A Complete Guide to ...

Utilising the objectives as written in MATHEMATICS in the New Zealand CURRICULUM for

Level 5

This resource contains:
\square Table of contents
■ Teaching notes
\square In class activity sheets involving

- worked examples
- basic skills
- word problems
- problem solving
- group work

■ Homework / Assessment activity sheets
\square Answers
These resources are supplied as PHOTOCOPY MASTERS
Author: A. W. Stark

Author:
A. W. Stark

Copyright © $_{1998}$

> A. W. Stark

First Published March 1998
Formatting and publishing by
Andrew Stark

NOW trading as:

P 0 Box 21304
Edgeware
CHRISTCHURCH 8143
NEW ZEALAND

$$
\text { 实 }+6433790516 \text { or 國 }+6433790619
$$

This resource unit has been supplied on the understanding that copies of any part of this publication will not be given or sold to teachers or students from other schools or institutions.

This resource unit may be used as a master, and therefore can be photocopied, only
by the school or institution that has purchased this resource unit.

Note from the author:
This resource ..

*A Complete Guide to Algebra

is one of a series of FIVE resources written utilising the objectives as stated in

Mathematics in the New Zealand Curriculum for Level 5.

With my experiences as a specialist mathematics teacher, I enjoyed mathematics as a subject, but I am aware that not all teachers feel the same way about mathematics. It can be a difficult subject to teach, especially if you are unsure of the content or curriculum and if resources are limited.

This series of resources has been written with you in mind. I am sure you will find this resource easy to use and of benefit to you and your class.

Resources in this series:

A Complete Guide to Number

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 5

Resource Code: L5MN

A Complete Guide to Measurement

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 5.

A Complete Guide to Geometry

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 5.

*A Complete Guide to Algebra

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 5.

A Complete Guide to Statistics

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 5.

For more information about these and other resources, please contact ...

This resource has been divided into EIGHT sections as listed below. Although there are no page numbers, the sections follow in sequential order as listed.

Note: 'In-class’ Worksheets Masters are lesson by lesson reuseable worksheets that can be photocopied or copied on to an OHP.

Homework / Assessment Worksheets Masters can be used as homework to reinforce work covered in class or they can be used for pupil assessment.

Section	
¢!	
	List of Algebra Objectives: Table of 'In-class' Worksheets / Objectives covered
Шயய!	
2	Table of Contents: 'In-class' Worksheets
9	'In-class’ Worksheets Masters

Teaching Notes I Answers for 'In-class’ Worksheets

Table of Contents: Homework / Assessment Worksheets

Homework / Assessment Worksheets Masters

Answers for Homework I Assessment Worksheets

8 Worksheet tracking sheets for teachers to record pupil names / worksheets covered

Algebra
The following are the objectives for Algebra, Level 5, as written in the MATHEMATICS in the New Zealand Curriculum document, first published 1992. [Refer Page 148]
Exploring patterns and relationships
Within a range of meaningful contexts, students should be able to:

- A1 generate patterns from a structured situation, find a rule for the general term, and express it in words and symbols;
- A2 generate a pattern from a rule;
- A3 sketch and interpret graphs which represent everyday situations;
- A4 graph linear rules and interpret the slope and intercepts on an integer co-ordinate system.
Exploring equations and expressions
Within a range of meaningful contexts, students should be able to:
- A5 evaluate linear expressions by substituation;
- A6 solve linear equations;
- A7 combine like terms in algebraic expressions;
- A8 simplify algebraic fractions;
- A9 factorise and expand algebraic expressions;
- A10 use equations to represent practical situations.

At the top of each 'In-class' worksheet and Homework / Assessment worksheet, the Algebra objective(s) being covered has been indicated. EXAMPLE: A1 means objective 1, A2 means objective 2, etc.

The Mathematical Processes Skills:

Problem Solving,

Developing Logic \& Reasoning,
Communicating Mathematical Ideas,
are learned and assessed within the context of the more specific knowledge and skills of number, measurement, geometry, algebra and statistics. The following are the Mathematical Processes Objectives for Level 5.

Problem Solving Achievement Objectives [Refer page 24]

-	MP1	pose questions for mathematical exploration;
-	MP2	effectively plan mathematical exploration;
-	MP3	devise and use problem-solving strategies to explore situations mathematically;
-	MP4	find, and use with justification, a mathematical model as a problem-solving strategy;
-	MP6	use equipment appropriately when exploring mathematical ideas.

Developing Logic and Reasoning Achievement Objectives [Refer page 26]

-	MP8	classify objects, numbers and ideas;
-	MP9	interpret information and results in context;
-	MP10	make conjectures in a mathematical context;

make conjectures in a mathematical context;
MP11 generalise mathematical ideas and conjectures;
use words and symbols to describe and generalise patterns.

Communicating Mathematical Ideas Achievement Objectives [Refer page 28]		
- MP16	use their own language and mathematical language and diagrams to explain mathematical ideas;	
-	MP17	devise and follow a set of instructions to carry out a mathematical activity;
-	MP20	record information in ways that are helpful for drawing conclusions and making generalisations;

[^0]'In-class’ Algebra Worksheets
Table of Worksheet Number I Objectives Covered
See the opposite page for details of each objective.

	Algebra Objectives										Mathematical Processes Objectives													
	$\begin{aligned} & \text { A } \\ & 1 \end{aligned}$	$\begin{array}{\|l} \hline A \\ 2 \end{array}$	A	$\begin{gathered} A \\ 4 \end{gathered}$	$\begin{gathered} A \\ 5 \end{gathered}$	A	$\begin{aligned} & \hline A \\ & 7 \end{aligned}$	$\begin{array}{\|c} A \\ 8 \end{array}$	$\begin{aligned} & \text { A } \\ & 9 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathbf{1 0} \end{gathered}$	$\begin{array}{\|c} \hline \text { MP } \\ 1 \end{array}$	$\begin{array}{\|c} \mathrm{MP} \\ 2 \end{array}$	$\begin{gathered} M P \\ 3 \end{gathered}$	$\begin{gathered} \text { MP } \\ 4 \end{gathered}$	$\begin{gathered} \text { MP } \\ 6 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MP } \\ 8 \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{MP} \\ 9 \end{array}$	$\begin{array}{\|c} \hline \text { MP } \\ 10 \end{array}$	$\begin{array}{\|c} \hline \text { MP } \\ 11 \end{array}$	$\begin{array}{\|c} \mathrm{MP} \\ 15 \end{array}$	$\begin{array}{\|c\|} \hline \text { MP } \\ 16 \end{array}$	$\begin{array}{\|c} \hline \text { MP } \\ 17 \end{array}$	$\begin{gathered} \text { MP } \\ 20 \end{gathered}$	$\begin{array}{\|c} \hline \text { MP } \\ 21 \end{array}$
1	*										*		*				*			*	*	*		
2	$\boldsymbol{*}$										*		*				*			*	*	*		
3	$\boldsymbol{*}$										*		*				*			*	*			
4		$\boldsymbol{*}$									*		*				*			*	*	*		
5	*	*									*		*	*			*			*		*		
6			*								$\boldsymbol{*}$		*				*	$\boldsymbol{*}$			*		$\boldsymbol{*}$	
7				*									*				*				*	*	$\boldsymbol{*}$	
8				*									*				*				*	*	*	
9				*									*		*		*				*	*	*	
10				*							$\boldsymbol{*}$		*		$\boldsymbol{*}$		*				$\boldsymbol{*}$	*	*	
11				*							$\boldsymbol{*}$		*		$\boldsymbol{*}$		$\boldsymbol{*}$				*	$\boldsymbol{*}$	$\boldsymbol{*}$	
12			*	*							*		*		*		*				*	*	*	
13					*								*				*					*		
14							*				*		*				*						*	
15						*				*	*		*				*				*	*		
16						*	*			*			*				*					*		
17							*	$\boldsymbol{*}$	*				*				*					*		
18								$\boldsymbol{*}$					*				*					*		
19								$\boldsymbol{*}$					*				*					$\boldsymbol{*}$		
20										*			*				*				*	*		
21										*			*				*				*	*		

Table of Contents for the 'In-class' Worksheet Masters for Algebra, Level 5

Worksheet Number	Topic	Algebra Objective(s)	
1	Generating and describing patterns	A1	
2	Continuing a number sequence and finding the rule	A1	
3	More number sequences	A1	
4	Using a rule to create a number sequence	A2	
5	Practical problems involving rules	A1/ A2	
6	Graphs of real-life situation	A3	
7	Ordered pairs	A4	
8	Graphing ordered pairs / co-ordinates	A4	
9	Extending co-ordinates graphs	A4	
10	Ordered pairs and Linear graphs	A4	
11	Linear graph equations $/ \mathrm{y}=\mathrm{mx}+\mathrm{c}$	A4	
12	Graphing real-life relationships	A3 / A4	
13	Algebraic expressions and substitution / Formulae substitution	A5	
14	Collecting and simplifying 'like' terms	A7	
15	Solving equations using opposite operations	A6 / A10	
16	Expanding and factorising expressions	A6 / A7 / A10	
17	Equations involving brackets / Equations involving the 'unknown' on both sides / Equations involving fractions	A6 / A7 / A9	
18	Working with exponents / Multiplying exponents	A8	
19	Dividing exponents / Two exponents	A8	
20	Writing and solving equations for practical problems	A10	
21	Creating and using a formula to solve practical problems	A10	
\|	\| \| \| \| \| \|	Teaching Notes / Answers	

Generating and describing patterns:

Below are the first four diagrams of a pattern, created by adding a constant number of dots to each new diagram. A number sequence can be created by adding, then listing the number of dots in each diagram.

1st diagram

-
2nd diagram

© 100
3rd diagram

-OOOO
4th diagram

The first 4 numbers or terms of this sequence are 5, 8, 11 and 14.

Draw the 5th diagram for this pattern.

What are the 5th and 10th numbers or terms of this sequence? Answers: 17 and 32

Can you describe in words how each new diagram has been created? "Start with five dots and add three dots to each new diagram."

Task 1

Below are diagrams of the first three diagrams of six patterns. Draw the next two diagrams for each pattern.
1.

1st diagram

2nd diagram

3rd diagram

1st diagram

2nd diagram

3rd diagram
3.

2nd diagram

1st diagram

5.

3rd diagram

3rd diagram
4.

1st diagram

1st diagram

2nd diagram

2nd diagram

3rd diagram

3rd diagram
7. Count the number of shapes that are in each diagram for each pattern drawn above, plus the two additional diagrams you have drawn.
Example: Question 1 numbers would be 5, 6, 7, 8, and 9.
As you write these numbers, you are creating number sequences that can go on forever.
8. Describe in words how each sequence in Questions $1,2,3,4,5$ and 6 have been created.

Looking at the number sequences you created in Question 7 may help.
9. Using your word rules, work out the number of shapes that would be in the 8th, 10th and 20th diagrams of each pattern in Questions 1, 2, 3, 4, 5 and 6.

Task 2

1. Create the first three shapes of four shape patterns of your own, like the questions above.
2. Exchange patterns with a classmate and work out the next three shapes of his / her pattern.
3. Describe in words how each pattern has been created.

Continuing a number sequence and finding the rule:

When a series of numbers forms a pattern it is called a sequence. A sequence can be an infinite list of numbers. The sequence of numbers can be created by adding or subtracting the same number to or from the previous number.
The numbers in a sequence can also be called terms.
Example: $2,4,6,8,10,12, \ldots$ These numbers form the sequence called even numbers.
The 1 st term is 2 , the 2 nd term is 4 , the 3 rd term is 6 , the 4 th term is 8 , the 5 th term is 10 etc.
Describe how this sequence was created.
Answer: 'Start with 2, then add 2' to each new number or term.

Task 3

Look at each number sequence below and find the missing numbers that would replace each \square. Describe in words, the rule for each sequence.

1. $2,4, \square, 8, \square, 12,14, \square, \ldots$
2. $5, \square, 15,20, \square, \square, 35,40, \ldots$
3. $7, \square, 21,28, \square, \square, 49,56, \ldots$
4. $2,8, \square, 20, \square, 32, \square, 44, \ldots$
5. $3,14, \square, 36, \square, 58, \square, 80, \ldots$
6. $1, \square, \square, 25,33, \square, 49,57, \ldots$
7. $5, \square, \square, 32,41, \square, 59,68, \ldots$
8. $7,13, \square, \square, 31,37, \square, 49,55, \ldots$
9. $-5,-2, \square, \square, 7,10, \square, 16, \square, \ldots$
10. $-9, \square, 7, \square, 23, \square, \square, 47,55, \ldots$

Look at each number sequence below and find the missing numbers that would replace each \square.
Describe in words, the rule for each sequence.

11.	$51,45, \square, 33, \square, 21,15, \square, \ldots$	12. $102, \square, 84,75, \square, \square, 48,39, \ldots$
13. $71, \square, 55,47, \square, \square, 23,15, \ldots$	14. $85,80, \square, 70, \square, 60, \square, 50, \ldots$	
15. $107,95, \square, 71, \square, 47, \square, 23, \ldots$	16. $104, \square, \square, 77,68, \square, 50,41, \ldots$	
17. $121, \square, \square, 82,69, \square, 43,30, \ldots$	18.	$81, \square, 53,39, \square, \square,-3,-17, \ldots$
19. $34, \square, 20,13, \square, \square,-8,-15, \ldots$	20. $47, \square, 23, \square, \square,-13, \square,-37,-49 \ldots$	

Find the rule for these number sequences. Use your rule to work out the next 3 numbers for each sequence.

21.	3,10, 17, 24, 31,	22.	$37,31,25,19,13, \ldots$.	
23.	1, 10, 19, 28, 37,	24.	41, 33, 25, 17, 9,	Add 5 to each?
25.	$-5,-1,3,7,11, \ldots$	26.	-21, -16, -11, -6, -1, 4,	
27.	31, 17, 3, -11, -25,-39, . .	28.	3,16, 29, 42, 55, .	
29.	-32,-19, -6, 7, 20, ...	30.	8, 45, 82, 119, 156, .	M 紷
31.	63, 36, 9, -18, -45, . .	32.	-72, -43, -14, 15, 44,	
33.	$13,20.5,28,35.5,43, \ldots$	34.	43, 31.75, 20.5, 9.25, 2,	-4, 年

Task 4

1. Create the first three numbers of four number sequences of your own, like the questions above.
2. Exchange sequences with a classmate and work out the next three numbers of his / her sequence.
3. Describe in words how each number sequence has been created.

More number sequences:

Using this word rule 'Start with 3, add 2 to each new number', the first 7 numbers or terms of the sequence are ... $3,5,7,9,11,13$, and 15.
But what would be the 100th or 500th term in this sequence?
To work this out, a rule written in symbols to describe the 'general term' for the sequence can be found.

The rule describes the relation between the sequence order and the sequence number or term. Let ' n ' = sequence order. See diagram opposite.

Example: $n=1$ (1st term), $n=2$ (2nd term), $n=3$ (3rd term) etc.
The rule for this sequence is ...

General term $=2 n+1$

Using the rule the 100th term would be ... $2 \times 100+1=201$
and the 500th term would be ...
$2 \times 500+1=1001$

Sequence order	Sequence terms
$n=1$	$\rightarrow 3$
$n=2$	$\rightarrow \quad 5$
$n=3$	$\rightarrow 7$
$n=4$	$\rightarrow \quad 9$
$n=5$	$\longrightarrow \quad 11$
$n=6$	$\longrightarrow \quad 13$
$n=7$	- 15
General term	\rightarrow Rule $=2 n+1$

Task 5

Look at each number sequence below and find the missing numbers that would replace each \square.
Describe the rule for the general term for each sequence. Let $n=$ sequence order.
Example: For Question 1, General term $=2 n$

A one metre high fence is to be built using bricks. This table shows a number sequence that represents the number of bricks needed for fences of different lengths.
14. Find a rule to describe the general term for this sequence.
15. Use your rule to work out the number of bricks needed for a fence that is 15 m long, 23 m long and 42 m long.
16. How long are fences that used 192 bricks, 300 bricks and 150 bricks?

Area of floor	Number of tiles
$1 \mathrm{~m}^{2}$	16
$2 \mathrm{~m}^{2}$	26
$3 \mathrm{~m}^{2}$	36
$4 \mathrm{~m}^{2}$	46
$5 \mathrm{~m}^{2}$	56

A floor design is to be created using different shaped tiles. This table shows a number sequence that represents the number of tiles needed to cover various floor areas.
17. Find a rule to describe the general term for this sequence.
18. Use your rule to work out the number of tiles needed to cover $12 \mathrm{~m}^{2}, 20 \mathrm{~m}^{2}$ and $50 \mathrm{~m}^{2}$.
19. What area of floor requires 76 tiles, 116 tiles and 206 tiles?

Using a rule to create a number sequence:

Given a rule written in symbols, a number sequence can be created. Some rules can involve more than one operation (,,$+- \times$ or \div). Remember that the numbers of a sequence can be called terms.

Example:

Sequence order

The first four numbers or terms of this sequence are

$$
7,9,11 \& 13
$$

What would the 20th term of this sequence be?
Answer: 20 'multiplied by 2, then add $5^{\prime}=45$
$(20 \times 2=40,40+5=45)$
The 20th term of this sequence is 45 .

Task 6

1. Use the rule to find the first 4 terms of this number sequence.

2. Use the rule to find the first 4 terms of this number sequence.
Sequence order
Rule
Sequence terms

3. Use the same rule, ' n multiplied by 5, subtract 8', to find the ...
15th term,
40th term,
and the 72 nd term of this sequence.
4. Use the rule to find the first 4 terms of this number sequence.
Sequence order
Rule
Sequence terms

5. Use the same rule, "10 plus n multiplied by 3", to find the ... 12th term, 50th term, and the 80th term of this sequence.
6. Use the rule to find the first 4 terms of this number sequence.
Sequence order
Rule Sequence terms
1

7. Use the same rule, "12 minus n multiplied by 4", to find the ...
12th term, 50th term, and the 80th term of this sequence.

Task 7

1. Using a rule of your own, create the first five numbers of four number sequences of your own, like the questions above.
2. Exchange sequences with a classmate and work out the next three numbers of his / her sequences.

3. Find the rule in symbols that describes the general term for each number sequence that has been created.

Practical problems involving rules:

Andrew buys C.D.'s by mail-order. Each C.D. costs $\$ 24.95$ and there is a postage charge of $\$ 6.95$.
A rule for the cost of buying C.D.'s would be 'Number of C.D. 's multiplied by $\$ 24.95$, plus $\$ 6.95$ '.

Abstract

What would it cost to buy 3 C.D.'s?

Answer: $3 \times \$ 24.95+\$ 6.95=\$ 81.80$
If Andrew spent $\$ 131.70$ on C.D.'s, how many C.D.'s did he buy?
 Answer: $131.70-\$ 6.95$ (postage) $=\$ 124.75$, then $\$ 124.75 \div \$ 24.95$ (cost of 1 C.D.) $=5$ C.D.'s.

Task 8

Paul often buys books through a book club at his school. All the books cost $\$ 6.50$ each and with each order, $\$ 4.95$ postage is charged.

1. Use the rule to work out the cost of buying $3,7,12$ or 25 books.
2. If Paul spent $\$ 63.45$ on books, how many books did he buy?

Soccer balls can be bought for $\$ 11.50$ each from a mail order company.
Postage of $\$ 8.95$ is charged for each order, no matter how many soccer balls are purchased.
3. Use the rule to work out the cost of buying 3, 9, 15 and 21 soccer balls.
4. If Jane spent $\$ 146.95$ on soccer balls, how many soccer balls did she buy?

Number of soccer balls Rule Cost

Andrew makes an overseas toll call that costs $\$ 1.60$ per minute and uses an operator when he makes the call. Using an operator means there is an additional charge of $\$ 2.50$ per call.
5. Use the rule to work out the cost of making telephone calls 9, 12.5, 19 and 27.5 minutes in length.
6. Andrew used the operator to make a telephone call. If the call cost $\$ 25.70$, for how long did he talk on the telephone?

Pauline buys CD's that cost $\$ 17.95$ each from a mail order company. If she orders more than $3 C D$'s, she receives a discount of $\$ 10.00$ per order.
7. Create a rule that can be used to work out the cost of buying 3 or more CD's.
8. Use your rule to calculate the cost of buying 5, 9, 12 and 15 CD's.
9. If Pauline spent $\$ 97.70$ on CD's, how many CD's did she buy?

Task 9

1. Create three diagrams, similar to those above, with a rule. You have to be able to work out your own answers using your rules.
2. Exchange diagrams with a classmate and work out his / her problems, then compare your answers.

Graphs of real-life situations:

There are many 'things' that are related in some way. Drawing a graph is one way to show a relationship.
Example: The air temperature in Room 10 was noted during one school day, during the winter.

What relationship does this graph show? What could have caused the dip in the graph at 11:00 a.m.?
Answers: Air temperature in Room 10 for one day from 9:00a.m. to 3:00p.m.
A door or windows may have been opened, letting out the heat, causing the air temperature to drop.
What else can you say about the air temperature in Room 10 during that day? Discuss.

Task 10

Which of these stories belongs to which graph? For each graph, the $D=$ distance.

1. Rob ran at a steady pace across the park.
2. Susan walked slowly up hill and ran fast down hill.
3. Jan ran to the gate and waited for the postman,
then walked to the shop.

Graph A

Graph B

Graph C

This graph shows how far Mrs Robinson was away from her house as she went shopping and visited a friend's place for lunch.
4. At which point on the graph was Mrs Robinson furtherest away from her house?
5. At which point on the graph did she stop for the longest time?
6. Write a story for this graph. Discuss your story with a classmate.

Shane runs water for a bath. He gets in, then runs more hot water and listens to the
 radio while sitting in the bath. He gets out and then empties the bath.
7. Draw a graph to show the depth of water in the bath.

Discuss your graph with a classmate.
Over a 6 hour period, John has been very unwell. He recorded his body temperature every half hour.
8. Draw a graph to show John's temperature over this 6 hour period.

Discuss your graph with a classmate.

Task 11

1. Create 2 or 3 graphs of real-life situations. Remember to state what relationship your graph shows by labelling each axis of your graph.
2. Write a story about the information displayed by your graph.

Ordered pairs:

Mapping diagrams can be used to show a relationship between numbers. From a mapping diagram, ordered pairs can be created by writing the numbers that are at each end of the arrow as a pair, inside brackets. The order in which the numbers are written is important. That is why they are called ordered pairs.
Example:

The ordered pairs for this relation are
$(1,-1),(2,0),(3,1),(4,2),(5,3)$ and $(6,4)$.
The relation for these ordered pairs is 'is 2 more than.'

Task 12

List the ordered pairs that are shown by these mapping diagrams.
1.

2.

3.

4.

5.

6.

7. State the relation between the numbers in each list of ordered pairs in questions 1 to 6 .
8. The first number of each ordered pair is written in these brackets.

$$
(1,),(2,),(3,),(4,),(5,),(6,)
$$

If the relation between the numbers is 'the second number is 8 more than the first number', copy and complete these ordered pairs.
9. The first number of each ordered pair is written in these brackets.

$$
(1,),(2,),(3,),(4,),(5,),(6,)
$$

If the relation between the numbers is 'the second number is 4 times the first number', copy and complete these ordered pairs.
10. The first number of each ordered pair is written in these brackets.

$$
(1,),(2,),(3,),(4,),(5,),(6,)
$$

If the relation between the numbers is 'the second number is twice first number, plus two', copy and complete these ordered pairs.
11. The first number of each ordered pair is written in these brackets.

$$
(1,),(2,),(3,),(4,),(5,),(6,)
$$

If the relation between the numbers is 'the second number is three times the first number, minus two', copy and complete these ordered pairs.

Please DO NOT write on the sheets

Plotting ordered pairs / co-ordinates:

Co-ordinates are the ordered pairs that locate points on a graph called a Cartesian graph.
The x-axis is the horizontal axis. The y-axis is the vertical axis.
Example: Point $\boldsymbol{A}=(2,3)$ and is shown on the graph.
What do the numbers 2 and 3 in the brackets mean?
Answer: Count 2 along the x-axis to the right and count 3 up the y-axis.
Where the lines cross is Point A.
What are the co-ordinates for Points B, C and D ?
Answer: $B=(4,1), C=(1,4)$ and $D=(3,2)$. Remember the order MUST be (x-axis number, y-axis number), ins ide the brackets.

Task 13

1. Write the co-ordinates for the 10 points that are marked on this graph. Remember the order (x, y).
2. Draw your own graph with numbers from 1 to 8 on the x-axis and from 1 to 8 on the y-axis.
Mark these points on your graph.

$A=(5,3)$	$B=(3,1)$
$C=(2,7)$	$D=(8,4)$
$E=(5,6)$	$F=(1,8)$
$G=(7,2)$	$H=(0,7)$
$I=(6,0)$	$J=(0,0)$

3. The instructions to draw this shape could start with (3, 1), then join to ...
Complete these instructions.

4. On a graph, plot these points, joining them with straight lines as you go.
$(1,4),(2,1),(6,1),(7,4),(4,6),(1,4)$
5. What shape did this create?

For each mapping diagram below, write the ordered pairs or co-ordinates they represent.
6.

7.

10.

8.

11.

12. Draw a graph with numbers from 1 to 10 on the x-axis and from 1 to 10 on the y-axis,

On your graph, draw each set of co-ordinates from questions 6 to 11 , joining the points in order.
13. What do you notice about the points of each set of co-ordinates you have drawn?

Extending co-ordinate graphs:

Simple co-ordinate graphs can be extended to include negative numbers.

Example:

The point where the x-axis and y-axis cross is called the origin. The origin has the co-ordinates $(0,0)$.
Remember the order of the co-ordinates is still across (left / right) first, followed by up or down.

The x-axis has been extended to the left.
The y-axis is extended downwards.
What are the co-ordinates for the points $A, B C$ and D marked on this graph?
Answers: $A=(1,2), B=(3,-2), C=(-2,-2)$ and $D=(-3,3)$

Task 14

1. Plotted on this graph are the letters of the alphabet. Example: $A=(-2,4), B=(2,4), \ldots$ etc.
Write the co-ordinates for all the letters plotted.
2. If you joined the points A, P, N, V and back to A what shape have you drawn?
3. If you joined the points D, H, K, F and D, what shape have you drawn?

4. Write your own coded message to a classmate and have your classmate write you a reply.
5. Write the instructions needed so that someone could redraw this diagram without seeing it first.

Task 15

Draw a graph that goes from -5 to 5 on the x-axis and from -5 to 5 on the y-axis.
Create a picture on your graph, made up of straight lines.
List the co-ordinates for your picture.
Have a classmate try to draw your picture, using your list of co-ordinates.
Remember not to let him / her see your picture until he/she has completed the picture.

Ordered pairs and Linear graphs:

When a set of co-ordinates or ordered pairs is plotted and forms a straight line when joined, it is called a linear graph.
Example: $\quad(0,0),(1,1),(2,2),(3,3),(4,4)$ form a straight line when graphed (line A on graph).

Given a rule or relation, ordered pairs for linear graphs can be created by substituting values of x into the rule to find a y value for each ordered pair.
Example: From the rule $\boldsymbol{y}=\boldsymbol{x}+3$, the following ordered pairs can be found $(-2,1),(-1,2),(0,3),(1,4),(2,5) \quad$ (line B on graph)

Task 16

Copy and complete each set of ordered pairs for the given rule or relation.

1. $y=x+2$
$(-3,-1),(-2),,(-1$
), ($0, ~),(1, \quad),(2, ~),(3,5)$
2. $y=x$
$(-3,-3),(-2),,(-1),,(0),,(1),,(2),,(3,3)$
3. $y=x-1$
$(-3,-4),(-2, \quad),($
, (-1,), ($0, ~),(1, ~),(2, ~)$
4. On one graph, plot each set of ordered pairs above, joining to create three straight lines.

5 What do you notice about these three lines?

6. If the line $y=x+2$ cuts the y-axis at +2 , where do the lines $y=x$ and $y=x-1$ cut the y axis?

Copy and complete each set of ordered pairs for the given rule or relation.
7. $y=2 x-2$
$(-3,-8),(-2),,(-1),,(0),,(1),,(2),,(3,4)$
8. $y=2 x+3$
$(-3,-3),(-2),,(-1),,(0),,(1),,(2),,(3,9)$
9. $y=2 x$
$(-3,-6),(-2$,
), (-1, $)$
), (0,), (1,), (2,)
, $(3,6)$
10. On one graph, plot each set of ordered pairs above, joining to create three straight lines.

11 What do you notice about these three lines?
12. If the line $y=2 x-2$ cuts the y-axis at -2 , where do the lines $y=2 x+3$ and $y=2 x$ cut the y axis? Copy and complete each set of ordered pairs for the given rule or relation.
13. $y=\frac{1}{2}$
$(-6,-3),(-4),,(-2),,(0),,(2),,(4),,(6,3)$
14. $y=\frac{1}{2} x+3$
$(-6,0),(-4),,(-2),,(0),,(2),,(4),,(6,6)$
15. $y=\frac{1}{2} x-2$
$(-6,-5),(-4),,(-2),,(0),,(2),,(4),,(6,1)$
16. On one graph, plot each set of ordered pairs above, joining to create three straight lines.
17. What do you notice about these three lines?
18. If the line $y=\frac{1}{2} x$ cuts the y-axis at 0 , where do the lines $y=\frac{1}{2} x+3$ and $y=\frac{1}{2} x-2$ cut the y axis?

Match each straight line graph drawn with one of the rules listed in the below.
19. $y=\frac{1}{2} x-2$
20. $x=3$
21. $y=2 x+3$
22. $y=\frac{1}{2} x+2$
23. $y=\frac{1}{3} x$
24. $y=2 x-1$
25. $y=-2$
26. $y=x+1$

Linear graph equations $/ \mathbf{y}=\mathbf{m x}+\mathbf{c}$:

In Task 16, all rules for the straight lines drawn were written in the form ... $\boldsymbol{y}=\mathbf{m} \boldsymbol{x}+\mathbf{c}$
Example: Compare lines $y=2 x+2, y=2 x+3$ and $y=2 x-4 \quad$ What can you say about these three lines?
Answer: These three lines are all parallel, therefore they have the same slope or gradient, but each line cuts the y-axis at a different point.

Example: Compare lines $y=\frac{1}{2} x+3, y=2 x+3$ and $y=x+3$
What can you say about these three lines?
Answer: While these lines have different gradients, all lines cut the y-axis at the same point $(0,3)$. This point is known as the y-intercept.

The general rule / equation for a straight line is ... $\boldsymbol{y}=\mathbf{m} \boldsymbol{x}+\mathbf{C}$ where, $\mathbf{m}=$ gradient and $\mathbf{c}=\boldsymbol{y}$-intercept
The gradient (m) of a line is a measure of its slope. A gradient has two directions ... up (down) and across.
Example: A slope can be positive (up / across)
or negative (down / across)

$\mathbf{M}={ }^{2} / 1_{1}=2$

$\mathbf{M}=1 / 2$

$\mathbf{M}=-1 / 2$

$\mathbf{M}=-2 / 1=-2$

A horizontal line has a slope of zero.

A vertical line has an undefined slope

Task 17

Find the gradients /slopes of the following lines.
1.

2.

3.

4.

5.

For each linear graph rule (equation) below state the gradient and the y-intercept.
6. $y=4 x-2$
7. $y=x+5$
8. $y=-3 x+5$
9. $y=\frac{2}{3} x-2$
10. $y=-\frac{4}{5} x+1$
11. $y=-2 x-4$
12. $y=\frac{4}{3} x+3$
13. $y=5 x$
14. $y=-4 x+5$
15. $y=\frac{1}{2} x-7$
18. $y=\frac{2}{3} x-1$
19. $y=x-5$
20. $y=-2 x+5$

Sketch the graphs of the following straight lines given the gradient and the y-intercept point using the following steps.
Example: gradient $=2, y$-intercept $=+1$
Step 1: Mark the y-intercept point.
Step 2: Count off the gradient from the y-intercept point and mark this point.

Step 3: Join the two points and extend the line.
21. gradient $=2, y$-intercept $=-3$
23. gradient $=-\frac{2}{3}, y$-intercept $=+2$
25. gradient $=\frac{4}{3}, y$-intercept $=+1$
27. gradient $=-3, y$-intercept $=0$
22. gradient $=-1, y$-intercept $=+6$
24. gradient $=\frac{3}{2}, y$-intercept $=-1$
26. gradient $=\frac{1}{2}, y$-intercept $=-2$
28. gradient $=0, y$-intercept $=4$
29. Write the equation of each line in questions 21 to 28.
30. Write equations for the lines A to D drawn on these graphs.

Graphing real-life relationships:

A shop sells books for $\$ 1.50$ each.
This table shows the cost of buying $0,1,2$ and 4 books.

Number of Books	0	1	2	3	4	5
Price (in dollars)	0	1.50	3.00	$?$	6.00	$?$

From this table, ordered pairs or co-ordinates can be written ...

$$
(0,0),(1,1.5),(2,3) \text { and }(4,6)
$$

Number of books bought

Task 18

This graph shows the relationship between the number of hours Jackie can work and the money she will earn.

1. How much did Jackie earn when she worked 2 hours?
2. How much did Jackie earn in 4 hours of work?
3. What is the hourly rate for Jackie's job?
4. If Jackie earned $\$ 37.50$, how many hours did she work?
5. If Jackie earned $\$ 67.50$, how many hours did she work?
6. List the points on this graph as ordered pairs.
7. Write an equation for this relationship,
where $W=$ total wages and $h=$ hours worked.
A shop sells packets of jelly beans for 25 cents each.
8. Copy and complete this table.

Number of hours worked
9. Write the numbers as ordered pairs.
10. Plot these ordered pairs on a graph, joining the points with a straight line.

Number of packets	0	1	2	3	4	5	9	10	15
Cost (cents)	0	25	50	$?$	$?$	$?$	$?$	$?$	$?$

11. Use your graph to work out the cost of buying 6,11 and 14 packets of jelly beans.
12. Write an equation for this relationship, where $C=$ total cost and $n=$ number of jelly bean packets.

The cost of buying apples, priced per kilogram, is shown in this table.

Weight of apples (kgs)
Cost (\$)

	0	1
	0	0.60

| | 2 |
| :---: | :---: | :---: |
| | 1.20 |

5	8
3.00	4.80

12	15	20
7.20	9.00	12.00

cost
in
13. Write the numbers in this table as co-ordinates.
14. Plot these co-ordinates on a graph, joining the points with a straight line.
15. Use your graph to work out the cost of buying $7 \mathrm{kgs}, 13 \mathrm{kgs}$ and 18 kgs of apples.
16. Write an equation for this relationship, where $C=$ total cost and $k=$ weight of apples.

Task 19

Create two real-life graphs of your own. Remember to draw a scale and label each axis and name the relationship that you are drawing.
Suggestions: 'the cost of buying hamburgers / number of hamburgers bought', 'the weight of jelly beans / number of jelly beans', . . .
Have a classmate interpret each real-life graph.

Algebraic expressions and substitution:

In algebra, letters are used to stand for numbers If the letters are replaced by numbers, the BEDMAS rules apply. This process is called substitution.
Example: If $a=4, b=5 \& c=-3$ find the values of $a+b, b c, a c^{2}$ and $b(a+c)$
Answers: $4+5=9,5 \times-3=-15,4 \times-3^{2}=4 \times 9=36,5(4+-3)=5 \times 1=5$

Task 20

Given that $a=5, b=-4, c=10$ and $d=-7$ find the value of each algebraic expression using substitution. Remember the BEDMAS rules apply.

1.	$4 a+7$
6.	$a+b+c+d$
11.	$a^{2} c$
16.	$2 a(c+d)$

lemons 40 cents each
2. $3 c-4$
7. $a b$
12. $b^{2} d$
17. $5 c+a(b+c)$

strawberries 10 cents each
3. $2 b+10$
8. $a b c$
13. $5 b c^{2}$
18. $d^{2}-4 a b$
4. $5 d+12$
9. $a b c d$
14. $c d^{2}+a b$
19. $c+b(2 c+d)$
5. $3 a+b$
10. 7bd
15. $3 c^{2}-5 a b$
20. $a(b+d)^{2}+c$

For the above information, let lemons $=L$, s trawberries $=S$, bananas $=B$, apples $=A$ and grapes $=G$. Calculate the cost of the following, giving your answers in dollars ...
21. $5 L+7 S$
22. $5 B+4 A$
23. $3 G+10 S$
26. $5 L+4 A+3 B$
27. $20 S+3 G+2 B$
28. $7 A+5 L+9 B$
24. $5 L+4 A$
25. $20 S+3 G$
29. $6 B+14 A+7 S$
30. $4 G+9 B+15 A$

Formulae and substitution:

A formula is a general rule or relation, written as an algebraic equation. There are formulae for calculating areas, volumes, perimeters, interest, speed, conversions etc.
Example: Area of a rectangle $=$ base \times height \quad If base $=5.2 \mathrm{~cm}$ and height $=7.3 \mathrm{~cm}$, what is the area?
Answers: $37.96 \mathrm{~cm}^{2}$

Task 21

Answer the following by substituting into the given formula.
The formula for the area of a triangle is ...

$$
\mathbf{A}=1 / 2 \mathbf{b h}
$$

1. If $b=24.6 \mathrm{~cm} \& h=17.4 \mathrm{~cm}$, what is the area of the triangle?
2. If $b=48.3 \mathrm{~cm} \& h=64.8 \mathrm{~cm}$, what is the area of the triangle?

The formula for the circumference of a circle is ...

3. If $r=20.8 \mathrm{~cm}$ what is the circumference of the circle? (Use $\pi=3.14$)

4. If $r=13.25 \mathrm{~m}$ what is the circumference of the circle? (Use $\pi=3.14$)

The formula for the area of a trapezium is ... $\mathbf{A}=1 / 2(\mathbf{a}+\mathbf{b}) \mathbf{h}$
5. If $a=12.7 \mathrm{~cm}, b=20.9 \mathrm{~cm} \& h=8.4 \mathrm{~cm}$, what is the area of the trapezium?
6. If $a=15.3 \mathrm{~cm}, b=24.6 \mathrm{~cm} \& h=14.7 \mathrm{~cm}$, what is the area of the trapezium?

Collecting and simplifying 'like' terms:

An algebraic term is made up of a coefficient (number), variables (letters) and exponents (powers).
Example: $6 y^{2} \quad 6=$ coefficient, $y=$ variable and $2=$ exponent
Like terms have the same variable and exponent.
Example: $4 \mathrm{~b}, 10 \mathrm{~b}$ and -7 b are like terms
$5 b, 8$, and $3 b^{2}$ are unlike terms
An algebraic expression is a group of algebra terms.

Example: $2 x+8, x y+9,4 y+3 x, 4 z-z^{2}$ and $9+4 a-5 c$, etc. are all algebraic expressions.
Algebraic expressions can be simplified by collecting the like terms.
Example: $5 x+4 x=9 x, 6 a+7-5 b=b+7$

Task 22

	\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}
Chocolate Milk	5	6	7	3	9
Fruit Juice	4	7	4	7	8
Coke	12	11	15	9	13
Lemonade	8	9	7	10	7

A local shop recorded the number of each type of drink sold each day for one week, as shown in this table.

1. What is the total number of each type of drink sold during the week?

A collection of mathematical shapes is sorted into three boxes as shown in the diagrams.
2. How many of each shape is in each box?
3. What is the total number of each shape?

4. Peter has 25 tapes and 14 C.D.s. If he exchanged 7 tapes for 3 C.D.S, how many tapes and C.D.s does he now have?
5. Miri has 9 video tapes, 31 C.D.s and 17 cassette tapes. If she buys 3 video tapes, 5 cassette tapes and sells 19 C.D.s, how many of each does she now have?

Simplify these algebraic expressions by collecting like terms.
6. $5 a+6 a$
7. $7 b+12 b$
8. $9 c-7 c$
9. $12 \mathrm{~d}-\mathrm{d}$
10. $8 e+5 e-7 e$
11. $10 f-6 f+9 f$
12. $6 g-15 g$
13. $15 h-9 h+12 h$
14. $3 a+5 a+9 b$
15. $5 d+9-4 f$
16. $12 g-7 g+9 h$
17. $7 h+5 j+h$
18. $8 k-4 j+5 k+9 j$
19. $12 m-8-7 n+9$
20. $10 p+9 q-14 q+9 p$
21. $14 s-12 r-11 s+10 r$
22. $6 a-7 d+2 c+8 b$
23. $9 h-14 h+8 k+9 k$
24. $15 g+11 j+5 g-12 j$
25. $12 b-2 a+9 a+8 b$
26. $y-8 z-5 y+15 z$
27. $12 d+9 e+7 d-13 e$
28. $18+12 p-24+7 p$
29. $12 y-8 z-7 y+14 z$

Simplify these harder algebraic expressions by collecting like terms.
30. $7 a^{2}+5 a+a^{2}$
34. $9 e-9 e^{2}-12 e+5 e^{2}$
35. $10 f^{2}-6 f+8 f-f^{2}$
38. $7 a b-11 a b+9 b-7 a$
39
. $15 x y+9 x-4 y+8 x y$
32. $12 c^{2}-7 c+10 c$
33. $\quad 13 d+5 d^{2}-9 d^{2}$
36. $9 g+6 g^{2}-15 g^{2}+8$
37. $13 h^{2}-9 h^{2}+h-8 h$
40. $10 g^{2}-7 g h+9 h^{2}+5 g h$
41. $7 s^{2}+8 r-9 r^{2}-11 s^{2}$

Solving equations using opposite operations:

An equation is a collection of variables (letters), numbers and mathematical signs, plus an equals sign. There MUST be an equals sign.
Example: $2 x+8=14$ is an equation, but $2 x+8$ is an algebra expression.

The aim of solving an equation is to find the number that would replace the variables (letters) so that the value or total of both sides is the same. Remember an equation is like the old-fashioned 'balancing scales'.
There are several ways to solve equations which involve going through a series of methodical steps involving opposite operations ($+/$ - and \times / \div) until you are left with a single variable or letter on one side of the equals sign and the answer on the other side. Note: Not all answers will be whole numbers.
Example:

$$
\begin{array}{rlrl}
y+18 & =29 & g-12 & =13 \\
y+18-18 & =29-18 & g-12+12 & =13+12 \\
y & =11 & g & =25
\end{array}
$$

$$
\begin{aligned}
5 \mathrm{k}+9 & =23 \\
5 \mathrm{k}+9-9 & =23-9 \\
5 \mathrm{k} & =14 \\
\frac{5 \mathrm{k}}{5} & =\frac{14}{5} \\
\mathrm{k} & =2^{4} / 5
\end{aligned}
$$

$$
\begin{aligned}
3 d-7 & =19 \\
3 d-7+7 & =19+7 \\
3 d & =26 \\
\frac{3 d}{3} & =\frac{26}{3} \\
d & =8^{2} / 3
\end{aligned}
$$

Task 23

Solve these equations using opposite operations and show your working. Simplify your answers.

1. $a+25=41$
2. $17+b=31$
3. $c-9=24$
4. $29-d=12$
5. $e+27=19$
6. $5 f=31$
7. $3 h=34$
8. $9 i=37$
9. $9 \mathrm{j}=84$
10. $12 k=43$
11. $7 m=31$
12. $14 n=63$
13. $16 p=71$
14. $14 q=85$
15. $2 r+29=81$
16. $4 s+34=53$
17. $27+3 t=89$
18. $6 u-39=14$
19. $7 v-24=41$
20. $3 w-12=16$
21. $4 x+15=8$
22. $8 y-23=34$
23. $9 z+17=9$
24. $6 a-15=23$
25. $8 b+17=45$
26. $3 c-51=-47$
27. $7 d+17=42$
28. $5 e-61=-18$
29. $9 f+41=25$

Solve these equations involving decimals, rounding your answers to 2 d.p. Show your working.
31. $1.3 g-4.5=7.9$
32. $3.6 h+4.8=9.3$
33. $4.2 \mathrm{j}-8.6=0.4$
34. $\quad 3.7 \mathrm{k}-7.6=1.4$
35. $2.3 m+7.6=14$
36. $4.2 n-7.9=5.2$
37. $0.9 p+4.7=9.8$
38. $6.7 q+9.4=3.1$
39. $5.7 r-9.4=0.3$
40. $\quad 9.4 s+11.2=2.7$

Write an equation for each word problem, then work out the answer.
41. If Jordan triples his age and adds 17, he is the same age as his father.

If his father is 53 years old, how old is Jordan?
42. If James multiples his age by 6, then subtracts 23 he is the same age as his father. If his father is 43 years old, how old is James?

43. David likes playing cricket. This week he scored 21 less than twice as many runs as last week. If he scored 47 runs this week, how many runs did David score last week?
44. Sam likes playing cricket. Last week he scored 17 more than three times as many runs as this week. If he scored 47 runs last week, how many runs did Sam score this week?
45. Mr Duncan is driving between two cities that are 543 km apart. He has 354 km left to travel and has already been driving for 2 hours. What was the average speed he travelled at during the first two hours?

46. Kevin ran 6 laps around a local park at an even pace. During the run he stopped for a total of 17 minutes to talk to a friend. If the total time, including his stop, was 1 hr 45 min 30 sec for the run, how long does it take Kevin to complete each lap?
47. Mr Davidson is buying a car worth $\$ 11995$. He pays a deposit of $\$ 1500$ and will pay equal amounts for the next 12 months until the car is paid off. How much will these monthly payments be?

Expanding and factorising expressions:

Removing the brackets from an expression is called expanding the expression.
Each term inside the bracket is multiplied by the term outside the bracket.
Example:

$$
\begin{array}{ll}
\text { Example: } & 2(a+4)=2 \times a+2 \times 4=2 a+8 \\
& 5 b+3(4 b-7)=5 b+3 \times 4 b-3 \times 7=5 \\
\text { Factorising an expression is the reverse of expand } \\
\text { Example: } & 12 a+24=12 \times a+12 \times 2=12(a+2) \\
& 15 w+20=5 \times 3 w+5 \times 4=5(3 w+4)
\end{array}
$$

$$
7(3 b-5)=7 \times 3 b-7 \times 5=21 b-35
$$

$$
5 b+3(4 b-7)=5 b+3 \times 4 b-3 \times 7=5 b+12 b-21=17 b-21 \quad \text { (Simplify by collecting 'like' terms) }
$$

Factorising an expression is the reverse of expanding. It involves the placing of brackets into an expression.
12 is a factor of $12 a$ and 24
5 is a factor of $15 w$ and 20
Note: Not all expressions can be factorised.
Example: $7 \mathrm{~d}+15$

Task 24

Expand the following expressions.

1. $2(a+3)$
2. $5(7+b)$
3. $3(c-9)$
4. $9(f-8)$
5. $6(g+5)$
6. $3(h+6)$
7. $14(n+5)$
8. $2(8+3 t)$
9. $6(v-12)$
10. $7(4 y-6)$
11. $9(3 a-13)$
12. $3(3 w-12)$
13. $3(5 x+16)$
14. $8(3 d+5 e)$
15. $7(u-9)$
16. $8(3 z+7)$
17. $8(d-3)$
18. $11(i+6)$
19. $5(4 e-8 f)$
20. $9(j-3)$
21. $12(k+3)$
22. $7(m-8)$
23. $4(s+10)$
24. $8(3 f+11 g)$

Expand the following expressions, then simplify by collecting like terms.
31. $2(a+3)-12$
32. $14 b+5(7+b)$
33. $5(c-9)-6 c$
34. $15+7(d-3)$
35. $4 f+6(f-8)$
36. $6(g+5)+6 h$
37. $24+6(h+6)$
38. $11(i+5)-42$
39. $11(k+5)+6 k$
40. $15+7(m-8)$
41. $12(n+5)+6 n$
42. $4 p+12(p-3)$
43. $8(a+9)+2(a+3)$
44. $5(b-4)+7(b+6)$
45. $7(c+11)+4(c-5)$
46. $6(d+7)+9(d+6)$
47. $7(e-7)+5(e+4)$
48. $6(f+9)+2(3 f-3)$
49. $8(g-12)-2(g+3)$
50. $4(6 h+6)-5(7 h-7)$

Factorise the following expressions.
51. $2 a+10$
52. $5 b+25$
53. $3 c-24$
58. $3 h+27$
61. $12 \mathrm{k}+48$
62. $7 m-56$
63. $14 n+28$
64. $12 \mathrm{p}-108$
65. $4 q-32$
68. $16+6 \dagger$
69. $10 u-45$
70. $8 v-36$
73. $14 y-35$
74. $15 z+36$
75. $16 a-56$
78. $24 e-32+48 f$
79. $20 \mathrm{~g}-10 \mathrm{~h}-30$
80. $40-8 i+16 \mathrm{j}$

Fourteen people ordered the same lunch of an apple (A), 4 sandwiches (S), 2 meusli bars (M) and an orange drink (O).
81. Copy and complete this algebra expression. \qquad $M+$ \qquad O)
82. Expand your expression above to work out the combined lunch order.

A school purchased 36 triangle, 48 square and 24 circle shapes that are to be divided into 6 equal groups. 83. Copy and complete the algebra expression that shows how this could be done.

Equations involving brackets:

When solving equations involving brackets, expanding the brackets is an extra step that is usually done first..
Example:

$\begin{array}{rl}7(b-4) & =11 \\ 7 b-28 & =11 \\ 7 b-28+28 & =11+28 \\ 7 b & 39 \\ \frac{7 b}{7} & =\frac{39}{7} \\ b & =5^{4 / 7}\end{array}$

Task 25

Solve these equations involving a combination of operations and brackets. Show your working and simplify your answers.

1. $4(a+7)=41$
2. $5(4+b)=19$
3. $3(c-7)=29$
4. $6(d-3)=25$
5. $6(e+7)=19$
6. $5(f-6)=17$
7. $6(g+7)=22$
8. $3(h+3)=34$
9. $\quad 9(i+6)=37$
10. $8(j-3)=81$
11. $12(k+4)=15$
12. $7(m-3)=15$
13. $14(n+3)=63$
14. $11(p-3)=64$
15. $4(2 q-4)=85$
16. $2(r+23)=81$
17. $4(s+9)=15$
18. $2(9+3 t)=89$
19. $6(u-9)=14$
20. $7(v-12)=41$

Solve these equations involving decimals, rounding your answers to $2 \mathrm{~d} . \mathrm{p}$. Show your working.
21. $1.3(9-3)=32.9$
22. $3.6(h+4)=19.3$
23. $4.2(j-7)=57.4$
24. $3.7(k-6)=35.4$
25. $4.2(n-2)=12.2$
26. $0.9(p+6)=9.8$
27. $6.7(q+10)=23.1$
28. $5.7(r-9)=14.9$

Equations involving the 'unknown' on both sides:

In some equations, the 'unknown' is on both sides of the equals sign. The first step is to move the unknown or variable to one side, then the equation can be worked out as before.

Task 26

Solve these equations involving a combination of operations and brackets. Show your working and simplify your answers.

1.	$4 a+7=3 a+24$	2.	$7+5 b=2 b-11$	3.	$3 c-11=7 c+19$	4.	$9 d-3=2 d+14$	5.	$6 e+7=11 e-9$
6.	$5 f-6=8 f-17$	7.	$9 g+7=5 g-21$	8.	$4 h+9=9 h+15$	9.	$7 i+7=5 i+24$	10.	$8 j-9=12 j+8$
11.	$9 k-4=7 k+15$	12.	$7 m-3=3 m+22$	13.	$14 n+3=8 n+14$	14.	$11 p-3=9 p+19$	15.	$14 q-5=6 q+21$
16.	$8 r-11=72-5 r$	17.	$4 s+8=12 s-15$	18.	$12+3 t=9 t-5$	19.	$6 u-9=4 u+18$	20.	$7 v-12=9 v+17$

Equations involving fractions:

To solve equations involving fractions, remove the fraction part of the equation first as shown in the example, then solve the equation using the steps already practised.

Task 27

Example:
$5 \mathrm{k}-\mathbf{3 k}+9=3 \mathrm{k}-\mathbf{3 k}+25$ $2 \mathrm{k}+9$-9 $=25-9$ $\frac{2 \mathrm{k}}{2}=\frac{16}{2}$

Solve these equations involving a combination of operations and brackets.

1. $\frac{3 a+7}{4}=9$
2. $\frac{2 b-12}{5}=1$
3. $\frac{5 c+14}{3}=9$
4. $\frac{7 d+10}{6}=-9$
5. $\frac{6 e-9}{7}=4$
6. $\frac{5 f-14}{3}=8$
7. $\frac{12 h+14}{5}=11$
8. $\frac{8 \mathrm{i}-23}{4}=-7$
9. $\frac{9 \mathrm{k}+42}{2}=8$
10. $\frac{5 m+6}{7}=-11$
11. $\frac{2(n-7)}{4}=9$
12. $\frac{3(r+7)}{5}=12$
13. $\frac{4(s-11)}{7}=9$
14. $\frac{4(5 v-6)}{5}=12$
15. $\frac{7(2 v+6)}{8}=3$

Working with exponents:

An algebraic term is made up of a coefficient (numbers), variables (letters) and exponents (powers, indices).
Example: $5 y^{3}$
5 = coefficient, $y=$ variable and $3=$ exponent
But what does $5 y^{3}$ actually mean? $5 y^{3}$ is a shorthand way of writing $5 \times y \times y \times y$

Task 28

Write these algebraic terms in expanded form.

1. a^{2}
2. b^{5}
3. $4 c^{3}$
4. $3 e^{6}$
5. $5 f^{4}$
6. $g^{2} h^{3}$
7. $-6 m^{4} n^{6}$
8. $\frac{1}{2} p^{5} q$
9. $0.5 r^{3} s^{4}$
10. $8 u^{3} v^{2} w^{5}$

Simplify these terms by writing them in index form. (In these questions the ' x ' is a multiplication sign.)
11. $a \times a \times a \times a$
12. $b \times b \times b \times b \times b$
13. $5 \times c \times c \times c \times c$
14. $9 \times d \times d \times d \times d \times d$
15. $e \times e \times e \times e \times f \times f$
16. $6 \times g \times g \times h \times h \times h$
17. $2 \times j \times j \times 6 \times k \times k \times k$
18. $\frac{1}{2} \times m \times m \times 8 \times n \times n$
21. $\frac{1}{2} \times f \times f \times 12 \times g \times$ $g \times g \times h \times h \times h \times h$
22. $24 \times r \times r \times r \times \frac{1}{4} \times$
$s \times s \times \dagger \times \dagger \times \dagger$
$b \times c \times c \times c \times c$
20. $8 \times d \times d \times d \times 3 \times e$
$e \times e \times e \times e \times e \times e$
26. $3 \times p \times p \times p \times p \times 4 \times$ $b \times 15 \times c \times c \times c \times c$
$q \times q \times q \times 6 \times r \times r$

Multiplying exponents / indices:

If a^{2} means $a \times a$ and a^{3} means $a \times a \times a$, therefore $a^{2} \times a^{3}=(a \times a) \times(a \times a \times a)=a^{2+3}=a^{5}$
From this example, an indice rule for multiplying exponents can be created ...

This rule says ...'When multiplying numbers or variables with indices, ADD the indices together.'
Examples: $d^{8} \times d^{3}==d^{8+3}=d^{11}$
$4 c^{3} \times 5 c^{7}=4 \times 5 \times c^{3+7}=20 c^{10}$
$\frac{1}{2} e^{7} \times 12 e=\frac{1}{2} \times 12 \times e^{7+1}=6 e^{7+1}=6 e^{8}$
Two other rules also need to be remembered ...

and

$$
\mathbf{a}^{0}=1, \quad a \neq 0
$$

Task 29

Use the indice rules above to simplify these algebraic terms.

1. $a^{8} \times a^{3}$
2. $b^{4} \times b^{7}$
3. $c^{5} \times c^{5}$
4. $d^{6} \times d^{5}$
5. $e^{9} \times e$
6. $4 f^{2} \times f^{3}$
7. $9^{5} \times 69^{6}$
8. $\frac{1}{2} h \times 12 h^{7}$
9. $6 j^{7} \times 9 j^{5}$
10. $16 k^{8} \times \frac{1}{4} k^{3}$
11. $7 n^{2} \times 6 n^{13}$
12. $20 p^{6} \times \frac{1}{2} p^{7}$
13. $3 q^{4} \times 12 q^{7}$
14. $24 r \times 0.25 r^{9}$
15. $\quad 12 s^{4} \times 2 s^{7}$
16. $15 v^{7} \times 3 v^{6}$
17. $\frac{3}{4} w^{2} \times 16 w^{9}$
18. $8 x^{4} \times 4 x^{9}$
19. $0.4 y^{6} \times 30 y^{2}$
20. $14 z^{11} \times 2 z^{3}$
21. $3 a^{8} \times 20 a^{6}$
22. $20 b^{5} \times \frac{1}{4} b^{5}$
23. $\quad 32 c^{9} \times 0.5 c^{7}$
24. $8 f^{7} \times 9 f$
25. $7 g^{5} \times 5 g^{9}$
26. $3 h^{4} \times 14 h^{7}$

Use the indice rules above to simplify these more difficult algebraic terms.
31. $a^{4} \times a b^{5}$
32. $c^{5} d^{3} \times c^{2}$
33. $e^{3} f \times e^{5} f$
34. $\quad g^{4} h^{2} \times g^{3} h^{7}$
35. $j^{5} k \times j^{7} k^{4}$
36. $r^{4} \times r \times r^{3}$
37. $s \times s^{2} \times s^{5}$
38. $v^{3} \times v^{2} \times v^{4}$
39. $w^{5} \times w^{6} \times w^{2}$
40. $y^{4} \times y^{5} \times y^{3}$
41. $2 m^{2} \times 3 m^{4} \times m$
42. $\frac{1}{2} n^{3} \times 6 n \times n^{7}$
43. $p^{2} \times 4 p^{4} \times 3 p^{5}$
44. $4 q^{2} \times \frac{1}{4} q^{6} \times 5 q$
45. $3 r^{3} \times 4 r \times 3 r^{3}$
46. $5 a b^{2} \times 4 a^{3} b^{3}$
47. $2 a^{5} b \times 7 a b^{7}$
48. $\quad \frac{1}{2} a^{7} b^{2} \times 8 a^{2} b^{5}$
49. $5 a^{2} b^{4} \times 6 a^{7} b^{2}$
50. $0.5 a b^{8} \times 10 a^{2} b^{2}$
51. $a b^{3} c^{4} \times a^{4} b c^{3}$
52. $a^{3} b^{5} c \times a b^{7} c^{2}$
53. $3 b^{5} c^{3} \times 3 a^{2} c$
54. $3 a^{4} c^{7} \times 8 b^{2} c$
55. $7 a b^{2} c \times 4 a^{7} b c^{6}$

Dividing exponents / indices:

If a^{5} means $a \times a \times a \times a \times a$ and a^{2} means $a \times a$, therefore $a^{5} \div a^{2}=\frac{a \times a \times a \times \& \times \&}{\& \times \&}=a \times a \times a=a^{3}$
From this example, an indice rule for dividing exponents can be created ...

$$
\frac{a^{x}}{a^{y}}=a^{x-y}
$$

This rule says ... 'When dividing numbers or variables with indices, SUBTRACT the indices.'
Examples: $d^{8} \div d^{3}=d^{8-3}=d^{5}$

$$
20 c^{7} \div 5 c=4 c^{7-1}=4 c^{6}
$$

$$
24 e^{11} \div 12 e^{5}=2 e^{11-5}=2 e^{6}
$$

Using the rule above, consider this example ...
Example: If $a^{3} \div a^{5}=a^{3-5}=a^{-2}$ and $a^{3} \div a^{5}=\frac{\& \times \& \times \varnothing}{a \times a \times \& \times \& \times \&}=\frac{1}{a \times a}=\frac{1}{a^{2}} \quad$ therefore $a^{-2}=\frac{1}{a^{2}}$

From this example, an indice rule for negative exponents can be created ...

$$
a^{-x}=\frac{1}{a^{x}} \quad, a \neq 0
$$

Task 30

Use the indice rules above to simplify these algebraic terms.
1.

2. $\frac{b \times b \times b \times b \times b}{b \times b}$
3. \qquad
4. $\frac{d \times d \times d \times d \times d \times d}{d \times d \times d \times d \times d}$
5. \qquad
6. $\frac{f^{7}}{f^{2}}$
7. $\frac{g^{9}}{g^{3}}$
8. $\frac{h^{10}}{h^{5}}$
13. $\frac{5 c^{4}}{20 c^{2}}$
14. $\frac{8 d^{4}}{8 d^{4}}$
10. $\frac{m^{3}}{m^{7}}$
11. $\frac{10 a^{6}}{2 a^{4}}$
12. $\frac{16 b^{7}}{4 a^{3}}$
9. $\frac{k^{11}}{k^{7}}$
15. $\frac{15 e^{9}}{5 e^{8}}$
18. $\frac{32 p^{6} q^{7}}{16 p^{9} q^{2}}$
19. $\frac{12 a^{11} b^{7} c^{8}}{8 a^{9} b^{4} c^{5}}$
20. $\frac{3 e^{5} f^{2} g^{12}}{18 e f^{4} g^{7}}$

Two exponents / indices:

If $\left(a^{3}\right)^{2}=a^{3 \times 2}=a^{6}$, because $\left(a^{3}\right)^{2}=a^{3} \times a^{3}=(a \times a \times a) \times(a \times a \times a)=a^{6}$
From this example, an indice rule for two exponents can be created ...

$$
\left(\mathbf{a}^{x}\right) \mathbf{y}=\mathbf{a x}^{x} \times \mathrm{y}
$$

This rule says ... 'When raising a number or variable with an index to another index, MUL TIPLY the indices.'
Examples: $\left(a^{4}\right)^{3}=a^{4 \times 3}=a^{12} \quad\left(4 d^{3}\right)^{2}=4^{2} \times d^{3 \times 2}=16 d^{6} \quad\left(5 c^{4} d^{6}\right)^{3}=5^{3} \times c^{4 \times 3} \times d^{6 \times 3}=125 c^{12} d^{18}$

$$
7\left(g^{3}\right)^{4}=7 \times g^{3 \times 4}=7 g^{12} \quad 5 e\left(2 e^{3}\right)^{4}=5 e \times 2^{4} \times e^{3 \times 4}=5 e \times 16 \times e^{12}=80 e^{13}
$$

Task 31

Use the indice rules above to simplify these algebraic terms.

1. $\left(a^{5}\right)^{4}$
2. $\left(b^{3}\right)^{6}$
3. $\left(c^{7}\right)^{2}$
4. $\left(d^{4}\right)^{5}$
5. $\left(e^{9}\right)^{3}$
6. $\left(4 f^{5}\right)^{2}$
7. $\left(5 g^{6}\right)^{3}$
8. $\left(8 h^{6}\right)^{2}$
9. $\left(9 k^{4}\right)^{3}$
10. $\left(10 m^{5}\right)^{3}$
11. $\left(a^{2} b^{7}\right)^{3}$
12. $\left(c^{4} d\right)^{3}$
13. $\left(e^{7} f^{2}\right)^{5}$
14. $\left(g^{7} h^{5}\right)^{4}$
15. $\left(m^{7} n^{3}\right)^{5}$
16. $\left(4 r^{8} s^{2}\right)^{3}$
17. $\left(6 u^{5} v^{6}\right)^{2}$
18. $\left(10 \mathrm{jk}^{5}\right)^{3}$
19. $\left(2 m^{3} n^{4}\right)^{5}$
20. $\left(3 h^{3} j^{8}\right)^{4}$
21. $8\left(s^{5}\right)^{3}$
22. $4\left(b^{3}\right)^{5}$
23. $6 d\left(d^{3}\right)^{4}$
24. $5 h\left(h^{5}\right)^{4}$
25. $\quad 9 a^{2}\left(a^{4}\right)^{3}$
26. $\quad 5 a b\left(a^{7} b^{4}\right)^{2}$
27. $\left(12 a^{8} b^{4} c^{7}\right)^{2}$
28. $\left(5 a^{6} b c^{5} d^{7}\right)^{3}$

Writing and solving equations for practical problems:

Example: If you double Stewart's age and then add 12 it totals 31. How old is Nigel? Write an equation to show this information, then solve your equation.
Answer: Let $\boldsymbol{n}=$ Stewart's age.

```
2n+12=31
2n = 31-12
    2n = 19
    n=19\div2
    n=9\frac{1}{2}
```


Task 32

Write an equation for each word problem, then work out the answer.

1. If Amy multiplies her age by 5 and adds 11 , she is the same age as her mother. If her mother is 41 years old, how old is Amy?
2. Seven times Brett's age, minus 62 is the same as his father's age.

If Brett's father is 43 , how old is Brett?

3. Mary had $\$ 55$ in her bank account. For the past twelve weeks, Mary has been saving all her pocket money and she now has $\$ 157.00$ altogether. How much pocket money does she get each week?
4. Rangi had $\$ 72$ in his bank account. For the past twenty weeks, Rangi has been saving half his pocket money and he now has $\$ 162.00$ in his bank account. How much pocket money does he get each week?
5. Jackie bought 7 C.D.'s that were all the same price. If she had $\$ 150.00$, but now has only $\$ 24.35$ left, what is the cost of each C.D.?

6. Mr Moore is driving between two cities that are 512 km apart. He has 225.2 km left to travel and has already been driving for 3 hours. What was the average speed he travelled at during the first three hours?
7. Gail has $\$ 96.00$ in her bank account. She buys some books that cost $\$ 6.50$ each and has $\$ 50.50$ left in her bank account. How many $\$ 6.50$ books did she buy?

8. Kevin ran 7 laps around a local park at an even pace. During the run he stopped for a total of 21 minutes to talk to a friend. If the total time, including his stop, was 2 hours 23 minutes 30 seconds for the run, how long does it take Kevin to complete each lap?
9. Mr Davidson is buying a car worth $\$ 14590$. He pays a deposit of $\$ 1450$ and will pay equal amounts for the next 8 months until the car is paid off. How much will these monthly payments be?

10. A school group of 25 is travelling to a sports tournament by train. They have fund-raised $\$ 500.00$ and after paying for the train tickets there is $\$ 156.25$ left over. What is the cost of one train ticket?

Task 33

Create five word problems of your own, similar to the questions above, that can be written as equations.

Exchange your word questions with a classmate to be solved. Compare equations and answers.

Creating and using a formula to solve practical problems:

Example: Jacqui has been sent to the shop to buy hamburgers and chips for some people. The cost of a hamburger (H) is $\$ 2.75$ and the cost of chips (C) is $\$ 1.50$. A formula can be written to work out the total cost (T).

$$
T=\$ 2.75 \mathrm{H}+\$ 1.50 C
$$

where $T=$ total cost, $H=$ number of hamburgers purchased, $C=$ number of chips purchased.
Use the formula to work out the cost of buying 5 hamburgers and 8 chips.

Answer: $T=\$ 2.75 \times 5+\$ 1.50 \times 8=\$ 13.75+\$ 12.00=\$ 25.75$

Task 34

1. The telephone cost $\$ 25.00$ / month plus 20 cent / local call.

Use this information to write a formula for a monthly bill.
Let $M=$ total monthly $\operatorname{cost}(\$)$ and $N=$ number of local calls made.
2. Use your formula to work out the monthly bill if 147 local calls were made.
3. If the telephone bill was $\$ 55.80$, how many local calls were made?

4. The cost of a movie ticket is $\$ 6.50$ for children under 15 and $\$ 10.00$ for adults. Use this information to write a formula. Let $T=$ total cost of tickets ($\$$) and $C=$ number of children going to the movies and $A=$ number of adults going to the movies.
5. Use your formula to work out the cost of movie tickets if 7 children and 3 adults went to the movies.
6. Movie tickets cost $\$ 88.50$. If 3 adults went to the movies, how many children went to the movies?
7. At the local fish and chip shop, a piece of fish costs $\$ 1.20$ and a scoop of chips costs $\$ 1.00$. Use this information to write a formula. Let $C=$ total cost of buying fish and chips (\$) and $F=$ number of pieces of fish bought and $S=$ number of scoops of chips bought.
8. Use your formula to work out the cost of buying these three fish and chip orders,
 2 pieces of fish and 3 scoops of chips, 4 pieces of fish and 3 scoops of chips and 9 pieces of fish and 5 scoops of chips.
9. A fish and chip order cost $\$ 10.80$. If the order included 4 fish, how many scoops of chips came with this order?

The 'Read For Life' company sends out books by mail order that cos $\dagger \$ 9.50$ each.
 With each order there is a postage charge of $\$ 6.95$, no matter how many books are sent.

The formula ...

$$
C=\$ 9.50 \mathrm{~N}+\$ 6.95
$$

is used to work out the cost of an order.
where $C=$ total cost of books bought ($\$$) and $N=$ number of books bought.
10. Rearrange this formula to make \mathbf{N} the subject of the formula.
11. Use your rearranged formula to work out the number of books sold for three orders that cost $\$ 54.45, \$ 111.45$ and $\$ 196.95$.

Task 35

Create three word questions of real-life problems involving the buying of something, similar to the questions above.
Have a classmate write a formula from the information within your question.
Using this formula work out the cost of buying 3,7,12 and 20 of the items in your questions.

'In-class' Worksheet

Teaching Notes \& Answers

How to use this section:

Teaching notes are enclosed in a box with a 'push-pin' at the top left corner. The teaching notes precede the answers for each worksheet / task. The teaching notes have been included to provide assistance and background information about each topic or unit of work.

Introduction:

The topic of Algebra is concerned with finding a rule to describe a number sequence and using the rule to find any member of this sequence. For these sequences, the rules can be used to make predictions or continue the sequence. Linear graphs and the co-ordinate system is explored and through the use of various graphs, relations between numbers and everyday situations can be displayed and interpreted. The ability to find and justify a word formula, to write and solve an equation, will illustrate that many everyday tasks we take for granted can be solved using algebra skills. Developing these skills will enhance pupil's problem solving skills.

Creating and describing patterns:

Continuing a number sequence and finding the rule:
More number sequences:
Using a rule to create number sequences:
Practical problems involving rules:
In Task 1 pupils are to continue a sequence of diagrams, find a word rule to describe how the sequence has been created and use this rule to continue the sequence. By counting and listing the number of shapes in each diagram, a number sequence can be created.
In Task 2 pupils are to create their own diagram sequences. Pupils exchange sequences with classmates, who draw the next three diagrams and work out a rule to describe each sequence.
In Task 3 pupils are to find missing numbers in simple number sequences that involve adding or subtracting a constant number from consecutive terms. Pupils are to describe how each sequence has been created and use their rule to find the missing numbers or continue a sequence.

In Task 4 pupils are to create their own number sequences. Pupils exchange sequences with classmates, who are to find the next three numbers and describe each sequence in words.
In Task 5 pupils are introduced to finding the 'general term' for a sequence, written as an algebraic expression rather than expressed in words. The rule for the 'general term' links the sequence order with the value of any sequence term.
Each number in a number sequence is called a term.
Example: For the sequence of odd numbers 1, 3, 5, 7, 9, 11, etc
1 st term $=1,2$ nd term $=3,3$ rd term $=5$, etc.
As an extension activity, the term numbers and sequence numbers can be represented as ordered pairs. Example: $(1,1),(2,3),(3,5),(4,7)$ etc. The first number of the ordered pair is the 'term number' and the second number is the sequence number.
When a rule is used to create a sequence of numbers, any number of the sequence can be calculated by substituting the 'term number' into the rule.
Example: If the rule was $3 \boldsymbol{n}+5$, the 20 th term would be ' $20 \times 3+5=65$.
This would be written as the ordered pair $(20,65)$.
Practical problems are included to illustrate how rules can be used.

In Task 6 pupils are to continue number sequences and find various terms given the rule for the general term to describe the sequence.

In Task 7 pupils are to create their own rules for the general term for four number sequences. Pupils exchange sequences with classmates, who are to find the next three numbers and describe the rule for the general term for each sequence as an algebraic expression.
In Task 8 pupils are to investigate practical problems involving rules.
In Task 9 pupils are to create practical problems similar to those created in Task 8 above that can be exchanged with classmates.

Task 1

1.

2.

3.

5.

6.

7. Q1: $5,6,7,8,9, \ldots \quad$ Q2: $3,5,7,9,11, \ldots \quad$ Q3: $2,5,8,11,14, \ldots \quad$ Q4: $7,11,15,19,23, \ldots$

Q5: $8,13,18,23,28, \ldots$ Q6: $8,14,20,26,32, \ldots$
8. Q1: Start with 5 diamonds then add 1 diamond to each new diagram Q2: Start with 3 ovals than add 2 ovals to each new diagram Q3: Start with 2 diamonds then add 3 diamonds to each new diagram Q4: Start with 7 squares than add 4 squares to each new diagram Q5: Start with 8 circles then add 5 circles to each new diagram Q6: Start with 8 triangles then add 6 triangles to each new diagram \quad 9. Q1: $12,14,24 \quad$ Q2: $17,21,41$ Q3: $23,29,59$ Q4: $35,43,83$ Q5: $43,53,103$ Q6: $50,62,122$

Task 3

Task 5

1. 6, 10, 14, general term $=2 n \quad$ 2. $7,13,17$, general term $=2 n+3 \quad 3.8,11,20$, general term $=3 n-1$
2. $16,26,41$, general term $=5 n+1 \quad 5,7,16,19$, general term $=3 n+1 \quad 6,5,17,21$, general term $=4 n-3$
3. 1, 5, 9, general term $=2 n-5 \quad$ 8. $7,13,19$, general term $=3 n-2 \quad 9,6,9,18$, general term $=3 n$
4. $-5,-3,3$, general term $=2 n-9 \quad$ 11. $33,43,73$, general term $=10 n+3 \quad 12.16,22,40$, general term $=6 n+4$
5. $-3,6,9$, general term $=3 n-9 \quad$ 14. $24 m \quad 15$. $15 m=360$ bricks, $23 m=552$ bricks, $42 m=1008$ bricks
6. 192 bricks $=8 \mathrm{~m}, 300$ bricks $=12.5 \mathrm{~m}, 150$ bricks $=6.25 \mathrm{~m} \quad 17.10 x+6 \quad 18.12 \mathrm{~m}^{2}=126$ tiles, $20 \mathrm{~m}^{2}=206$ tiles, $50 \mathrm{~m}^{2}=506$ tiles 19. 76 tiles $=7 \mathrm{~m}^{2}, 116$ tiles $=11 \mathrm{~m}^{2}, 206$ tiles $=20 \mathrm{~m}^{2}$

Task 6

1. $13,17,21,25$ 2. $57,129,269$
2. $-3,2,7,12$
3. $67,192,352$
4. $13,16,19,22$
5. $46,160,250$
6. $8,4,0,-4 \quad 8 .-36,-188,-308$

Task 8

1. $\$ 24.45, \$ 50.45, \$ 82.92, \$ 167.45 \quad$ 2. $\$ 63.45-\$ 4.95=\$ 58.50, \$ 58.50 \div \$ 6.50=9$ books
2. $\$ 43.45, \$ 112.45, \$ 181.45, \$ 250.45 \quad 4$. $\$ 146.95-\$ 8.95=\$ 138.00, \$ 138.00 \div \$ 11.50=12$ soccer balls
3. $\$ 16.90, \$ 22.50, \$ 32.90, \$ 46.50 \quad$ 6. $\$ 25.70-\$ 2.50=\$ 23.20, \$ 23.20 \div \$ 1.60=14.5$ minutes 7. Cost of buying

CD's = no. of CD's $\times \$ 17.95-\$ 10 \quad$ 8. $\$ 79.75, \$ 151.55, \$ 205.40, \$ 259.25$
9. $\$ 97.70+\$ 10.00=\$ 107.70, \$ 107.70 \div 17.95=6$ CD's

Graphs of real-life situations:

Worksheet 6

In Task 10 pupils are to interpret graphs of real-life situations, creating a story that represents the information displayed by the graph. Pupils are to create graphs for a given situations and discuss his / her graph with a classmates.

In Task 11 pupils are to create graphs for various real-life situations, writing a story to explain the his / her graph.

Task 10

1. graph $C \quad$ 2. graph $B \quad$ 3. graph $A \quad$ 4. point $B \quad$\begin{tabular}{l}
2. point D

3. -

4.

\end{tabular}

Height
of water
in the
bath

Ordered pairs:

Graphing ordered pairs / co-ordinates:
Extending co ordinate graphs:
In Task 12 pupils are to interpret mapping diagrams to create a list of ordered pairs or co-ordinates. Given the first number of an ordered pair, plus the relation between the first and second numbers, pupils are to complete the ordered pairs.
Co ordinates are the ordered pairs that locate points on a graph called a Cartesian graph. The word 'co ordinate' is also used to describe the numbers that represent a given point on a map.
The \boldsymbol{x}-axis is the horizontal axis. The \boldsymbol{y}-axis is the vertical axis. The point $(0,0)$, is where the axes meet or cross and is called the origin. The order of the numbers is important. The first number is always across (left or right) and the second number is always up or down. If both numbers of the ordered pair are positive, the directional movements will always be to the right first, then up. Example: Point $\mathbf{A}=(2,3)$ means 2 right and 3 up.

In Task 13 pupils are to list the co-ordinates for points plotted on a Cartesian graph and graph coordinates points given. From mapping diagrams, pupils are to list ordered pairs and plot them on a graph.

In Task 14 pupils are to list the co-ordinates for points plotted on a graph that has been extended to include negative numbers. The directional movements have not changed. A negative first number means a horizontal movement to the left and a negative second number means a movement down.

In Task 15 pupils are to create their own coordinate picture, list the points required to plot the picture and have a pupil redraw the picture based on the coordinates given, picture unseen.

Task 12

1. $(1,3),(2,4),(3,5),(4,6),(5,7),(6,8) \quad$ 2. $(1,-3),(2,-2),(3,-1),(4,0),(5,1),(6,2)$
2. $(1,2),(2,4),(3,6),(4,8),(5,10),(6,12) \quad$ 4. $(1,6),(2,7),(3,8),(4,9),(5,10),(6,11)$
3. $(2,1),(4,2),(6,3),(8,4),(10,5),(12,6) \quad 6$. $(1,-6),(2,-5),(3,-4),(4,-3),(5,-2),(6,-1)$
4. Q1 'is 2 less than' Q2: 'is 4 more than' Q3: 'is half of' Q4: 'is 5 less than' Q5: 'is twice'

Q6: 'is 7 more than' $8 .(1,9),(2,10),(3,11),(4,12),(5,13),(6,14) \quad 9 .(1,4),(2,8),(3,12),(4,16),(5,20),(6,24)$
10. $(1,4),(2,6),(3,8),(4,10),(5,12),(6,14) \quad 11 .(1,1),(2,4),(3,7),(4,10),(5,13),(6,16)$

Task 13

1. $A=(7,5), B=(0,5), C=(3,4), D=(4,0), E=(2,1), F=(7,7), G=(6,1), H=(2,7), I=(1,2), J=(5,3)$
2.

6. $(0,3),(2,4),(4,5),(6,6),(8,7),(10,8)$
7. $(1,0),(1,1),(1,2),(1,3),(1,4),(1,5)$
8. $(0,8),(2,7),(4,6),(6,5),(8,4),(10,3)$
9. $(2,0),(3,2),(4,4),(5,6),(6,8),(7,10)$
10. $(0,7),(1,6),(2,5),(3,4),(4,3),(5,2)$
11. $(2,9),(3,9),(4,9),(5,9),(6,9),(7,9)$
13. They are all straight lines
3. $(1,1),(5,1),(5,3),(3,4),(1,3)$ and $(1,1)$

Task 14

1. $A=(-2,4), B=(2,4), C=(3,2), D=(-4,-3), E=(4,0), F=(-2,-4), G=(2,1), H=(-2,-1), I=(-3,3), J=(0,1)$, $K=(0,-3), L=(-5,-5), M=(3,-3), N=(2,-4), O=(5,4), P=(3,-1), Q=(1,-2), R=(-4,0), S=(5,-2), T=(-5,2)$, $U=(1,3), V=(-3,1), W=(5,-5), X=(-5,5), Y=(3,5), Z=(-3,-2), 2$. parallelogram 3. quadrilateral
2. Algebra is great fun
3. Plot and join the points $(-1,0),(1,2),(3,0),(1,-2),(-1,0)$

Plot and join the points $(2,-1),(3,-1),(3,-3),(2,-3),(2,-1)$.
Plot and join the points $(0,1),(-3,3),(-3,1),(0,1)$

Ordered pairs and Linear graphs:
Linear graph equations $/ y=m x+c$:
Graphing real-life relationships:
In Task 16 pupils are to complete a set of ordered pairs, given a rule in the form $\mathbf{y}=\mathbf{m x}+\mathbf{c}$. The ordered pairs are then graphed in sets of three. Comparing each set of three graphs introduces the idea that graphs with the same slope are parallel.

From the general equation, $\mathbf{y}=\mathbf{m x}+\mathbf{c}, \mathrm{m}=$ slope $/$ gradient.
Example: $\mathrm{y}=2 \mathrm{x}, \mathrm{y}=2 \mathrm{x}+5, \mathrm{y}=2 \mathrm{x}-4$ all have the same slope as $\mathrm{m}=2$ for all equations.
Pupils are also introduced to the idea that not only can you determine the slope / gradient of a line form its equation, but you can also note where the line cuts the y-axis.

From the general equation, $\mathbf{y}=\mathbf{m x}+\mathbf{c}, \mathbf{c}=\mathrm{y}$-axis intercept.
Example: $\mathrm{y}=2 \mathrm{x}$ has a y -intercept $=0, \mathrm{y}=2 \mathrm{x}+5$ has a y -intercept $=+5, \mathrm{y}=2 \mathrm{x}-4$ has a y -intercept $=-4$
To reinforce these ideas, pupils are to match graphs drawn with linear equations.
In Task 17 pupils are to determine the slope / gradient of various lines by counting squares. Given linear equations, pupils are to state the slope / gradient and y-axis intercept points. Pupils are to draw linear graphs given the gradient and y-intercept following these steps.

Example: $\mathrm{y}=2 \mathrm{x}+1$, where gradient $=2, \mathrm{y}$-intercept $=+1$
Step 1: Mark the y-intercept point.
Step 2: Count off the gradient from the y-intercept point, mark this new point.

Step 3: Join the two points and extend the line.

Pupils are to write equations in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, given diagrams of various graphs.
In Task 18 pupils are to interpret information displayed in graphs representing real-life situations, complete ordered pairs and graph the results.

In Task 19 pupils are to create graphs of real-life situations.

Task 16

1. $(-3,-1),(-2,0),(-1,1),(0,2),(1,3),(2,4),(3,5) \quad 2 .(-3,-3),(-2,-2),(-1,-1),(0,0),(1,1),(2,2),(3,3)$
2. $(-3,-4),(-2,-3),(-1,-2),(0,-1),(1,0),(2,1),(3,2) \quad 4$. See graph below
3. All lines are parallel therefore have the same slope / gradient $\quad 6$. Cuts the y axis at 0 and -1

4. $(-3,-8),(-2,-6),(-1,-4),(0,-2),(1,0),(2,2),(3,4)$
5. $(-3,-3),(-2,-1),(-1,1),(0,3),(1,5),(2,7),(3,9)$
6. $(-3,-6),(-2,-4),(-1,-2),(0,0),(1,2),(2,4),(3,6)$
7. See graph opposite right
8. All lines are parallel therefore have the same slope / gradient
9. Cuts the y axis at 3 and 0

10. Cuts the y axis at 3 and 0
11. All lines are parallel therefore have the same slope / gradient
12. $(-6,-3),(-4,-2),(-2,-1),(0,0),(2,1),(4,2),(6,3) \quad 14 .(-6,0),(-4,1),(-2,2),(0,3),(2,4),(4,5),(6,6)$
13. $(-6,-5),(-4,-4),(-2,-3),(0,-2),(2,-1),(4,0),(6,1) \quad 16$. See graph above
14. All lines are parallel therefore have the same slope / gradient 18. Cuts the y axis at 3 and -2
15. H 20. G
16. E
17. A 23. C
18. B
19. D
20. F

Task 17

1. 2 up $/ 3$ across $\Rightarrow m=2 / 3 \quad$ 2. 1 down $/ 3$ across $\Rightarrow m=-1 / 3$
2. 3 up $/ 1$ across $\Rightarrow m=3 / 1=3 \quad$ 4. 3 down $/ 2$ across $\Rightarrow m=-3 / 2$
3. 2 up $/ 4$ across $\Rightarrow m=2 / 4=2 / 4 \quad$ 6. $m=4, c=-2 \quad$ 7. $m=1, c=+5$
4. $m=-3, c=+5 \quad$ 9. $m=2 / 3, c=-2 \quad$ 10. $-4 / 5, c=+1 \quad$ 11. $m=-2, c=-4$
5. $m=4 / 3, c=+3$
6. $m=5, c=0$
7. $m=-4, c=+5$
8. $m=1 / 2, c=-7$
9. $m=3 / 2, c=+3$
10. $m=-5, c=+1$
11. $m=2 / 3, c=-1$
12. $m=1, c=-5$
13. $m=-2, c=+5$

14. $Q 21: y=2 x-3$,

Q22: $y=-x+6$,
Q23: $y=-2 / 3 x+2$,
Q24: $y=3 / 2 x-1$,
Q25: $y=4 / 3 x+1$,
Q26: $y=1 / 2 x-2$
Q27: $y=-3 x$
Q28: $y=4$
30.

A
$y=1 / 2 x+1$
B $y=2 x-2$
C $y=-1 / 3 x+3$
D $\quad y=-1 / 2 x-1$

Task 18

1. $\$ 15$	2. $\$ 30$	3. $\$ 7.50$	4. 5 hours	5.

6. $(0,0),(1,7.5),(2,15),(3,22.5),(4,30),(5,37.5)$
7. $W=7.5 h \quad 8$.

Number of packets	0	1	2	3	4	5	9	10	15
Price (cents)	0	25	50	75	100	125	225	250	375

9. $(0,0),(1,25),(2,50),(3,72),(4,100),(5,125),(9,225)$, $(10,250),(15,375) \quad$ 10. see graph opposite
10. $\$ 1.50, \$ 2.75,3.50 \quad$ 12. $C=0.25 n$
11. $(0,0),(1,0.60),(2,1.20),(5,3.00),(8,4.80),(12,7.50)$, $(15,9.00),(20,12.00)$ 14. see graph below

Number of jelly beans packets
15. $\$ 4.20, \$ \$ 7.80, \$ 10.80$
16. $C=0.6 \mathrm{k}$

Algebraic expressions and substitution: Formulae and substitution:

Collecting and simplifying 'like' terms:

In Task 20 pupils are to evaluate algebraic expressions by substituting known values into various expressions. Remind pupils to apply the BEDMAS rules, when necessary.
In Task 21 pupils are to work with formulae. A formula is a rule that can be used to work things out. A formula is made up of letters, numbers and mathematical signs. An equals sign is always involved. The letter/s in a formula represents the 'unknown' and can take on any value (depending on the formula). Numbers are substituted into the formula to work out the answer.

In Task 22 pupils are introduced to 'like’ terms. Algebraic expressions are to be simplify by collecting like terms.

Task 20

1. 27 2. 26
2. 2
3. -23
4. 11
5. 4 7. -20
6. -200
7. 1400
8. 196
9. 250
10. -112
11. -2000
12. 470
13. 400
14. 30
15. 80
16. 129
17. -42 20.
$615 \quad 21$
\$2.70
18. $\$ 2.50$
19. $\$ 4.00$
20. $\$ 3.00$
21. $\$ 5.00$
22. $\$ 3.90$
23. $\$ 5.60$
24. $\$ 6.45$
25. $\$ 6.00$
26. \$10.45

Task 21

1. $214.02 \mathrm{~cm}^{2}$
2. $1564.92 \mathrm{~cm}^{2}$
3. 130.624 cm
4. 83.21 m
5. $141.12 \mathrm{~cm}^{2}$
6. $293.265 \mathrm{~cm}^{2}$

Task 22

1. 30 chocolate milk, 30 fruit juice, 60 coke, 41 lemonade 2. 1st box: 9 triangles, 6 squares, 8 circles,

2nd box: 6 triangles, 12 squares, 9 circles, 3 rd box: 10 triangles, 11 squares, 9 circles 3.25 triangles, 29 squares, 26 circles 4. 18 tapes and 17 C.D.'s 5. 12 video tapes, 12 C.D.'s and 22 cassette tapes
6. 11a
7.19b
8. $2 c$
9. 11d
10. $6 e$ 11. $13 f$
12. -9 g
13. 18 h
14. $8 a+9 b$
15. $5 d+9-4 f$
16. $5 g+9 h \quad 17.8 h+5 j$
18. $13 k+5 j$
19. $12 m-7 n+1$
20. $19 p-5 q$
21. $3 s-2 r$
22. $6 a-7 d+2 c+8 b$
23. $-5 h+17 k$
24. $20 g-j$ 25. $7 a+20 b$
26. $-4 y+7 z$
27. 19d-4e
28. $19 \mathrm{p}-6$
29. $5 y+6 z$
30. $8 a^{2}+5 a \quad$ 31. $12 c d-4 c+9 d \quad$ 32. $12 c^{2}+3 c \quad 33.13 d-4 d^{2} \quad 34 .-3 e-4 e^{2} \quad 35.9 f^{2}+2 f \quad 36.9 g-9 g^{2}+8$
37. $4 h^{2}-7 h$
38. $-4 a b-7 a+9 b$
39. $23 x y+9 x-4 y$
40. $10 g^{2}-2 g h+9 h^{2}$
41. $8 r-9 r^{2}-4 s^{2}$

Worksheet 15

Solving equations using opposite operations:

An equation is a collection of variables (letters), numbers and mathematical signs, plus an equals sign. There MUST be an equals sign.
Example: $2 x+8=14$ is an equation, but $2 x+8$ is an algebra expression.
The aim of solving an equation is to find the number that would replace the variables (letters) so that the value or total of both sides is the same. Remember an equation is like the old-fashioned 'balancing scales'.

There are several ways to solve equations which involve going through a series of methodical steps involving opposite operations (+ $/-$ and \times / \div) until you are left with a single variable or letter on one side of the equals sign and the answer on the other side. The steps may involve adding or subtracting the same number from each side, or multiplying or dividing each side by the same number. To check if the answer is correct, the 'answer' can be substituted back into the original equation to find out if both sides 'balance' (are same).

Solving equations using opposite operations:
Example: Solve $y+18=29, \quad y-12=13, \quad 3 k+9=21, \quad 4 m-5=15$

$$
\begin{aligned}
y+18 & =29 & & \\
y+18-18 & =29-18 & & \text { (subtract } 18 \text { from each side) } \\
y & =11 & & \\
y-12 & =13 & & \\
y-12+\mathbf{1 2} & =13+12 & & \text { (add } 12 \text { to each side) } \\
y & =25 & & \\
3 k+9 & =21 & & \\
3 k+9-9 & =21-9 & & \text { (subtract } 9 \text { from each side) } \\
3 k & =12 & & \\
\frac{3 k}{3} & =\frac{12}{3} & & \text { (divide each side by } 3 \text {) } \\
\mathrm{k} & =4 & & \\
4 m-5 & =15 & & \\
4 m-5+5 & =15+5 & & \text { (add } 5 \text { to each side) } \\
4 m & =20 & & \\
\frac{4 m}{4} & =\frac{20}{4} & & \text { (divide each side by } 4) \\
m & =5 & &
\end{aligned}
$$

Correct setting out, while lengthy and time consuming, will assist pupils to understand solving equations better.

In Task 32 pupils are to solve equations using a formal method, either the method illustrated above or some other abridged version. Opposite operations will always be involved, even if the equations are solved mentally, rather than written down on paper.

Task 23

1. $a=16 \quad$ 2. $b=14 \quad$ 3. $c=33 \quad$ 4. $d=17 \quad$ 5. $e=-8 \quad$ 6. $f=6 \frac{1 / 5}{} \quad$ 7. $g=3^{2} / 3 \quad$ 8. $h=11^{1 / 3} \quad$ 9. $i=4 \frac{1}{3}$ 10. $j=9^{1 / 3}$ 11. $k=3^{7 / 12}$ 12. $m=4^{3} / 7$ 13. $n=4^{1 / 2}$ 14. $p=4^{7 / 16}$ 15. $q=6^{1 / 14} \quad$ 16. $r=26 \quad 17 . s=4^{3} / 4$ $\begin{array}{llllllll}\text { 18. } t=20^{2} / 3 & \text { 19. } u=8^{5} / 6 & \text { 20. } v=9^{2} / 7 & \text { 21. } w=9^{1 / 3} & \text { 22. } x=-1^{3} / 4 & \text { 23. } y=7 \frac{1}{8} & \text { 24. } z=-8 / 9 & 25 .\end{array} a=6^{1 / 3}$ $26 b=3^{1 / 2}$ 27. $c=1^{1 / 3}$ 28. $d=3^{4 / 7} \quad$ 29. $e=8^{3 / 5} \quad$ 30. $f=-1^{7 / 9} \quad$ 31. $g=9.54 \quad$ 32. $h=1.25$ 33. $j=2.14$ 34. $k=2.43$ 35. $m=2.78$ 36. $n=3.12 \quad$ 37. $p=5.67$ 38. $q=-0.94 \quad$ 39. $r=1.70$ 40. $s=-0.90 \quad$ 41. $3 x+17=53, x=12$ years $\quad 42.6 x-23=43, x=11$ years $\quad 43.2 x-21=47, x=34$ runs
2. $3 x+17=47, x=10$ runs 45. $2 x+354 \mathrm{~km}=543 \mathrm{~km}$, Average speed $=94.5 \mathrm{~km} /$ hour
3. $6 x-17 \mathrm{~min}=1 \mathrm{hr} 45 \mathrm{~min} 30 \mathrm{sec}$, Average lap time $=14 \mathrm{~min} 45 \mathrm{sec}$
4. $12 x-\$ 1500=\$ 11995$ Monthly payment $=\$ 874.58$

Expanding and factorising expressions:

Worksheet 16

In Task 24 pupils are introduced to two new algebra processes: expanding and factorising.
Expanding involves removing brackets from an expression (or equation) by multiplying each term inside the bracket by the term outside the brackets. Expanded expression may be able to be simplified by collecting like terms.
Factorising an expression is the reverse of expanding as it involves finding common factors and the placing of brackets in an expression. Both skills are important and will be needed when solving more complicated equations in later worksheets.

Task 24

1. $2 a+6$ 2. $35+5 b \quad$ 3. $3 c-27$ 4. $8 d-24 \quad$ 5. $5 e+35 \quad$ 6. $9 f-72 \quad$ 7. $6 g+30 \quad 8.3 h+18$
$\begin{array}{lllllll}9 . & 11 i+66 & \text { 10. } 9 j-27 & 11.12 k+36 & 12.7 m-56 & 13.14 n+70 & 14.12 p-36\end{array} 15.8 q-16$
2. $2 r+42$
3. $4 s+40$
4. $16+6 \dagger$
5. $7 u-63$
6. $6 v-72$ 21. $3 w-36$
7. $3 x+48$
8. $7 y-42$ 24. $24 z+56$ 25. $9 a-117 \quad$ 26. $16 b+16 a \quad 27.15 c-24 d \quad 28.24 d+40 e$
9. $20 e-40 f \quad 30.24 f+88 g \quad$ 31. $2 a+6-12=2 a-6 \quad 32.14 b+35+5 b=19 b+35$
10. $5 c-45-6 c=-c-45 \quad$ 34. $15+7 d-21=-6+7 d \quad$ 35. $4 f+6 f-48=10 f-48 \quad 36.6 g+30+6 h$
11. $24+6 h+36=60+6 h \quad$ 38. $11 i+55-42=11 i+13 \quad$ 39. $11 k+55+6 k=17 k+55$
12. $15+7 m-56=-41+7 m \quad$ 41. $12 n+60+6 n=18 n+60 \quad$ 42. $4 p+12 p-36=16 p-36$
13. $8 a+72+2 a+6=10 a+78 \quad$ 44. $5 b-20+7 b+42=12 b+22 \quad 45.7 c+77+4 c-20=11 c+57$
14. $6 d+42+9 d+54=15 d+96 \quad 47.7 e-49+5 e+20=12 e-29 \quad 48.6 f+54+6 f-6=12 f+48$
15. $8 g-96-2 g-6=6 g-102 \quad$ 50. $24 h+24-35 h+35=-11 h+59 \quad$ 51. $2(a+5) \quad 52.5(b+5)$
16. 3(c-8) 54. 8(d-4) 55. 5(e + 8) 56. $9(f-6) \quad$ 57. $6(g+7) \quad$ 58. $3(h+9) \quad$ 59. $11(i+5)$
17. $9(j-8)$ 61. $12(k+4) \quad$ 62. $7(m-8) \quad 63.14(n+2) \quad 64.12(p-q) \quad 65.4(q-8) \quad 66.2(2 r+9)$
18. $3(2 s+5)$ 68. $2(8+3 t)$ 69. $5(2 u-9)$ 70. $4(2 v-9)$ 71. $3(3 w-8)$ 72. $8(x+1)$
19. $7(2 y-5)$
20. $3(5 z+12)$ 75. $8(2 a-7)$
21. $4(a+2 b-6) \quad$ 77. $5(3 c-2 d+8)$
22. $8(3 e-4+6 e)=8(3 e-4+6 f) \quad$ 79. $10(2 g-h-3) \quad 80.8(5-i+2 j) \quad 81.14(A+4 S+2 M+0)$
23. 14 apples, 56 sandwiches, 28 muesli bars, 14 orange drinks

Worksheet 17

Equations involving brackets:

Equations involving the 'unknown' on both sides:

Equations involving fractions:
In Tasks 24 to 27 pupils are to solve equations of varying difficulty as brackets, 'unknowns' on both sides and fractions are introduced. The use of opposite operations and expanding skills are to be used when solving these equations.

Task 25

Task 26

1. $a=17$ 2. $b=-6$ 3. $c=-7^{1 / 2} \quad$ 4. $d=2^{3} / 7 \quad$ 5. $e=3^{1 / 5} \quad$ 6. $f=3^{2} / 3 \quad$ 7. $g=-7 \quad$ 8. $h=-1^{1 / 5} \quad$ 9. $i=8 \frac{1 / 2}{}$ $\begin{array}{lllllll}\text { 10. } j=-4^{1 / 4} & \text { 11. } k=9^{1 / 2} & 12 . ~ & m=6^{1 / 4} & \text { 13. } n=1^{5} / 6 & \text { 14. } p=7^{1 / 3} & \text { 15. } q=3^{1 / 4}\end{array}$ 16. $r=6^{5 / 13} \quad 17 . s=2^{7 / 8}$ 18. $t=25 / 6 \quad$ 19. $u=13^{1 / 2} \quad$ 20. $v=-14 \frac{1}{2}$

Task 27

1. $a=9^{2} / 3$
2. $b=8^{1 / 2} \quad$ 3. $c=2^{3} / 5$
3. $d=-9 / 1 / 7$
4. $e=61 / 6$ 6. $f=7^{3} / 5$
5. $h=3^{5} / 12$
6. $i=-5 / 8$
7. $k=-2^{8 / 9}$
8. $m=-16^{3} / 5$
9. $n=25$
10. $r=13$
11. $s=26^{3} / 4$
12. $v=4 \frac{1}{5}$
13. $v=-1^{2} / 7$

Working with exponents:

Worksheets 18 \& 19

Multiplying exponents / indices:

Dividing exponents / indices:
Two exponents / indices:
In Task 28 pupils are introduced algebraic term involving exponents (index, indices, powers) by either expanding or simplifying expressions.
In Task 29 pupils are introduced indices rule for multiplying exponents as outlined in the examples on the worksheet 18. Utilising this rule, pupils are to simplify algebraic terms involving indices.
In Task 30 pupils are introduced indices rule for dividing exponents as outlined in the examples on the worksheet 19. Utilising this rule, pupils are to simplify algebraic terms involving indices.

In Task 31 pupils are introduced indices rule for working with two exponents as outlined in the examples on the worksheet. Utilising this rule, pupils are to simplify algebraic terms involving indices.

Task 28

1. $a \times a \quad$ 2. $b \times b \times b \times b \times b \quad 3.4 \times c \times c \times c \quad$ 4. $3 \times e \times e \times e \times e \times e \times e \quad 5.5 \times f \times f \times f \times f$
2. $g \times g \times h \times h \times h \quad$ 7. $-6 \times m \times m \times m \times m \times n \times n \times n \times n \times n \times n \quad 8.1 / 2 \times p \times p \times p \times p \times p \times q$
3. $0.5 \times r \times r \times r \times s \times s \times s \times s \quad$ 10. $8 \times u \times u \times u \times v \times v \times w \times w \times w \times w \times w \quad$ 11. $a^{4} \quad$ 12. $b^{5} \quad 13.5 c^{4} \quad 14$. $9 d^{5}$ 15. $e^{4} f^{2} \quad$ 16. $6 g^{2} h^{3} \quad$ 17. $12 j^{2} k^{3} \quad$ 18. $4 m^{2} n^{2} \quad$ 19. $a^{3} b^{3} c^{4} \quad$ 20. $24 d^{3} e^{7} \quad$ 21. $6 f^{2} g^{3} h^{4} \quad$ 22. $6 r^{3} s^{2} t^{3}$
$\begin{array}{llll}\text { 23. } 7.5 f^{4} g^{3} h & \text { 24. } 4 r^{5} s^{2} t^{2} & \text { 25. } 11.25 a^{3} b^{2} c^{4} & \text { 26. } 72 p^{4} q^{3} r^{2}\end{array}$

Task 29

Task 30

1. $a^{2} \quad$ 2. b^{3} 3. $1 \quad$ 4. d 5. e^{-3}
2. f^{5} 7. g^{6}
3. $h^{5} \quad$ 9. $k^{4} \quad$ 10. $m^{-4} \quad$ 11. $5 a^{2}$
4. $4 a^{-3} b^{7}$
5. $\frac{1}{4} c^{2}$
6. 1
7. $3 e$
8. $2 g$
9. $6 r^{4} s^{3}$
10. $2 p^{-3} q^{5}$
11. $1.5 a^{2} b^{3} c^{3}$
12. $1 / 6 e^{4} f^{-2} g^{5}$

Task 31

1. a^{20}
2. $b^{18} \quad$ 3. c^{14}
3. d^{20}
4. e^{27}
5. $16 f^{10}$
6. $125 g^{18}$
7. $64 h^{12}$
8. $243 \mathrm{k}^{12}$
9. $1000 m^{15}$ 11. $a^{6} b^{21}$
10. $c^{12} d^{3} \quad$ 13. $e^{35} f^{10} \quad$ 14. $g^{28} h^{20}$
11. $m^{35} n^{15}$
12. $64 r^{24} s^{6}$
13. $36 u^{10} x^{12}$
14. $1000 j^{3} k^{15}$
15. $32 m^{15} n^{20}$
16. $81 h^{12} j^{32} \quad$ 21. $8 s^{15} \quad$ 22. $4 b^{15}$
17. $6 d^{13}$
18. $5 h^{21}$
19. $9 a^{14}$
20. $5 d^{13} e^{24}$
21. $9 f^{10} g^{10}$
22. $5 a^{15} b^{9}$
23. $144 a^{16} b^{8} c^{14}$
24. $125 a^{18} b^{3} c^{15} d^{21}$

Writing and solving equations for practical problems:

Creating and using a formula to solve practical problems::
In Task 32 pupils are to write, then solve equations for information contained within word problems.
In Task 33 pupils are to created word problems containing information that can be represented as equations. The word problems are to be exchanged with a classmate for him / her to work out.

In Task 34 pupils are to create a formula from information contained within a word problem, then use the formula to work out various problems.
In Task 35 pupils are to created word problems containing information that can be represented as formula. The word problems are to be exchanged with a classmate for him / her to work out.

Task 32

1. $5 x+11=41,5 x=30, x=6$ years
2. $7 x-62=43,7 x=105, x=15$ years
3. $12 x+55=157,12 x=102, x=\$ 8.50 /$ week
4. $10 x+72=162,10 x=90, x=\$ 9.00 /$ week
5. $7 x+24.35=150,7 x=125.65, x=\$ 17.95 / C D$
6. $3 x+225.2=512,3 x=286.8, x=95.6 \mathrm{~km} /$ hour
7. $6.5 x+50.5=96,6.5 x=45.5, x=7$ books
8. $7 x-21=2 \mathrm{hrs} 23 \mathrm{mins} 30 \mathrm{sec}, 7 x=143 \mathrm{mins} 30 \operatorname{secs}-21 \mathrm{mins}, 7 x=122 \mathrm{mins} 30 \operatorname{secs}, x=17 \mathrm{mins} 30 \mathrm{secs} / \mathrm{lap}$
9. $8 x+1450=14590,8 x=13140, x=\$ 1642.50 /$ month
10. $25 x+156.25=500,25 x=343.75, x=\$ 13.75 /$ ticket

Task 34

1. $m=\$ 25+0.2 n \quad$ 2. $m=25+0.2 \times 147, m=\$ 54.40 \quad$ 3. No. of local calls $=30.8 \div 0.2$, No. of local calls $=154$
2. $\mathrm{T}=6.5 \mathrm{C}-10 \mathrm{~A} \quad$ 5. Cost of tickets $=6.5 . x .7+10 \times 3$, Cost of tickets $=\$ 75.50 \quad 6.6 .5 x+30=88.50$, $6.5 x=58.50, x=9$ children \quad 7. $c=1.20 \mathrm{~F}+1.00 C \quad$ 8. $a=\$ 5.40, b=\$ 7.80, c=\$ 15.80 \quad 9.6$ scoops of chips 10. $C=\$ 9.50 \mathrm{~N}+\$ 6.95,9.50 \mathrm{~N}=C-\$ 6.95, \mathrm{~N}=(C-6.95) \div 9.50 \quad$ 11. 5 books, 11 books, 20 books

Table of Contents for the Homework I Assessment Worksheet Masters for Algebra, Level 5

Worksheet Number	Topic	Algebra Objective(s)
$\mathbf{1}$	Creating \& describing number patterns / Word	
problems		

Complete by:

A: 10 Quick Questions

1. $56 \div 8-{ }^{-9}=$ \qquad
2. List the first four multiples of 16
3. Find the missing angle (\%)

4. Find the area of this

5. Find 10% of 680 kg
6. Round off 8.163 to 1 d.p.
7. Evaluate
$2 / 3+4 / 5=$
8. Convert 22:09 from 24 hr time to a.m. or p.m. time
9. What fraction is shaded?

10. $0.52 \times 4.9+9=$ \qquad
D: What is the number at the top?
Calculate the number at the top of each number pyramid.

B: Finding number patterns

Find the next three numbers in each number pattern,

1. $2,4,8$,
2. $60,30,15$
3. $5,12,19$,
4. $13,10,7$,
5. 7, 2, -3 ,
6. 6, $-12,24$,
and describe in words how each pattern above was generated.
7. No. 1
8. No. 2
9. No. 3
10. No. 4
11. No. 5
12. No. 6

C: Classroom desk patterns

A teacher wishes to arrange her classroom desks, using one of the patterns below. Draw the next two desk patterns.
pattern 4 pattern 5 pattern 1 pattern 2 pattern 3

1. Complete this table.

Pattern number	1	2	3	4	5	10
Number of desks in each row	2	3	4			
Total number of desks needed	4	7				

2. Study the numbers in the above table and see if you can work out the relationship between the number of desks in each row, with the number of desks needed to make each pattern. (either answer in words or as a mathematical rule)
3. If the teacher has 19 desks, what will be the length of each row, if the teacher uses the pattern above?
4. If the teacher has 24 desks, what will be the length of each row, if the teacher uses the pattern above and how many desks will be left over?
5. How many desks are needed to make the 'pattern 14' arrangement of desks?
6. What would be the best pattern to use, if the teacher had 34 desks (no desks to be left over)?

A: 10 Quick Questions

1. $9^{2} \div 3+8=$ \qquad
2. List the first four multiples of 13
3. Find the missing angle (*)

$\therefore=$ \qquad
4. Find the area of this square (\boldsymbol{v})

$v=$ \qquad
5. Find 20% of 53.5 km
6. Round off 0.6349 to 2 d.p.
7. Evaluate
$7 / 8-3 / 4=$
8. Convert 19:26 from 24 hr time to a.m. or p.m. time
9. What $\%$ is shaded ?
$\cdots \infty<\infty<\infty$
10. $1.68 \times 0.7-4.9=$

D: Find out about Pascal's number triangle

The first four rows $\quad 1$ have been listed
How is the number $\quad \mathbf{1} \quad 2 \quad 1$ pattern created? $\begin{array}{lllll}1 & 3 & 3 & 1\end{array}$
1.
2. What are the next 3 rows of numbers?
\qquad
\qquad
\qquad

B: Generate the number patterns from the rules

Find the first 5 numbers in each pattern given by the word rules.

1. Start with 2, add 5 to each new number
2. Start with 11 , subtract 6 from each number
3. Start with 3, double each new number
4. Start with 36 , halve each number
5. Start with 2, triple each number and then subtract 5

Replace ' n ' with the numbers 1 to 5 in each rule, to find the first 5 numbers of each pattern, (the first number has been done).
6. \quad rule $=3 n$
$\Rightarrow 3$,
$\Rightarrow 7$
7. rule $=4 n+3$
$\Rightarrow 4$
$\Rightarrow 3 \frac{1}{2}$
$\Rightarrow 8$

C: Word problems

Paula works for a shop and is paid $\$ 6.40$ per hour, plus $\$ 1.30$ per day travelling money. Calculate her daily pay if she worked ...

1. 5 hrs
2. 6 hrs
3. 7 hrs
4. 8 hrs
5. 9 hrs
6. 10 hrs

Young children are to be given medicine (m / s) using the following rule. Half their age, plus 2 mL . Calculate the dose each child would get if the ages were...
7. 6 yrs
8. 7 yrs
9. 10 yrs
10. 13 yrs
11. How old is a child who is given 6.5 mL of medicine?
12. How old is a child who is given 10.5 mL of medicine?

The graph opposite shows the total pay for the hours worked. Use the graph to work out the pay for the following hours of work.
13. 4 hrs
14. 5 hrs
15. 6 hrs
16. 7 hrs

Use the pattern above to work out the pay you would earn in 25 hours.
17.

How many hours did Karen work if she was paid

| 18. | $\$ 48.00$ | $\ldots ~$ | 19. | $\$ 96.00$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 20. | $\$ 78.00$ | $\ldots ~$ | 21. | $\$ 126.00$ |
| 22. | $\$ 81.00$ | $\ldots ~$ | 23. | $\$ 147.00$ |

Complete by:

A: 10 Quick Questions

1. $5^{2} \times 7+-17=$
2. List the factors of 44
3. Find the missing angle (*)
$\%=$ \qquad $\%$ (1) 68°
4. Divide $\$ 48.00$ in a ratio of 1:7
5. How many grams in 3.25 kg ?
6. Round off 31.964 to 1 d.p.
7. $\$ 60.00-4 \times \$ 7.60=$
8. Convert 0.684 km to metres
9. How many in a baker's dozen?
10. $20.4 \div 0.4+6.7=$

B: Wages \$ / hr ?

Graph 1 shows the wages
(\$) that Paul could earn over a given period of time (hrs). How many hours would Paul have to work to earn ..

1. $\$ 16.00$
(\$)
2. $\$ 48.00$
3. $\$ 72.00$
4. $\$ 96.00$

Time (hrs)
5. \$112.00 How much would Paul earn if he worked for the following hours?
6. 5 hours
8. $\quad 14.5$ hours
10. 7.25 hours
7. 11 hours
9. 20.5 hours
11. $\quad 9.75$ hours
12. Can you describe in words or come up with a rule that could be used to work out how much Paul would earn, no matter how many hours he worked?

C: What do the graphs mean ?

Graph 2 shows the mood of Hoani as he was watching a movie on T.V. Study the graph, then describe the changes in Hoani's mood during the movie, between the points listed below,

1. A to B
2. B to C
3. $\quad C$ to D
4. D to G
5. Did Hoani enjoy the movie ? Give a reason why.

Graph 2

Graph 3

Rulse
Rate
Lime

8. If C is half time, how can you tell ?
9. Did Marie run harder in the 1st or 2nd half?
10. If Marie did 10 sprints, walking between each one, show on this graph what you think would happen to her pulse rate.

Name:
A: 10 Quick Questions

1. $12^{2} \div 24+7=$
2. List the first four multiples of 19
3. Find the missing angle (*)

4. Find the perimeter of this square (\mathbf{v}) $9.1 \mathrm{~mm} \square_{\square}^{+}$
5. Find 0.25 of 132.4 km
6. Round off 2.0342 to 3 d.p.
7. Evaluate
$5 / 6-3 / 5=$
8. Convert 8.042 km to metres
9. What \% is shaded?

10. $2.14 \times 0.6-5.7=$

E: Plotting points

$A=(-3,3), B=(1,3), C=(6,-2)$, $D=(-5,-2) \& E=(-3,3)$

1. Plot, then join the points A, B, C, D and E with straight lines, in that order.
2. What shape have you drawn?

B: Label the diagram

 Use the words below to label this diagram of a set of axes.

C: Co-ordinates

The co-ordinates of a point are a pair of numbers. Written as (x, y), they represent an ordered pair. Study the diagram, then write the ordered pairs for,

$D:$ Where is that point?
Below is a map of Heed town.

Mark on the diagram the following points..
1.
$(5,1)$ Label it A
2. $(6,-2)$ Label it B
3. $(-5,3)$ Label it C
4. $(7,-4)$ Label it D
5. $(-1,-3)$ Label it E
6. $(-3,1)$ Label it F

What are the co-ordinates for the following points on the map?
7. The castle by Himmol Lake. 8. The roof of the Abbey.
(..............)
9. The sea monster's head.
(..............)
11. The mermaid on a rock.
(..............)
13. The sailing ship
(..............)
(..............)
10. Main door in Heed Castle.
(..............)
12. The biggest single tree.
(.............)
14. The bridge over the river
(..............)

A: Quick Questions

1. Find 20% of $\$ 75.00$
$2 \quad 12 \times \$ 0.87=$
2. Find the missing angle (ゥ)
$\%=$ \qquad $\rightarrow 1\left(49^{\circ}\right.$
3. Convert 45% to a fraction (simplify)
4. Write 860000 in standard form
5. Round off 5930 to 2 s.f.
6. Draw in the lines of symmetry on this shape

7. Find the next 3 numbers 5, 11, 17,
8. Express 15 as a \% of 60
9. Solve $7 x+9=23$

G: Completing sets of ordered pairs

Use each rule given to find the y co-ordinate of each ordered pair.
The first ordered pair for each rule has been done for you.
1.

$$
\begin{aligned}
& y=4 x \\
&(1,4),(2,) \\
&(3, \quad),(4, \quad)
\end{aligned}
$$

2.

$(1,8),(2, \quad),(3, \quad),(4, \quad)$
3. $y=2 x-3$

$$
(1,-1),(2,),(3, \quad),(4, \quad)
$$

4.

$y=\frac{1}{2} x+3$
$(2,4),(4),,(6),,(8$,
5. $\quad y=\frac{1}{4} x-5$
$(4,-4),(8, \quad),(12, \quad),(16, \quad)$
6. $y=\frac{1}{4} x+4$
$(4,5),(8, \quad),(12, \quad),(16, \quad)$

B: Plotting integer

 pointsPlot, then join these (x, y) points with straight lines, in the order given. Label each line with the letter given.

1. $(-3,-2),(-1,0),(1,2),(3,4)$ Label A
2. $(-2,4),(0,3),(2,2),(4,1)$ Label B
3. $(-3,-3),(-1,-3),(1,-3),(3,-3)$ Label C
4.

x	-2	0	2	4
y	-2	0	2	4

Label D
5.

x	5	5	5	5
y	4	2	0	-2

Label E

6. Which straight line is vertical?
7. Which straight line is horizontal?
8. Try to find the rule for the line in question 1, (write it in the form $y=3 x+2$)

$$
y=
$$

D: Word problem

The "Phone Home"telephone company charges (\$) toll call users, using the following formula,

Cost (\$) $=\$ 2.00+\$ 0.50 \times \mathrm{T}$
where $\$ 2.00$ is a charge for using
the operator and $T=$ length of toll
call (min).

1. Use the formula above to complete the table

Time (min)	0	8	20	28	36
Cost (\$)					

2. Graph the points and join with
(\$) a straight line.
3. Use the graph to find the cost of telephone calls lasting, 4 min \qquad \& 24 min
4. Use the graph to find how long calls were if they cost.. $\$ 8.00$
$\$ 14.00$
\$18.00

Time (minutes)

Name:
Class:
Complete by:

A: 10 Quick Questions

1. Find 60% of $\$ 75$
2. List the factors of 23
3. Find the missing side (*)

$$
9 \mathrm{~cm} \quad *=
$$

4. Find the area of this triangle (v)

8 cm
$A=1 / 2 b h$
11 cm
5. Convert 0.64 to a fraction (simplify)
6. $42-5 \times 9=$ \qquad
7. $-7+9--4=$ \qquad
8. How many sides does a nonagon have? \qquad
9. $5795 \mathrm{~m}=$..km
10. $0.51 \times 4.2+6.7=$

B: Substitution

Given that $a=3, b=6$, $c=-2$ and $d=-5$ find the value of each expression using substitution (use BEDMAS).

1. $2 a+5=$ \qquad
2. $5 b-4=$. \qquad
3. $3 c+8=$ \qquad
4. $2 d+7$
$=$... \qquad
5. $12-5 a=$..
6. $a b \quad=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
7. $b c \quad=. . . \ldots \ldots \ldots \ldots \ldots \ldots .$.

8
9
9
10. a^{2}
\qquad
\qquad
d
= .. $=\ldots$
$=$..
\qquad

13. $\mathrm{abcd}=$
14. $a+b-c=$
15. $3 b-4 d=$
16. $c(5 a+b)$

C: Using formulae / substitution

Answer the following by substituting into the given formulae.
The Jones family are going to have fish \& chips for dinner.
The Cost $(\$)=1.15 \mathrm{~F}+0.90 C$, where $F=$ numbers of fish bought and $C=$ number of scoops of chips.

1. Find the cost of their dinner if they buy 7 fish and 3 scoops. Cost =

The cost of C.D.'s and tapes is worked out using the formula Cost (\$) $=27 C D+18 \mathrm{~T}$,
2. If 8 C.D.s and 11 tapes are purchased, what is the cost?

Cost $=$

During the tennis season points for games played were worked out using the formula

Total Points $=5 \mathrm{~W}+2 \mathrm{D}$
where $W=$ games won, $D=$ games drawn.
3. Find the points scored by Jimmy who won 12, drew 3 and lost 5 games during the season. Total Points $=$ \qquad A rental van is rented out using the formula

Cost of Rental (\$) $=60 \mathrm{D}+0.50 \mathrm{~K}$ where $D=$ number of days, $K=$ kilometres driven
4. If the van travels 720 km in 1 week, what has it cos t to rent? (Petrol not included) Cost = \qquad
5. If the van rental cost $\$ 960$ and it travelled 840 km , how long was it rented for? Days Rented =

A wooden deck is built in the shape of a trapezium. The area of a trapezium is worked out using the formula Area $=\frac{1}{2}(a+b) h$, where a \& $b=$ lengths of the parallel sides and $h=$ gap between the sides.

6. If the two parallel sides are 9 m and 13 m long and distance between them is 6.5 m , what is the area of the deck? Deck Area $=$
7. The surface area (S.A.) of a ball or sphere is worked out using the formula S.A. $=4 \pi r^{2}$. If the ball has a radius (r) $=7 \mathrm{~cm}$ and $\pi=3.1$, find $S . A$. Surface Area $=$
8. A can of 'Baked Beans' is 10 cm high (h), with a radius (r) of 3.8 cm , and a can of 'Tuna Fish' is 7 cm high with a radius of 6 cm . Using the formula $V=\pi r^{2} h$, find the volume (V) of each tin, using $\pi=3.1$.(answers 2 d.p.) Baked Beans V = \qquad Tuna Fish $\mathrm{V}=$

A: 10 Quick Questions

1. $72 \div 6+8=$
2. Find $2 / 3$ of $\$ 36$
3. What do the interior angles of a 6 sided figure add up to?
4. Write 5.2×10^{4} as an ordinary number
5. Convert 0.82 to a fraction (simplify)
6. $52-9 \times 6=$
7. $-8+5--6=$
8. How many years in a century?
9. Convert 9420 mm to metres
10. Round off 3.528 to 2 s.f.

B: How many in each?
These six boxes contain three different coloured Mega Bloks. Each box should have the same number of each colour.

1. How many are there of
2. How many of each colour should there be in each box?
(1)
each colour altogether? Will
\square

C: Collecting 'like' terms
Add or subtract these 'like' terms.

1. Mary had 18 red and 25 blue marbles. Peter had 31 red and 17 blue marbles. How many of each colour do they have altogether? red +
blue
2. Peter had 23 records and 18 tapes. He went to a record shop and traded in 11 records for 9 new tapes. How many of each does Peter have now? records +
.tapes

D: Simplify

Simplify by collecting like terms.

1. $5 k+12 k=$
2. $19 w-14 w=$
3. $9 r+5 t=$
4. $5 p-8 p=$
5. $4 x^{2}+7 x=$
6. $12 j+j=$
7. $7 f-10 f=$
8. $6 h+9 h-11 h=$
9. $14 f-5 f-f=$
10. $13 g-7 g+4 g=$
11. $4 a+9 b-5 b=$
12. $3 c-6 d+5 d=$
13. $3 g+4 e-7 f=$
14. $8 k+5 k-4 g=$
15. $3 h+6 h-7 h=$
16. $8 k-14 k+5 k=$
17. $15 d+3 g+6 d=$ \qquad
18. $4 y+6 x+5 y+7 x=$
19. $15 r-9 r+7 s+4 s=$
20. $7 x^{2}+4 x+2 x^{2}-6 x=$
21. $8 h-7 g+3 f+8=$
22. $5 h-8 g+5 h+2 g=$
23. $7 x-6 x+4 y+6 y=$
24. $12 r+6 s-9 s+3 r=$

F: Number Puzzle Place the numbers in the grid below.
$48,54,59,98,315,404,465$, 530, 593, 1549, 8134.

E: Simplify
Collect the like terms by adding or subtracting.

1. $2 a b+5 a b+9 c d+3 c d=$
2. $8 x y+5 x+6 y+x y=$
3. $8 x y+6 y-4 y-10 x y=$
4. $15 x^{2}-8 x-5 x^{2}+6 x=$
5. $12 x^{2}+3 x+7 x y+y=$
6. $13 x-7 x+5 x y+x y=$
7. $7 x^{2}+6 x^{2}-4 y+9 y=$
8. $8 x-4 x+7 x y-3 y^{2}=$

Name:
Class:
Complete by:

A: 10 Quick Questions

1. $63 \div 7+-8=$
2. Find ${ }^{2} / 5$ of $\$ 40$
3. Find the next 3 numbers in the pattern 11, 7, 3, ${ }^{-1}$,
4. Write 3.6×10^{-2} as an ordinary number
5. Convert 45% to a fraction (simplify)
6. $45-7 \times 8=$
7. $-8+4--6=$ \qquad
8. How many years in a decade?
9. Convert 6256 mL to litres
10. Round off 0.619 to 2 d.p.

B: Algebra expressions
Using x to represent the number, write expressions for the following.
Example: the number plus three would be written as $x+3$.

1. eight plus the number
2. the number minus ten
3. twice the number
4. the number times five plus seven
5. fourteen minus the number
6. the sum of the number and sixteen
7. the product of the number and sixteen
8. the product of the number and six, plus eleven

C: Algebra equations

Algebra expressions become equations if there is an equals sign. Using x to represent the number, write equations for the following, Example: the number added to 15 equals 21, written as $x+15=21$ (DO NOT NEED TO SOLVE)

1. the number added to 6 equals 17
2. the number minus 13 equals 8
3. twice the number plus 5 equals 18
4. half the number equals 13
5. product of the number and 9 equals 54

D: Solving equations

Solve these equations. The answers will all be whole numbers.

1.	$5 x=20$	$x=$.........
2.	$6 y=24$	$y=\ldots$.
3.	$7 z=35$	$z=.$.
4.	$\frac{1}{2} b=14$	$b=\ldots$.
5.	$x+9=23$	$x=\ldots$
6.	$x-17=31$	$x=.$.
7.	$2 y+3=15$	$y=\ldots$.
8.	$3 t-9=27$	$t=\ldots$.
9.	$5 x+17=42$	$x=\ldots$
10.	$\frac{1}{2} x+6=24$	$x=\ldots \ldots . .$.

E: Harder equations The answers for these equations withnot be whole numbers.

1. $9 x=19$ (Show working)
2. $3 z-7=28$
\qquad
3. $2 g+8=31$
4. $6 y+12=41$
........................... $y=$ \qquad
5. $5 w-41=16$
$w=$

F: Word problems

Write algebra equations for each question, then solve.

1. Mr. West had $\$ 100$. He took 5 people to lunch and they all had the same meal. After the meal he had $\$ 13.50$ left. What did each meal cost? Let $p=$ cost of one meal.
Equation: \qquad p + \qquad
\qquad Cost of Meal $=$ \qquad

2. Rebecca saved most of her weekly pocket money (m) for 8 weeks. At the end of 8 weeks she had $\$ 50.00$ left, having spent $\$ 10.00$ on a book. How much pocket money did she receive each week?
Equation: \qquad m \qquad
\qquad Pocket Money =
3. Rangi gave half his money (m) to Johnny. Johnny had $\$ 38$ and now has $\$ 60$. How much money did Rangi have?
Equation: \qquad m + \qquad = Rangi's Money $=$ \qquad
4. James gave a quarter of his money (m) to Abbey. Abbey had $\$ 14$ and now has $\$ 26$. How much money did James have?
Equation: \qquad m + \qquad $=$. \qquad James's Money

Homework / Assessment Worksheet

A: 10 Quick Questions

1. $36 \div 6-9=$
2. List the first four multiples of 2.5
3. Find the missing angle x

4. Find the perimeter of this triangle

5. Find 90% of 270 kg
6. Round off 3.128 to 2 dip.
7. How many sides does a pentagon have?
8. Convert 17:47 from 24 hr time to a.m. or p.m. time
9. Divide $\$ 49$ in a ratio of 2:5
10. $5.4 \times 0.14+9=$

E: Expand and simplify
Expand, then simplify by collecting the 'like' terms

1. $2(x+7)+3(x+6)$
$=$.

2

2. $3(k+7)+2(k-5)$

$=$
3. $5(h-5)+7(h+8)$
\qquad
\qquad
4. $7(x-4)+4(x-9)$
$=$.

B: Word problems

1. 6 people each have a lunch of 2 apples (A), 4 sandwiches (S) and a drink of orange juice (O). This could be written as an algebra expression $6(2 A+4 S+O)$. Use this expression to work out the combined lunch order. A S + \qquad 0
2. A school bought 42 triangle, 28 square and 56 circle shapes, which are to be divided into 7 equal groups. Fill in the spaces below to show how this could be done, using algebra.

C : Expanding brackets
Choose from the list below, to help expand these brackets.

> Answers (not in order)
> $16 x+56,8 x+32, x^{2}+6 x$ $18 x+30,3 x-15,4 x^{2}+5 x, 4 x+24$, $4 x-24,35 x-56,2 x^{2}-16 x$

D : Factorising

Use the list below to factorise (insert brackets) these expressions.

Answers (not in order)
$8 x(x-5), 3(3 x-5), 7(3 x+5)$,
$3(x+4), 6(x+4), 6(x-5), 12(3 x-4), 5 x$
$(x+3), 3 x(7 x-2), 5\left(x^{2}+6\right)$

F: Word problems

The diagram shows a wall that Rangi is painting.
On Day 1 he painted a square area, with sides x metres long. On Day 2 he painted a 6 m section and on Day 3 a 5 m section.

1. Write an expression for the area of the wall painted on each day. Day 1 \qquad Day 2 \qquad Day 3
2. Write an expression for the Total Area to be painted. Total Area =
3. Factorise your expression for the Total Area.
\qquad (. \qquad $+$ \qquad ...)
4. If $x=2.4$ metres, what area of the wall did Rangi paint each day? Day 1 Day 2 \qquad Day 3
5. What is the total area of the wall?

Name:

A: 10 Quick Questions

1. $72 \div 8+-8=$
2. Find $3 / 5$ of $\$ 40$
3.

16 cm

Find the area
4. Find the missing side of a rectangle if the base is 15 cm and the area $60 \mathrm{~cm}^{2}$
5. Convert 6\% to a fraction (simplify)
6. $54-7 \times 8=$ \qquad
7. $-5+4--8=$
8. How many years in ten decades?
9. Convert 720 cm to metres
10. Round off 6.859 to 1 d.p.
D : Equations involving fractions
Solve these equations and show your working.

1. $\frac{x+8}{5}=5$
2. $\frac{x-7}{3}=9$
........................... \qquad
3. $\frac{2 x+7}{6}=5$
4. $\frac{4 x-3}{7}=9$
\qquad
\qquad
5. $\frac{2(x+7)}{3}=14$
\qquad
\qquad
\qquad

B: Equations with brackets

Solve these equations, and show your working.

1. $3(x+4)=36$
2. $5(x-4)=85$
3. $4(2 x+3)=39$
4. $5(2 x-6)=33$
5. $6(x+8)=11$

\qquad
\qquad
\qquad

E: Rearranging formulae

Change the subject of each formula by rearranging these equations.

1. If $A=b h$, what does $b=$?
2. If $A=\frac{1}{2} b h$, what does $h=$?

3. If $p=\frac{a+b}{c}$, what does $b=$ \qquad

F: Word problems

1. Part of a fence is a right-angled triangular shape. Rearrange the formula.
Area $=\frac{1}{2}$ base \times height $\left(A=\frac{1}{2} b h\right)$ so that $h=$

b
2. The area of this fence is $7.6 \mathrm{~m}^{2}$, If $b=9.5 \mathrm{~m}$, what is the height (h) of the fence?
3. Barry has to design a rectangular box. Rearrange the formula ($V=b h d$)
Volume $=$ base \times height \times depth so that $d=$ \qquad
h b
4. The volume of a box is $120 \mathrm{~cm}^{3}$. If $b=5 \mathrm{~cm}$ and $h=6 \mathrm{~cm}$, what is the depth (d) of this box?

Homework / Assessment Worksheet Answers

Worksheet 1

A:

1. 16
2. $16,32,48,64$
3. 42^{0}
4. $22 \mathrm{~mm}^{2}$
5. 68 kg
6. 8.2
7. $1^{7} / 15$
8. 10.09 p.m.
9. $4 / 6$ or $2 / 3$
10. 11.548

B:

1. $16,32,64$ 2. $7.5,3.75,1.875$
2. $26,33,40$
3. $4,1,-2$
4. $-8,-13,-18$
5. $-48,96,-192$
6. multiply each new number by 2
7. divide each new number by 2 9. add 7 to each new number
8. subtract 3 from each new number
9. multiply each new number by -2

C:

1.

Pattern number	1	2	3	4	5	10
Number of desks in each row	2	3	4	5	6	11
Total number of desks needed	4	7	10	13	16	31

2. $3 x$ number of desks in each row subtract 2 or $3 x-2$
3. 7 desks 4. 8 desks \& 2 left over
4. 43 desks 6. pattern 11

Worksheet 2

A:

1. 19
2. $13,26,39,52$
3. 63°
4. $42.25 \mathrm{~mm}^{2}$
5. 10.7 km
6. 0.63
7. $1 / 8$
8. 7:26 p.m.
9. 50%
10. -3.724

B:

1. $2,7,12,17,22$
2. $11,5,-1,-7,-13$
3. $3,6,12,24,48$
4. $36,18,9,4.5,2.25$
5. $2,1,-2,-11,-38$
6. $3,6,9,12,15$
7. $7,11,15,19,23$
8. $4,9,14,19,24$
9. $3^{1} / 2,4,4^{1} / 2,5,5^{1} / 2$
10. $8,9,10,11,12$

C:

1. $\$ 33.30$
2. $\$ 39.70$
3. $\$ 46.10$
4. $\$ 52.50$
5. $\$ 58.90$
6. $\$ 65.30$
7. 5 mL
8. 5.5 mL
9. 7 mL
10. 8.5 mL
11. 9 yrs
12. 17yrs
$\begin{array}{lll}\text { 13. } \$ 48 & \text { 14. } \$ 60 & \text { 15. } \$ 72\end{array}$
13. \$84
14. $\$ 300$ 18. 4 hrs
15. 8hrs
16. 6.5hrs
17. 10.5hrs
18. 6.75 hrs
19. 12.25 hrs

D:

1. add the two numbers above, write the answer below, with 1 being the first and last number in each row
2.

Worksheet 3

A:

1. 158
2. $1,2,4,11,22,44$
3. 68°
4. $\$ 6: \$ 42$
5. 3250 g
6. 32.0
7. $\$ 29.60$
8. 684 m
9. 13 10. 57.7

B:

1. 2 hrs
2. 6 hrs
3. 9 hrs
4. 12 hrs
5. 14 hrs
6. $\$ 40$
7. $\$ 88$
8. \$116
9. $\$ 164$
10. $\$ 58$
11. $\$ 78$
12. Total money earned $(M)=8$ times the number of hours worked $(H), \quad M=8 H$

C:

1. starts out neither sad nor happy then becomes sadder 2. starts sad then becomes happier 3. stayed happy 4. starts happy, becomes sad and then becomes very sad 5. Hoani may not have enjoyed the movie as he was more sad at the end of the movie than at the start $\quad 6$. pulse rate went up then down slightly 7. initially running around alot, then slowed down 8. pulse rate goes down, then stayed the same for a period of time 9 . first half because her pulse rate was higher
2.

Worksheet 4

A:

1. -1
2. $19,38,57,76$
3. 129°
4. 36.4 mm
5. 33.1 km
6. 2.034
7. $5 / 6-3 / 5=7 / 30$
8. 8042 m
9. 60%
10. -4.416

B:

1. y-axis
2. origin
3. x-axis

C:

$A=(2,1), \quad B=(-2,1), \quad C=(1,-2), \quad D=(-1,-2)$
$D=$
1 to 6 check graph
7. $(3,3)$
8. $(-3,3)$
9. $(-7,-3)$
10. $(2,-3)$
11. $(-5,-1)$
12. $(1 / 2,2)$
13. $(-1 / 2,-4)$
14. (1, -1/2)

E:

1. check graph
2. trapezium

Worksheet 5

A:

1. $\$ 15$
2. $\$ 10.44$
3. 49°
4. ${ }^{45} / 100=9 / 20$
5. 8.6×10^{5}
6. 5900
7.

x = 2

B:
1 to 5 see graph
6. line E
7. line C
8. $y=2 x+2$
C:

1. $(1,4),(2,8),(3,12),(4,16) \quad$ 2. $(1,8),(2,9),(3,10),(4,11)$
2. $(1,-1),(2,1),(3,3),(4,5) \quad$ 4. $(2,4),(4,5),(6,6),(8,7)$
3. $(4,-4),(8,-3),(12,-2),(16,-1) \quad 6 .(4,5),(8,6),(12,7),(16,8)$
B:

D:

1. | Time (min) | 0 | 8 | 20 | 28 | 36 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Cost}(\$)$ | 2 | 6 | 12 | 16 | 20 |
2. check graph
3. $\$ 4 \& \$ 14$
4. 12 mins, 24 mins, 32 mins

Worksheet 6

A:

1. $\$ 45$
2. 1,23
3. 6 cm
4. $44 \mathrm{~cm}^{2}$
5. ${ }^{64} / 100$ or ${ }^{16} / 25$
6. -3
7. 6
8. 9 sides
9. 5.795 km
10. 8.842

B:

1. 11
2. 26
3. 2
4. -3
5. -3
6. 18
7. -12
8. 10
9. 25
10. -18
11. 108
12. 324
13. 180
14. 11
15. 38
16. -42

C:

1. $\$ 10.75$
2. $\$ 414$
3. 66 points
4. $\$ 780$
5. 9 days
6. $71.5 \mathrm{~m}^{2}$
7. $607.6 \mathrm{~cm}^{2}$
8. $447.64 \mathrm{~cm}^{3} \quad 781.2 \mathrm{~cm}^{3}$

Worksheet 7

A:

1. 4
2. $\$ 24$
3. 720°
4. 52000
5. ${ }^{82} / 100$ or ${ }^{41} / 50$
6. -2
7. 3
8. 100 years
9. 9.42 m
10. 3.53

B:

1. 30

2412
2. 542

C:

1. 49 red +42 blue
2. 12 records +27 tapes

D:

1. 17 k 2. 5 w 3. $9 \mathrm{r}+5 \mathrm{t}$ 4. -3 p 5. $\mathrm{x}(4 \mathrm{x}+7)$ 6. 13 j 7. -3 f 8. 4 h 9. 8 f 10. 10 g 11. $4 \mathrm{a}+4 \mathrm{~b}$
2. $3 \mathrm{c}-\mathrm{d}$ 13. $3 \mathrm{~g}+4 \mathrm{e}-7 \mathrm{f}$ 14. $13 \mathrm{k}-4 \mathrm{~g} \quad$ 15. 2 h 16. -k 17. $21 \mathrm{~d}+3 \mathrm{~g}$ 18. $9 \mathrm{y}+13 \mathrm{x}$ 19. $6 \mathrm{r}+11 \mathrm{~s}$
3. $x(9 x-2)$ 21. $8 h-7 g+3 f+8$ 22. $10 h-6 g$ 23. $x+10 y$ 24. $15 r-3 s$

E:

1. $7 a b+12 c d$
2. $9 x y+5 x+6 y$
3. $-2 x y+2 y$
4. $10 x^{2}-2 x$
5. $12 x^{2}+3 x+7 x y+y$
6. $6 x+6 x y$
7. $13 x^{2}+5 y$ 8. $4 x+7 x y-3 y^{2}$

F:

Worksheet 8

A:

1. 1 2. $\$ 16$
2. $-5,-9,-13$
3. 0.036
4. ${ }^{45} / 100$ or $9 / 20$
5. -11
6. 2
7. 10 years
8. 6.256 L
9. 0.62

B:

1. $8+\mathrm{x}$
2. $x-10$
3. $2 x$
4. $5 x+7$
5. $14-\mathrm{x}$
6. $x+16$
7. $16 x$
8. $6 x+11$

C:

1. $x+6=17$
2. $x-13=8$
3. $2 x+5=18$
4. $x / 2=13$
5. $9 x=54$
$D=$
6. 4
7. 4
8. 5
9. 28
10. 14
11. 48
12. 6
13. 12
14. 5
15. 36

E:

1. $2 \frac{1}{9}$
2. $11^{2} / 3$
3. $11^{1} / 2$
4. $4 \frac{5}{6}$
5. $11^{2} / 5$

F:

1. $5 p+13.50=100, p=\$ 17.30$
2. $8 \mathrm{~m}-10=50, \mathrm{~m}=\$ 7.50$
3. $m / 2+38=60, m=\$ 44.00$
4. $\mathrm{m} / 4+14=26, \mathrm{~m}=\$ 48.00$

Worksheet 9

A:

1. 15 2. $2.5,5.0,7.5,10.0$
2. 63°
3. 33.9 mm
4. 243 kg
5. 3.13
6. 5
7. 5:47 p.m.
8. $\$ 14: \$ 35$
9. 9.756

B:

1. $12 \mathrm{~A}+24 \mathrm{~S}+6 \mathrm{O}$
2. $42+28+56=7(6+4+8)$

C:

1. $4 x+24$
2. $3 x-15$
3. $8 x+32$
4. $4 \mathrm{x}-24$
5. $18 x+30$
6. $35 x-56$
7. $16 x+56$
8. $x^{2}+6 x$
9. $4 x^{2}+5 x$
10. $2 x^{2}-16 x$

D:

1. $3(x+4)$
2. $6(x+4)$
3. $3(3 x-5)$
4. $7(3 x+5)$
5. $5 x(x+3)$
6. $6(x-5)$
7. $3 x(7 x-2)$
8. $12(3 x-4)$
9. $5\left(x^{2}+6\right)$ 10. $8 x(x-5)$

E:

1. $2 x+14+3 x+18=5 x+32$
2. $5 a+15+7 a+28=12 a+43$
3. $3 k+21+2 k-10=5 k+11$
4. $5 \mathrm{~h}-25+7 \mathrm{~h}+56=12 \mathrm{~h}+31$
5. $7 x-28+4 x-36=11 x-64$

F:

1. Day $1=x^{2} \quad$ Day $2=6 x$ Day $3=5 x \quad$ 2. $x^{2}+6 x+5 x \quad$ 3. $x(x+11)$
2. Day $1=5.76 \mathrm{~m}^{2}$ Day $2=14.4 \mathrm{~m}^{2}$ Day $3=12 \mathrm{~m}^{2} \quad 5.32 .16 \mathrm{~m}^{2}$

Worksheet 10

A:

1. $\$ 34$
2. $\$ 13.02$
3. 28 m
4. ${ }^{68} / 100={ }^{17} /{ }_{25}$
5. 5.2×10^{4}
6. 25000
7.

8. $12,18,24$
9. 50% 10. $\$ 20: \$ 4: \$ 12$

B:

1. k^{5} 2. m^{6}
2. $g \times g x g x g$
3. b^{11}
4. $a x a x a x a x b x b x b$
5. $5 d^{2} s^{3}$
6. $6 x h x k x k x k x k x k$
7. $21 \mathrm{j}^{2}$
8. $20 e^{2} h^{4} \quad$ 10. $5 b c^{4}$

C:

1. $a^{6} \quad$ 2. $b^{13} \quad$ 3. g^{5}
2. y^{10}
3. c^{10} 6. k^{12}
4. $5 \mathrm{~d}^{4}$
5. $4 \mathrm{e}^{7}$ 9. $5 p^{6}$
6. $21 g^{6}$
7. $15 \mathrm{~h}^{13}$
8. $36 \mathrm{k}^{7}$ 13. $u^{7} v^{9} \quad$ 14. $a^{9} b^{4}$ 15. $15 v^{5} u^{15} \quad$ 16. $24 s^{9} r^{8}$
9. $20 \mathrm{y}^{10} v^{12}$

D:

1. x^{x}
2. y^{x}
3. $5 x$
4. 1
5. $3 s^{2}$
6. $3 r^{3}$
7. $1 / 2 r^{5}$
8. $4 u^{4}$
9. ${ }^{1} /{ }_{3} \mathrm{~S}^{-3} \mathrm{k}^{2}$
10. $6 a^{6} b^{-5} c^{5}$
E:
11. x^{12}
12. $9 x^{8}$
13. $125 x^{24}$
14. $81 a^{8} b^{24}$
15. $3 a^{9}$

F:

1. $4 x^{10}$
2. $64 x^{6}$ 3. $125 x^{18}$
3. $42 x^{9}$
4. $21 x^{13}$
5. $6 x^{3}$
6. $6 x^{5}$
7. $1 / 2 x^{6}$
8. $36 x^{10}$
9. $72 x^{6}$
10. $48 x^{7}$
11. $135 x^{13}$

Worksheet 11

A:

1. 1 2. $\$ 24$
2. $320 \mathrm{~cm}^{2}$
3. 4 cm
4. $6 / 100=3 / 50$
5. -2
6. 7
7. 100 years
8. 7.2 m
9. 6.9

B:

1. $3 x+12=36,3 x=24, x=8 \quad$ 2. $5 x-20=85,5 x=105, x=21 \quad 3.8 x+12=39,8 x=27, x=3 / 8$
2. $10 x-30=33,10 x=63 x=63 / 10$
3. $6 x+48=11,6 x=-37, x=-6 \frac{1}{6}$

C:

1. $5 x=11, x=2 \frac{1}{5}$
2. $5 x=32, x=62 / 5$
3. $7 x=13, x=16 / 7$
4. $3 x=37, x=12^{1} / 3$
5. $4 x=31, x=73 / 4$

D:

1. $x+8=25, x=17 \quad$ 2. $x-7=27, x=34 \quad$ 3. $2 x+7=30,2 x=23, x=11^{1} / 2$
2. $4 x-3=63,4 x=66, x=16 \frac{1}{2} \quad$ 5. $2 x+14=42,2 x=28, x=14$

E:

1. $b=A / h$
2. $h={ }^{2 A} / b$
3. $a=2 A / h-b$
4. $r=\sqrt{ } A / \pi$
5. $b=c p-a$

F:

1. $\mathrm{h}={ }^{2 \mathrm{~A}} / \mathrm{b}$
2. 1.6 m
3. $\mathrm{d}=\mathrm{v} / \mathrm{bh}$
4. 4 cm

Tracking Sheet: ‘In-class’ Activity Sheets

Tracking Sheet: Homework / Assessment Worksheets

[^0]: Note:
 The codes MP1, MP2, etc. have been created by numbering the Mathematical Processes Achievement Objectives in order as listed in the MATHEMATICS in the New Zealand Curriculum document. The numbering gaps occur as not all objectives are covered at Level 5. [Refer to pages 23-29 of the Curriculum document]

