L 9. Divide the total litres by the number of litres in one carton, $60 \div 30=2$ cartons
10. $25 \mathrm{~kg} \div 4$ is approimately 6 kg
11. 6.25 kg
12. $27.66 \div 6=4.61 \mathrm{~m}$

Problems involving money:
Worksheet 13
Being able to estimate and calculate with accuracy problems involving money is an important skill.
Tasks 21 is designed to give practice at estimating answers for questions involving money, before calculating the exact answers. Also includes practice at long multiplication.
Task 22 provides pupils with an opportunity to work co-operatively in small groups, as pupils create their own questions involving the money problems.

Task 21

Estimated answers: (There will be different ways to work out the estimated answers)

1. $\$ 10 \times 9=\$ 70$
2. $\$ 20 \times 8=\$ 160$
3. $\$ 100 \times 7=\$ 700$
4. $\$ 300 \times 9=\$ 2700$
5. $\$ 1000 \times 8=\$ 8000$
6. $\$ 6 \times 40=\$ 240$
7. $\$ 60 \times 12=\$ 720$
8. $\$ 500 \times 25=\$ 12500$
9. $\$ 1000 \times 32=\$ 32000$
10. $\$ 2000 \times 46=\$ 92000$
Exact answers:
11.

$\$ 11.75$
$\times 7$
$\$ 82.25$

2.

$\$ 20.40$
$\times 8$
$\$ 163.20$

3. $\$ 99.95$

$\times 7$
$\$ 699.65$

4. $\$ 272.50$

$\times 9$
$\$ 2452.50$

5. $\$ 1025.60$

$\times 8$
$\$ 8204.80$

6.

$\$ 5.85$
$\times 40$
$\$ 234.00$

7.

8.

9.

10.

$\$ 1985.75$
$\times 46$
$\$ 91344.50$

11. $\$ 10 \times 4=\$ 40$
12. $\$ 9.90 \times 4=\$ 39.60$
13. $\$ 60 \div 5=\$ 12$
14. $\$ 59.75 \div 5=\$ 11.95$
15. $\$ 15 \times 5=\$ 75$ and $\$ 20 \times 3=\$ 60$, estimate total $=\$ 135$
16. $\$ 74.75+\$ 62.85=\$ 137.60$
17. $\$ 100+\$ 15+\$ 20+\$ 10-\$ 25=\$ 120$
18. $\$ 118.75$
19. $\$ 14 \div 7=\$ 2$
20. $\$ 1.95$

Introduction to fractions:

Worksheet 14
A fraction is part of a whole. Introducing fractions could be done by using physical examples within the classroom. Example: What fraction of the class are boys or girls? The use of coloured blocks, noting the fractions of each colour present, etc.
Tasks 23 is designed to give practice at understanding what a fraction means and how it is said and written, with the use of diagrams also.

Task 23

1. 1 out of 3 , one third
2. 1 out of 6 , one sixth
3. 1 out of 4 , one quarter
4. 1 out of 8 , one eighth
5. 3 out of 4 , three quarters
6. 3 out of 7 , three sevenths
7. 5 out of 6 , five sixths
8. 7 out of 8 , seven eighths
9. 2 out of 3 , two thirds
10. 3 out of 10 , three tenths
11. $1 / 5$
12. $3 / 8$
13. $5 / 7$
14. $\quad 6 / 10$
15. ${ }^{4 / 6}$
16. $2 / 3$
17. $7 / 8$
18. ${ }^{3} / 4$
19. ${ }^{4} / 10 \quad$ 20. ${ }^{3 / 7}$
20. $2 / 5$
21. ${ }^{2} / 8$
22. $3 / 7$
23. 23 shapes
24. $5 / 23$
25. $6 / 23$
26. $8 / 23$
27. ${ }^{4} / 23$
Possible diagrams for questions 29 to 33
28.

30.

32. \square 33.

Working with fractions / More fractions / Fractions, decimals and money:

Worksheet 15, 16 \& 17

Calculating a fraction of a whole number or decimal can be worked out using one or two simple steps.
If the fraction has a 'top' number (numerator) of 1 (one), then there is only one step involved.
Step 1: Divide the number by the 'bottom' number of the fraction (denominator).
Example: To find $1 / 4$ of a number, divide by 4.
If the fraction has a number greater than 1 as the 'top' number (numerator), then there are two steps.
Step 1: Divide the 'number' by the bottom number of the fraction (denominator).
Step 2: Multiply the answer forom step 1 by the 'top' number of the fraction (numerator). Example: To find $3 / 4$ of a number, divide by 4 then multiply by 3 .

Tasks 24 is designed to give practice at calculating fractions of whole number when the fractions have a numerator of 1 , including word problems.
Task 25 provides pupils with an opportunity to work co-operatively in small groups, as pupils create their own questions involving the fractions of whole numbers, with numerators of 1.

Tasks 26 is designed to give practice at calculating fractions of whole number when the fractions have a numerator that is greater than 1, including word problems.
Task 27 provides pupils with an opportunity to work co-operatively in small groups, as pupils create their own questions involving the fractions of whole numbers, with numerators greater than 1.

Tasks 28 is designed to give practice at calculating fractions of decimals and money, using a variety of fractions, including word problems.
Task 29 provides pupils with an opportunity to work co-operatively in small groups, as pupils create their own questions involving the fractions of whole numbers.

Task 24

1. 5
2. 10
3. 5
4. 8
5. 12
6. 5
7. 12
8. 3 9. 2
9. 6 11. 6
10. 6
11. 8 pupils
12. 9 km
13. 12 planes
14. 18 cars
15. 4 days
16. 7 days

Task 26

1. 15
2. 12
3. 20
4. 40
5. 18
6. 25
7. 24
8. 15
9. 6
10. 24
11. 24
12. 42
13. 18 pupils
14. 27 km
15. 16 boats
16. 40 trains
17. 6 days
18. 18 days

Task 28

1. 4.1 cm
2. 12.04 mm
3. 4.1 km
4. $\$ 8.60$
5. $\$ 12.36$
6. 0.81 kg
7. $\$ 19.20$
8. $\$ 12.04$
9. $\$ 1.75$
10. 28.8 mL
11. $\$ 36.40$
12. 11 km
13. $\$ 4500$
14. 800 m
15. 400 m
16. $\$ 36.60$
17. $\$ 24.40$
18. $\$ 12.20$
19. 14.76 m
20. $2 / 5$

Table of Contents for the Homework I Assessment Worksheet Masters for Number, Level 3

Worksheet Number	Topic	Number Objective(s)
1	Reading and writing whole numbers / Place value	N1
2	Reading and writing decimal numbers / Place value	N2
3	Ordering decimals / Renaming money \& whole numbers as decimals	N3
4	Estimations \& calculations involving money \& decimals	N4
5	Basic multiplication facts	N5
6	Word problems involving whole numbers	N6
7	Word problems involving decimals / money	N6
8	Calculating fractions of whole numbers and decimals	N7
	Answers	

C: More word problems

Below is a table of results for four soccer teams, for the games they have played so far.

	Win	Draw	Loss
Team A	5	3	1
Team B	4	1	4
Team C	3	2	5
Team D	6	2	1

Teams score points as follows

Win $=3$ points
Draw $=2$ points
Loss $=1$ point

1. Calculate the points each team has scored so far.
(Points for win + draw + loss = total)

B: Word problems involving whole numbers
Jim bought five packets of jelly beans. This table shows the number of each colour of jelly bean in each packet.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
red	15	19	17	13	20
green	16	20	14	15	17
white	19	13	18	19	15
pink	20	19	23	20	18

1. How many red jelly beans were in packet number 2?
2. Which packet had 13 white jelly beans?
3. How many jelly beans in each packet?

Packe 1 = \qquad Packe $2=$ \qquad Packet $3=$ \qquad Packe $4=$ \qquad Packe $5=$ \qquad
4. How many of each colour of jelly bean was there? red = \qquad green = \qquad white $=$ \qquad pink $=$ \qquad
David has collected 72 cards from packets of potato chips.
5. If he shares the cards amongst 3 friends, how many cards does each friend get?

Karen estimated that there were about 650 bees in one beehive.
6. How many bees would there be in 9 beehives?

Mr George is building a picket fence. For each metre of fence, he needs 8 pickets.
7. If he buys 376 pickets, how many metres of fence can be built?
8. If he is to build 35 metres of fence, how many pickets will he need?

Two climbers are 1853 metres away from the top of a mountain. In the next 4 hours they climbed 234 m , $176 \mathrm{~m}, 205 \mathrm{~m}$ and 194 m .

9. How far away from the top of the mountain will they be, after this four hours of climbing?

A light-house light shines for 8 hours a day during spring and summer. During autumn and winter the light shines for 12 hours a day.
10. For how many hours is the light shining during one week in the spring or summer? \qquad
11. For how many hours is the light shining during one week in the autumn or winter?
12. For how many hours does the light shine during all of the spring and summer weeks?
and for all of the autumn and winter weeks?

Homework / Assessment Worksheet Answers

Worksheet 1

A:

1. 1067 2. 2547
2. 1446
3. 221
4. $\$ 175$
5. $\$ 12.70$
6. $1 / 2$ past 8
7. rectangle
8. 200 cm
9. $\$ 10.80$
B:

C:

$\begin{array}{lll}\text { 1. fifty-seven } & \text { 2. eighty-six } & \text { 3. four hundred and fifty-eight }\end{array}$
4. eight hundred and six 5. one thousand and forty
6. eight thousand, six hundred and seven
7. eighty-five thousand and twenty-three
D:

1. place value is tens and means 60
2. place value is units and means 7
3. place value is thousands and means 9000
4. place value is tens and means 0
5. place value is hundreds and means 300
6. place value is ten thousands and means 60000

Worksheet 2

A:

1. 1207
2. 1811
3. 2198
4. 231
5. $\$ 200$
6. $\$ 24.42$
7. $1 / 2$ past 2
8. oval or ellipse
9. 200 mm
10. $\$ 10.50$
B:

C:

1. sixty point nine 2. seventy-four point nine

2. fifty-six point zero nine 4. eighty-six point nine zero one
3. zero point zero eight five 6. thirty-six point two four seven
4. nine hundred and five point three six nine

D:

1. place value is hundredths and means 6 hundredths $\left({ }^{6} / 100\right)$
2. place value is hundredths and means 7 hundredths $(7 / 100)$
3. place value is tenths and means 9 tenths $(9 / 10)$
4. place value is units and means 8
5. place value is thousandths and means 3 thousandths $(3 / 1000)$
6. place value is hundredths and means 6 hundredths $(6 / 100)$

Worksheet 3

A:

1. 2220
2. 173
3. 8240
4. 128
5. $\$ 88.45$
6. $\$ 32.40$
7.
8. $\$ 9.00$
9. 3000 L
10. $\$ 25.20$

B:

1. $2.3,3.9,4.8,5.3,6.1,7.8,9.1,9.2 \quad$ 2. $5.2,5.6,5.9,5.9,6.0,6.7,6.8,7.2$
2. $9.03,9.04,9.06,9.07,9.08,9.10,9.11,9.16$ 4. $15.20,15.21,15.22,15.24,15.24,15.26,15.27,15.29$
3. $1.555,1.557,1.559,1.560,1.561,1.563,1.567,1.568$

G:

1. 32.8 seconds
2. Miri, Julie, June
3. $30.2,30.9,31.8,31.9,32.8,33.6,33.7,34.9$
4. 4.7 seconds
5. $3.62 \mathrm{~kg} \quad 6.1 .95 \mathrm{~kg} \quad$ 7. $1.95,2.35,2.57,2.85,3.15,3.62 \mathrm{~kg}$
6. 1.67 kg
7. $1.514,1.509,1.502,1.496,1.490,1.485 \mathrm{~L}$

D:

1. 2.4
2. 2.2
3. 2.5
4. 2.1
For questions 5 to 9 , there are many correct answers

Worksheet 4

A:

1. 2333
2. 2786
3. 2280
4. 302
5. $\$ 325.00$
6. $\$ 28.68$
7. $1 / 4$ to 3 or $2: 45$
8. pentagon
9. 2 metres
10. $\$ 16.10$
B:
11. $\$ 5$
12. $\$ 19$
13. $\$ 22$
14. $\$ 78$
15. $\$ 10$
16. $\$ 20$
17. $\$ 110$
18. $\$ 90$
19. $\$ 100$
20. $\$ 500$
21. $\$ 800$ 12. $\$ 700$
22. estimate answer: $\$ 7+\$ 5+\$ 15=\$ 27$, actual answer: $\$ 26.95$
23. estimate answer: $\$ 30+\$ 20+\$ 70=\$ 120$, actual answer: $\$ 120.18$
24. estimate answer: $\$ 1000-\$ 300=\$ 700$, actual answer: $\$ 731.40$
25. estimate answer: $\$ 1000-\$ 700=\$ 300$, actual answer: $\$ 260.65$
26. estimate answer: $\$ 100 \times 8=\$ 800$, actual answer: $\$ 789.36$
27. estimate answer: $\$ 700 \times 9=\$ 6300$, actual answer: $\$ 6351.12$
19 estimate answer: $\$ 13+\$ 17+\$ 9+\$ 15=\$ 54 \quad$ 20. actual answer: $\$ 54.40$
28. estimate answer: $\$ 145-\$ 40=\$ 105 \quad$ 22. actual answer: $\$ 105.45$
C:
29. estimated cost: $\$ 3+\$ 4+\$ 8+\$ 6=\$ 21$ 2. actual cost: $\$ 22.55$

Worksheet 5

A:

1. 1890
2. 192
3. 11280
4. 74
5. $\$ 72.85$
6. $\$ 37.45$
7.
8. $\$ 11.50$
9. 4 km
10. \$31.80
B:

Set 1

1.	$5 \times 6=30$
2.	$12 \times 9=108$
3.	$9 \times 3=27$
4.	$3 \times 4=12$
5.	$7 \times 7=49$
6.	$8 \times 10=80$
7.	$6 \times 12=72$
8.	$10 \times 5=50$
9.	$4 \times 8=32$
10.	$11 \times 11=121$

Set 5

1.	$7 \times 6=42$
2.	$8 \times 9=72$
3.	$6 \times 3=18$
4.	$10 \times 4=40$
5.	$4 \times 7=28$
6.	$11 \times 10=110$
7.	$5 \times 12=60$
8.	$12 \times 5=60$
9.	$9 \times 8=72$
10.	$3 \times 11=33$

Set 9

1.	$4 \times 6=24$
2.	$11 \times 9=99$
3.	$5 \times 3=15$
4.	$12 \times 4=48$
5.	$9 \times 7=63$
6.	$3 \times 10=30$
7.	$7 \times 12=84$
8.	$8 \times 5=40$
9.	$6 \times 8=48$
10.	$10 \times 11=110$

Set 2

1.	$12 \times 6=72$
2.	$9 \times 9=81$
3.	$3 \times 3=9$
4.	$7 \times 4=28$
5.	$8 \times 7=56$
6.	$6 \times 10=60$
7.	$10 \times 12=120$
8.	$4 \times 5=20$
9.	$11 \times 8=88$
10.	$5 \times 11=55$

Set 3

Set 7

1.	$8 \times 6=48$
2.	$6 \times 9=54$
3.	$10 \times 3=30$
4.	$4 \times 4=16$
5.	$11 \times 7=77$
6.	$5 \times 10=50$
7.	$12 \times 12=144$
8.	$9 \times 5=45$
9.	$3 \times 8=24$
10.	$7 \times 11=77$

Set 10

1.	$11 \times 6=66$
2.	$5 \times 9=45$
3.	$12 \times 3=36$
4.	$9 \times 4=36$
5.	$3 \times 7=21$
6.	$7 \times 10=70$
7.	$8 \times 12=96$
8.	$6 \times 5=30$
9.	$10 \times 8=80$
10.	$4 \times 11=44$

Set 4

1.	$3 \times 6=18$
2.	$7 \times 9=63$
3.	$8 \times 3=24$
4.	$6 \times 4=24$
5.	$10 \times 7=70$
6.	$4 \times 10=40$
7.	$11 \times 12=120$.
8.	$5 \times 5=25$
9.	$12 \times 8=96$
10.	$9 \times 11=99$

Set 8

1.	$10 \times 6=60$
2.	$4 \times 9=36$
3.	$11 \times 3=33$
4.	$5 \times 4=20$
5.	$12 \times 7=84$
6.	$9 \times 10=90$
7.	$3 \times 12=36$
8.	$7 \times 5=35$
9.	$8 \times 8=64$
10.	$6 \times 11=66$

Set 12

1.	$4 \times 9=36$
2.	$10 \times 3=30$
3.	$6 \times 12=72$
4.	$8 \times 7=56$
5.	$7 \times 4=28$
6.	$3 \times 10=30$
7.	$9 \times 8=72$
8.	$12 \times 11=132$
9.	$5 \times 6=30$
10.	$11 \times 5=55$

$C:$
1.

23819	2.	17564
$\times 364$		
95276		$\times 598$
1429140		150512
7145700		8782000
8670116		

Worksheet 6

A:

1. 105.9
2. 2366 3. 2280
3. 103
4. $\$ 270.00$
5. $\$ 20.55$
6. 20 to 10 or $9: 40$
7. hexagon
8. 30 cm
9. $\$ 10.80$

B:

1. 19 red 2. packet 2 3. packet $1=70$, packet $2=71$, packet $3=72$, packet $4=67$, packet $5=70$
2. red $=84$, green $=82$, white $=84$, pink $=100 \quad$ 5. 24 cards $\quad 6.5850$ bees \quad 7. 47 metres 8.280 pickets
3. 1044 metres $10.8 \times 7 \mathrm{hrs}=56 \mathrm{hrs} \quad 11.12 \times 7 \mathrm{hrs}=84 \mathrm{hrs}$
4. 56 hrs $\times 26=1456$ hrs, $84 \times 26=2184 \mathrm{hrs}$

C:

1. Team $A=15+6+1=22$, Team $B=12+2+4=18$, Team $C=9+4+5=18$, Team $D=18+4+1=23$

Worksheet 7

A:

1. 2447
2. 121
3. 10980
4. 148
5. $\$ 44.30$
6. $\$ 25.20$
7.
8. $\$ 13.50$
9. 5000 m
10. $\$ 18.90$
B:

11. 216 metres
12. $\$ 132$
13. 65.3%
14. history
15. 315.9 6. Team B
16. Team $A=228.0$ seconds, Team $B=223.6$ seconds, Team $C=227.5$ seconds, Team $D=231.4$ seconds
17. 1 st $=$ Team $B, 2 n d=T e a m ~ C, 3 r d=$ Team $A \quad 10.16 .9$ metres 11.280 .8 grams

C:

1. 54.2
2. 26.1
3. 9.3
4. 8.88

Worksheet 8

A:

1. 44.8
2. 27
3. 6468
4. 4
5. octagon
6. $\$ 47.20$
7. $9: 45$
8. $\$ 3.65$
9. 9 km
10. $\$ 31.75$

B:

1. 3 out of 5
2. 4 out of 7
3. 5 out of 9
4. 11 out of 12
5. $2 / 3$
6. $4 / 6$
7. $5 / 7$
8. $9 / 10$
9. seven nineths
10. eight thirteenths

C:

1. $4 / 9$
2. $7 / 13$
3. 0000000 •००
(any diagram with 5 out of 11 shaded)
D:
4. $\$ 6.50$
5. 4 m
6. $\$ 3.00$
7. 3 km
8. $\$ 24.00$
9. 40 mm
10. 30.5 L
11. 2 day
12. 5 days
E:
13. 240 mL
14. 3.2 tonne
15. $\$ 27.00$
16. 6 pupils
17. 1200 m

Tracking Sheet: 'In-class’ Activity Sheets

Tracking Sheet: Homework I Assessment Worksheets

[^0]: Acknowledgement:
 I would like to thank the staff and pupils of Mairehau Primary School, Christchurch for their assistance in making these resources possible.

[^1]: Note:
 The codes MP1, MP2, etc. have been created by numbering the Mathematical Processes Achievement Objectives in order as listed in the MATHEMATICS in the New Zealand Curriculum document. The numbering gaps occur as not all objectives are covered at Level 3. [Refer to pages 23-29 of the Curriculum document]

