A Complete Guide to ...

Utilising the objectives as written in MATHEMATICS in the New Zealand CURRICULUM for

Level 4

This resource contains:
\square Table of contents
\square Teaching notes
■ In class activity sheets involving

- worked examples
- basic skills
- word problems
- problem solving
- group work

\square Homework / Assessment activity sheets
\square Answers
These resources are supplied as PHOTOCOPY MASTERS
Author: A. W. Stark

Author:
A. W. Stark

Copyright © $_{1998}$
A. W. Stark

First Published March 1998
Formatting and publishing by
Andrew Stark

NOW trading as:

P 0 Box 21304
 Edgeware CHRISTCHURCH 8143
 NEW ZEALAND

늘 +6433790516 or 國 +6433790619
This resource unit has been supplied on the understanding that copies of any part of this publication will not be given or sold to teachers or students from other schools or institutions.

This resource unit may be used as a master, and therefore can be photocopied, only by the school or institution that has purchased this resource unit.

Note from the author:
This resource ...

*A Complete Guide to Statistics

is one of a series of FIVE resources written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4.
With my experiences as a specialist mathematics teacher, I enjoyed mathematics as a subject, but I am aware that not all teachers feel the same way about mathematics. It can be a difficult subject to teach, especially if you are unsure of the content or curriculum and if resources are limited.

This series of resources has been written with you in mind. I am sure you will find this resource easy to use and of benefit to you and your class.

Resources in this series:

A Complete Guide to Number

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4

A Complete Guide to Measurement

 written utilising the objectives as stated in
A Complete Guide to Geometry

written utilising the objectives as stated in
Resource Code:
L4MG
Mathematics in the New Zealand Curriculum for Level 4.

A Complete Guide to Algebra

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4.
Resource Code:
L4MA

*A Complete Guide to Statistics

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4.

For more information about these and other resources, please contact ...

뇰 +64 33790516
周 +6433790619

Acknowledgement:

I would like to thank the staff and pupils of Mairehau Primary School, Christchurch for their assistance in making these resources possible.

This resource has been divided into EIGHT sections as listed below. Although there are no page numbers, the sections follow in sequential order as listed.

Note: 'In-class' Worksheets Masters are lesson by lesson reuseable worksheets that can be photocopied or copied on to an OHP.

Homework / Assessment Worksheets Masters can be used as homework to reinforce work covered in class or they can be used for pupil assessment.

Section	
	List of Statistics Objectives: Table of 'In-class' Worksheets I Objectives covered
)	Table of Contents: 'In-class' Worksheets
3	'In-class' Worksheets Masters
4	Teaching Notes I Answers for 'In-class' Worksheets
	 Homework / Assessment Worksheets
	Homework / Assessment Worksheets Masters
∇	Answers for Homework / Assessment Worksheets
	Worksheet tracking sheets for teachers to record pupil names / worksheets covered

Statistics

The following are the objectives for Statistics, Level 4, as written in the
MATHEMATICS in the New Zealand Curriculum document, first published 1992. [Refer Page 142]
Statistical investigations
Within a range of meaningful contexts, students should be able to:

-	S1	plan a statistical investigation arising from the consideration of an issue or an experiment of interest; collect appropriate data; choose and construct quality data displays (frequency tables, bar charts and		
-	S2	S3		histograms) to communicate significant features in measurement data;
:---				

Interpreting statistical reports

Within a range of meaningful contexts, students should be able to:

- S5 report the distinctive features (outiers, cluster and shape of data distribution) of data displays;
- S6 evaluate others' interpretations of data displays;
- S7 make statements about implications and possible actions consistent with the results of a statistical investigation.

Exploring probability

Within a range of meaningful contexts, students should be able to:

- S8 estimate the relative frequencies of events and mark them on a scale;
- S9 find all possible outcomes for a sequence of events, using tree diagrams.

At the top of each 'In-class' worksheet and Homework / Assessment worksheet, the Statistics objective(s) being covered has been indicated. EXAMPLE: S1 means objective 1, $\mathbf{S} 2$ means objective 2, etc.

The Mathematical Processes Skills:
Problem Solving,
Developing Logic \& Reasoning, Communicating Mathematical Ideas, are learned and assessed within the context of the more specific knowledge and skills of number, measurement, geometry, algebra and statistics. The following are the Mathematical Processes Objectives for Level 4.

Problem Solving Achievement Objectives [Refer page 24]

-	MP1	pose questions for mathematical exploration;
-	MP2	effectively plan mathematical exploration;
-	MP3	devise and use problem-solving strategies to explore situations mathematically;
-	MP4	find, and use with justification, a mathematical model as a problem-solving strategy;
-	MP6	use equipment appropriately when exploring mathematical ideas.

Developing Logic and Reasoning Achievement Objectives [Refer page 26]

-	MP8	classify objects, numbers and ideas;
-	MP9	interpret information and results in context;
-	MP10	make conjectures in a mathematical context;
-	MP15	use words and symbols to describe and generalise patterns.

Communicating Mathematical Ideas Achievement Objectives [Refer page 28]

-	MP16	use their own language and mathematical language and diagrams to explain mathematical ideas;
-	MP17	devise and follow a set of instructions to carry out a mathematical activity; - record information in ways that are helpful for drawing conclusions and making
MP20	generalisations;	
-	MP21	report the results of mathematical explorations concisely and coherently.

Note:

The codes MP1, MP2, etc. have been created by numbering the Mathematical Processes Achievement Objectives in order as listed in the MATHEMATICS in the New Zealand Curriculum document. The numbering gaps occur as not all objectives are covered at Level 4. [Refer to pages 23-29 of the Curriculum document]
'In-class’ Statistics Worksheets
Table of Worksheet Number / Objectives Covered
See the opposite page for details of each objective.

	Statistics Objectives									Mathematical Processes Objectives												
Worksheet Number	$\begin{array}{\|l} \hline \mathrm{S} \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{S} \\ 2 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathbf{S} \\ \mathbf{3} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{S} \\ 4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{S} \\ 5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{S} \\ 6 \end{array}$	$\begin{aligned} & \hline \mathrm{S} \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{S} \\ 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{S} \\ 9 \end{array}$	$\begin{array}{c\|} \hline \mathrm{MP} \\ 1 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{MP} \\ 2 \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{MP} \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{MP} \\ 4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { MP } \\ 6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{MP} \\ 8 \\ \hline \end{array}$	$\begin{gathered} \hline \text { MP } \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{MP} \\ 10 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{MP} \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{MP} \\ 16 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{MP} \\ \mathbf{1 7} \end{array}$	$\begin{array}{\|c} \hline \mathrm{MP} \\ 20 \\ \hline \end{array}$	MP
1	*									*	*	*				$\boldsymbol{*}$	*					
2	*									*	*	*				*						
3		*								*						*			*		*	
4		$\boldsymbol{*}$								*	*					*			*		*	
5		x	*								\times					*	*		\times		*	
6		$\boldsymbol{*}$	*								*					*			*		*	
7		$\boldsymbol{*}$	*								*			*		*			*	*	*	
8			$\boldsymbol{*}$							\times	\cdots					*			\times		*	
9			$\boldsymbol{*}$							*	*					\times			*		*	
10			*							-	*					*			*		*	
11			*							*	*					*			*		*	
12			*							\times	\times					*			\times		*	
13			*							\times	\times			\times		*			\times		*	
14				*						$\boldsymbol{*}$	*					*			*		*	
15					$\boldsymbol{*}$					$\boldsymbol{*}$		*				*				*		
16					*					\times		\times				*				*		
17		*			*					*		\times				*				*		
18					*					\times		\times				*				*		
19						*				*		*				*	*			*		*
20							*			$\boldsymbol{*}$	$\boldsymbol{*}$	*				*	*		*	*	*	*
21								*				*				*						
22								*		*		*				*			*		*	
23									*	\cdots		\times				*	x				*	
24									*	x		\times				*	x				*	
25									\times	\times	\times	*				\times	\times		*		*	

Table of Contents for the 'In-class' Worksheet Masters for Statistics, Level 4

Worksheet Number	Topic	Statistics Objective(s)
1	Introduction to statistical investigations	S1
2	Designing a questionnaire	S1
3	Collecting and organising discrete data using a frequency table	S2
4	Organising grouped discrete data	S2
5	Displaying ungrouped discrete data as a column graph	S2 / S3
6	Displaying grouped discrete data as a histogram	S2 / S3
7	Collecting and organising continuous data using a frequency table	S2 / S3
8	Creating stem and leaf graphs	S3
9	Creating pictograms	S3
10	Creating dot plot graphs	S3
11	Creating strip graphs / percentage bar graphs	S3
12	Understanding pie graphs	S3
13	Creating pie graphs using a protractor	S3
14	Creating time-series data	S4
15	Calculating the mean (average score)	S5
16	Calculating the median (middle score)	S5
17	Finding the mode (most common score)	S5
18	Calculating the range (spread)	S5
19	Interpreting a data display	S6
20	Creating a statistical report	S7
21	Understanding probability words	S8
22	Calculating relative frequency / probability scales	S8
23	Finding outcomes using grids	S9
24	Finding outcomes using tree diagrams	S9
25	Using probability to predict outcomes	S9
d	Teaching Notes / Answers	

Introduction to statistical investigations:

If a crime is committed, the police will do an investigation, by asking questions of the people involved, to find out what happened. In a statistical investigation questions will also be asked and information or data collected.
Example: " 50% of the pupils at Carrington School bike to school", stated Kate.

Discuss how Kate could have collected this information, to be able to make this statement.
What questions would she have asked? Who would she have asked?

Task 1

Before conducting a statistical investigation, there are some important statistical words that need to be understood. Copy and complete sentences 1 to 7 by adding a statistical word from the list below.
random population biased sample questionnaire representative sample survey

1. In statistics, a group of anything such as the pupils at your school is called a
2. A \qquad is part of the population we are interested in.
3. If we wish to comment about a population, we often \qquad a population or a sample of the population.
4. For the results of a survey to apply to that population, the sample must be a
5. A sample that is not a representative sample is called a \qquad sample.
6. A sample means that every person, or item, has an equal chance of being chosen.
7. A \qquad is one way of obtaining people's opinions.
8. List 5 examples of populations, remembering that a population does not have to be people. Example: The trees in the school playground.
9. From your answers in question 8, name a sample of each population that could be surveyed. Example: The trees under 2 metres tall.
10. Why is it sometimes easier to survey a sample of a population, rather than the whole population? At Carrington School, there are 100 boys and 80 girls. Only 10% of the pupils are chosen to answer a survey about their favourite televison programme.
11. How many boys and how many girls should be surveyed so that those pupils surveyed are a representative sample of this population?

As well as the 180 pupils, from 127 families, at Carrington School, there are 8 teachers, 1 principal, 2 office staff and a caretaker. The school uniform is going to be changed.
12. If only the teachers were asked about the uniform changes, why is this a biased sample?
13. Who should be asked about possible uniform changes, so that the opinions are not biased?
14. List 3 ways a random sample of the 180 Carrington School pupils could be selected.

Task 2

Working in a small group, decide on 5 important issues that you could investigate.
Points to consider when carrying out an investigation:
A: Decide on the purpose of your investigation.
B: Decide what data needs to be collected and how it is going to be collected.
C: Collect and organise the data.
D: Interpret the data and draw conclusions from it.
E: Write a report based on your investigation.

Discuss how you are going to complete the first 3 points above. Compare your methods with other groups.

Designing a questionnaire:

A questionnaire is used when we are asking opinions about an issue.
The design of a questionnaire, that is, the way the questions are worded, the way the answers are to be given and the overall look or layout of the questionnaire is most important.

Some points to consider about designing a good questionnaire would be ...
V What questions relating to the 'issue/s' are you going to ask?
∇ Do not ask questions that are notimportant to the issue.
\square Make the questions clear and concise and not too many of them.
■ How are these questions going to be answered?

Example: multi-choice, single words, short answers or long answers.
\square Have you allowed for every possible answer?
\square Do you need to give instructions as to how the questionnaire has to be filled out?
\square How are you going to organise and display the data you have collected?
Discuss other points that might be important when designing a questionnaire.

Task 3

A new teacher in Room 10 wanted to know more about the pupils in his class. He asked pupils to answer the questions below, which require only 'Yes' or 'No' answers.
Record your answers to these questions.

1. Were you born in New Zealand?
2. Can you speak more than one language?
3. Have you lived in New Zealand all your life?
4. Do you enjoy mathematics?
5. Make up 5 more 'Yes' or 'No' questions that the teacher might ask.

He then asked some more questions that required answers other than 'Yes' or 'No'.
Record your answers to these questions.
6. How old are you?
8. What is your favourite T.V. programme?
7. In which month is your birthday?
9. What is your favourite sport?

For some questions, being given a choice of answers is a good idea. Record your answers to these questions.
10. How do you travel to school?

walk	bike	bus	car	other

11. How far do you travel to school?

less than 1 km	1 km to 2 km	2 km to 3 km	more than 3 km

12. Make up 5 more questions that cannot be answered by 'Yes' or 'No' answers. Supply a choice of answers for your questions.

Task 4

Working in a small group, choose one of the issues you discussed in Task 2, Worksheet 1.
Who are you going to survey to gain opinions or ideas about the issue you are investigating?
Design a questionnaire for your sample population to fill out. How are you going to get them to fill it out?
Include questions in your questionnaire that require a 'Yes' / 'No' answer, some word answers and / or answers where the choices are given.

Discuss how the data collected could be organised and presented.

Collecting and organising discrete data using a frequency table:

There are two types of data that can be collected, discrete data and continuous data.
A frequency table (tally chart) is a good way to organise both types of data as the data is being collected.
Discrete data is data that is obtained by counting.
Example: John records the number of people in cars as the cars go past the school gate.

Example: This frequency table shows the results of John's survey.

How many cars had only one person?

Number of people	Tally	Frequency
1	H ${ }^{\text {H }}$	10
2	册 III	8
3	IIII	4
22		

The total of the frequency column is 22.

What does this tell us?

Answer: There were 22 cars
in John's survey.
Answer: 10 cars.
What other information is contained within this frequency table?
Continuous (measurement) data is obtained by measuring and will be looked at in Task 11, Worksheet 7. Example: Amanda measured the height of her younger sister every week.

Task 5

The following data shows the number of spelling mistakes that pupils in Room 10 made in a spelling test of 20 words.

$\left.\begin{array}{r}1,2,1,0,3,4,2,1,0,0,1, \\ 2,3, \\ 2, \\ 1,\end{array} 2,2,3,1,2,3,2,3,1\right)$

1. Copy and complete the frequency table.
2. What was the most common number of mistakes made?
3. How many pupils sat the spelling test?

Number of spelling mistakes	Tally	Frequency
0		
1		
2		
3		
4		

Pupils in Room 9 were surveyed to find out how they travelled to school and how far away from school they lived (measured to the nearest km). Below are the results of the survey.
walk 1 km , bike 2 km , car 5 km , walk 2 km , bike 3 km , bus 7 km , bus 5 km , walk 1 km , bike 2 km , car 6 km , walk, 2 km , bike 3 km , walk 1 km , bus 4 km , walk 2 km , bike 2 km , walk 1 km , walk 1 km , bike 3 km , walk 2 km , bus 6 km , car 4 km , walk 2 km , bike 3 km , walk 1 km , bus 7 km , bike 5 km , walk 2 km , bus 6 km , car 5 km , bike 2 km , walk 1 km , bike 3 km , walk 1 km
4. Organise the results of this survey into two frequency tables.
5. How many pupils in Room 9?
6. Study the results in both frequency tables, then write a statement about the 'average' Room 9 pupil - how he/she travels to school and how far she/he has to travel.
7. Conduct a similar survey of the pupils of your class and organise and display your results in two frequency tables.

Task 6

Look at the questions in the questionnaire you created in Task 4, Worksheet 2.
For some of your questions, using a frequency table may be a good way to collect and organise the data. Create frequency tables for those questions, then collect the data using your frequency tables.

Organising grouped discrete data：

To avoid having too many rows in a frequency table，the data can be grouped into categories or class intervals．Usually 6 to 7 class intervals is the maximum number to have in any one frequency table．

Each category or class interval should be the same width．
Example：The number of toys sold each hour at a local toy shop has been recorded in this frequency table．

Which numbers would be recorded in the class interval 6－10？
How many times were less than 11 toys sold in an hour？
Answers：The numbers $6,7,8,9$ and 10 would go in the 6－10 class interval．
On 16 occasions，less than 11 toys were sold in an hour．

Number of toys sold each hour		
Class Interval	Tally	Frequency
$1-5$	\＃⿻卄一 II	7
$6-10$	册 IIII	9
$11-15$	册 III	8
$16-20$	册	5
$21-25$	I	1

What other information is contained within this frequency table？

Task 7

The following data shows the number of Lego blocks used to create some models made by pupils in Room 7.

12，26，31，28，25，19，14，
11，21，29，30，24，16，18，
23，14，13，31，22，29，20，
23，17，12，23，29，21， 34

1．Copy and complete the frequency table，recording the numbers in the appropriate class interval．
2．What was the most common class interval？
3．How many pupils used less than 21 blocks in their models？
4．How many pupils used more than 25 blocks？
5．How many pupils in Room 7？

Number of Lego blocks used		
Class Interval	Tally	Frequency
$11-15$		
$16-20$		
$21-25$		
$26-30$		
$31-35$		

This data shows the points scored by the pupils in Room 8 in a school speech competition，entitled＇A famous person I admire＇．

15，21，18，22，
29，30，18，16，
23，29，24，11，
19，17，22，17，
11，27，26，21，
23，19，18， 14

6．Organise this data in a frequency table using the class intervals 11－15，16－20，
 21－25 and 26－30．
7．What was the top mark in the speech competition？
8．How many pupils scored more than 20？
9．How many pupils entered the competition？

This data shows the number of trees planted in the gardens of houses along one street．

$5,12,8,18,9$ ， 17，6，9，12，17，
$6,13,11,3$ ，
$18,14,12,20$, $9,9,12,17,3$ ， $8,15,9,17,9$

10．Organise this data in a frequency table using 4 class intervals．
11．What was the most common class interval？
12．How many gardens had less than 11 trees？
13．How many gardens had more than 10 trees？
14．How many houses were surveyed？

Displaying ungrouped discrete data as a column graph:

Ungrouped discrete data, organised using a frequency table, can be displayed as a column graph. Example:

\square a title or name
∇ a label on each axis,
\square a scale on the frequency axis (vertical axis),
\square all columns should be the same width.
All column graphs MUST have gaps between the columns.

What other information is contained within this column graph?

Task 8

This frequency table shows the goals scored by 5 players in Western Soccer Club during one season.

Player's Name	Number of goals scored
Simon	7
Mark	3
Steven	9
Rangi	5
David	8

1. Create a column graph to display these results.
2. Who scored the most number of goals?
3. How many goals did Rangi score?
4. Who scored 3 goals?

5. How many goals did these 5 Western Soccer Club players score in this season?

Michelle asked pupils in her class three questions:
 1. How many brothers and / or sisters do you have?
2. In which month of the year is your birthday?
3. If you had to make a choice between having a cat or a
dog as a pet, which pet would you choose?

Below are the results of her survey, in the order the questions were asked.
6. How could Michelle improve the way she recorded this data?

2, September, cat	3, March, dog	1, January, cat	2, September, cat	0, May, dog	4, September, cat
3, June, cat	2, September, cat	1, August, dog	3, July, cat	4, March, cat	2, March, dog
2, December, dog	1, June, cat	0, March, cat	2, October, cat	0, May, cat	1, April, cat
2, August, dog	3, February, cat	2, November, cat	3, January, dog	2, July, cat	3, September, dog
2, October, dog	1, April, cat	2, August, dog	4, December, dog	2, May, cat	0, April, dog

7. Reorganise Michelle's survey results into 3 frequency tables.
8. Draw 3 column graphs to display these results.
9. Write several statements about the pupils in Michelle's class, based on the data Michelle collected.

Task 9

Create column graphs from the frequency tables created in Task 5, questions 1 and 4, Worksheet 3.
Look back at the frequency tables you used to collect and organise data from your questionnaire.
Create column graphs from the frequency tables you created in Task 6, Worksheet 3 (if appropriate).

Displaying grouped discrete data as a histogram:

Grouped discrete data, organised using a frequency table with class intervals, can be displayed as a histogram. A histogram is like a column graph without the gaps.
Continuous (measurement) data can also be displayed as a histogram (See Task 11, Worksheet 7). Example: The results of a class test are shown in this frequency table and drawn as a histogram.

Test scores	Frequency
$0-4$	2
$5-9$	4
$10-14$	3
$15-19$	7
$20-24$	6
$25-30$	4
	26

How many pupils scored between 10 and 14 marks in the test?
How many pupils got exactly 23 in the test?

Answers: 3 pupils scored. It is impossible to tell if any pupils scored
Test scores
exactly 23 . We can only say that 6 pupils scored between 20-24.
All histograms should have ...
∇ a title or name, $\quad \square$ a label on each axis, $\quad \square$ a scale on each axis,
च class intervals that have the same interval, \quad all columns should be the same width.
A histogram DOES NOT have gaps between the columns.

Task 10

Every school has to keep a record of pupils who are absent from school.

Number of days away from school
5. Draw a histogram from the grouped data contained in this frequency table.

Points scored in a test

Score	Frequency
$1-10$	5
$11-20$	6
$21-30$	10
$31-40$	7
	28

This histogram shows the number of days pupils were away from school in one year, for a small country school.

1. How many pupils were away for less than 5 days?
2. How many pupils were away for more than 9 days but less than 15?
3. Which class interval shows that 9 pupils were away?
4. How many pupils were away for more than 20 days?
5. Organise this data into a frequency table using 4 class intervals of 10 .

Points scored by Room 8 pupils in a speech competition
$21,35,20,40,19,41,32,28,33,24$,
$27,17,49,23,24,47,36,24,22,37$,
$11,24,29,45,37,20,36,17,45,29$
7. Draw a histogram to display these results.
8. What were the top and bottom scores?
9. Which class interval was the most common?
10. Collect some grouped discrete data of your own and draw histograms to display your data.

Collecting and organising continuous data using a frequency table:

The second type of data that can be collected is called continuous data.
Continuous data is obtained by measuring. Because continuous data can take on any value, it is recorded in frequency tables that have class intervals, similar to frequency tables for grouped discrete data.

Example: The height of pupils in Room 8 are shown in this frequency table.

What range of heights would appear in the class interval 1.40 m - ?

Answer: Any heights ranging from 1.40 m to 1.499 m , that is, just below 1.50 m .

Although we know that 8 pupils were in the class interval $1.40 \mathrm{~m}-$, we do not know their

Height of pupils in Room 8		
Height (m)	Tally	Frequency
1.30m -	\# I	6
1.40 m -	\#\# III	8
1.50m -	H I IIII $^{\text {l }}$	9
1.60-1.70m	册 II	7
		30

 exact heights.

What other information is contained within this frequency table?

Task 11

This histogram shows the results of a school cross-country race.

1. How many runners ran the course in under 15 minutes?
2. How many runners took longer than 20 minutes to run the race?
3. How many runners ran the race?

Each year there is a salmon fishing competition at the Rakaia river.
The data below shows the weight of each fish caught during the competition.

Fish weights for the Rakaia Salmon Competition (kg)
$2.5,1.8,3.1,2.7,2.4,1.6,5.1,4.6,2.9$,
$3.7,4.1,3.0,2.9,1.7,3.6,2.1,4.9,5.3$,
3.7, 4.2, 5.7, 1.9, 5.8, 4.7, 3.4, 2.1, 3.9, 3.8, 4.6, 1.7, 2.6, 3.2, 1.9, 4.3, 3.7, 1.2
4. Organise this data into a frequency table with class intervals 1.0 kg -, $2.0 \mathrm{~kg}-, 3.0 \mathrm{~kg}-, 4.0 \mathrm{~kg}-$ and $5.0 \mathrm{~kg}-6.0 \mathrm{~kg}$.
5. Draw a histogram to display this information.
6. What was the heaviest fish in the competition? 7. How many fish were lighter than 4.0 kg ?
8. How many fish were caught in this competition? 9. How many fish were heavier than 5.0 kg ?

Task 12

Collect some continuous (measurement) data of your own, recording the data in a frequency table.
Decide on no more than 7 appropriate class intervals for each set of data you collect.
Example: The height of pupils in your class.
The weight of various sizes of apples, fruit or vegetables.
The volume of water various containers will hold ... etc.
Try to obtain at least 20 measurements for each set of data.

Draw histograms to display your results.

Creating stem and leaf graphs:

Just as tally charts and frequency tables can be used to record data as it is being collected, so too can a stem and leaf graph be used this way.

Example: Pupils in Martin's class were asked the day of the month that their birthdays were on. As they called out the dates, Martin recorded the dates using a stem and leaf graph.

Birthday dates for pupils in Martin's class
The numbers $0,1,2$ and 3 written between the parallel lines, form the stem part of the graph.

0	$8,9,4,3,1,7$
1	$9,8,2,0,6,7,6$
2	$8,4,3,1,6,7,2,0$
3	$0,1,0,1$

The numbers outside the parallel lines form the leaf part of the graph. Leaf numbers are usually written as single digits.

The first row of numbers shown by this graph are 8, 9, 4, 3, 1 and 7.
The fourth row of numbers are 30, 31, 30 and 31.
List the numbers that are in the 20's. Answer: 28, 24, 23, 21, 26, 27, 22 and 20.
A back-to-back stem and leaf graph has 'leaf' numbers on both sides of the 'stem' numbers. This type of graph can be used when comparing two sets of scores.

Task 13

List the numbers that are represented in these stem \& leaf graphs, then answer the questions below.
1.

Test results for Room 9 pupils	
4	4, 1, 5, 9, 5, 0
5	0, 2, 8, 7, 2, 9, 1
6	$2,5,1,8,7,1,6,1$
7	8, 2, 3, 7

2.

Cost of buying lunch (\$)

0	$8,9,7,6$
1	$5,3,9,1,3,8,0,8$
2	$9,0,3,4,5,7,3$
3	$1,0,4,5$

3. Time taken to run a race (seconds)

10	$4,8,9$
11	$1,5,7,8,9$
12	$1,2,2,6,7,8,9$
13	$3,4,5,7,9,9$

4. How many pupils sat the test in Room 9?
5. What were the most expensive and the least expensive lunches bought?
6. Convert the fastest and slowest times for this race into minutes / seconds.

Pupils in Room 10 had their heights measured in metres. The results are shown in Box A.

Box A
1.35, 1.27, 1.41, 1.19, 1.23,
1.34, 1.37, 1.27, 1.26, 1.29,
1.46, 1.15, 1.37, 1.42, 1.37,
1.32, 1.29, 1.43, 1.21, 1.19
7. Create a stem \& leaf graph, using the numbers 1.1, 1.2, 1.3 and 1.4 as the stem numbers, to display these results.
8. What were the tallest and shortest heights?
9. How many pupils were measured?

Pupils in Room 7 sat an English test and a Mathematics test. Both tests were marked out of 50.
The results are shown below.
10. Organise this data as a back-to-back stem \& leaf graph.

English test results
$45,32,9,13,26,45,37,15,50$, $38,31,27,8,14,49,41,30,29$, $19,17,22,9,27,25,44,28$

Mathematics test results
$35,17,50,44,25,47,38,39$, $21,50,9,22,49,30,24,8,20$,
$23,45,49,31,32,47,35,43,50$

11. Look at the stem \& leaf graph you have created and comment about the results of the two tests.
12. Collect your own data and present your data as stem \& leaf graphs.

Creating pictograms:

Discrete data that has been collected using frequency tables can be represented as pictograms.
Example: This pictogram shows the number of each food item sold during one lunchtime at a local shop.

From this pictogram we can work out that 40 cartons of fries were sold.
Were there 25,35 or 45 hamburgers sold?
Answer: 35 hamburgers
What other information is contained in this pictogram?

Task 14

A survey was conducted to find out if people preferred to watch TV, watch a video or go to the movies. This pictogram displays the results.

1. How many people does each picture represent?
2. How many people preferred to watch a video?
3. How many people preferred to go to the movies?
4. How many people were surveyed?

A second survey 6 months later was conducted, with the following results. 72 people preferred watching TV, 42 people preferred watching videos and 66 people preferred to go to the movies.
5. Draw a pictogram to display these results. 6. How many people were surveyed this time?

Draw pictograms for the data contained in these frequency tables. Comment about each graph.

Survey on pupils' shoe sizes
7.

Shoe size	F
6	18
7	24
8	12
9	9

Weather conditions recorded for 50 days

Weather	F
sunny	16
cloudy	20
raining	12
snowing	2

Number of each type of book sold

Type of book	F
adventure	80
nature	120
fiction	140
travel	60

10. Collect your own data and present your data as pictograms.

Task 15

Create pictograms from the frequency tables created in Task 5, questions 1 and 4, Worksheet 3. Look back at the frequency tables you created to collect and organise data from your questionnaire. Create pictograms from the frequency tables you created in Task 6, Worksheet 3 (if appropriate).

Creating dot plot graphs：

Just as tally charts，frequency tables and stem \＆leaf graphs can be used to record data as it is being collected，so too can a dot plot graph be used this way．A new dot can be added at any time．
Example：

All dot plot graphs should have ．．．
－a title，
－a label on each axis，
－a scale on the frequency axis．

From this graph we can read the scores as follows ．．
（D）David scored 9，（H）Helen scored 8，（J）John scored 9，（K）Ken scored 6 and（S）Sam scored 9.

Task 16

Draw dot plot graphs for the data contained in these frequency tables．Comment about each graph． Remember to choose an appropriate scale on the frequency（vertical）axis．
1.

Day	F
Monday	5
Tuesday	9
Wednesday	3
Thursday	8
Friday	4

Number of cars of each colour sold

Colour	F
red	50
white	100
blue	70
grey	90
yellow	30

Pupils＇scores in a Maths test
3.

Name	Score
David	10
Jason	8
Karen	6
Jackie	9
Andrew	7

At a local restaurant orders were being taken for dinner using the menu below．

莃（S）Soup	\＃4．50
涼（G）Garlic Bread	\＄2．95
甚（C）chicken	\＄11．95
最（P）Pork	\＄12．95
最（F）Fish	\＄10．95
最（A）Apple Pie	
愛（I）Ice－cream	\＄3．50

The orders are shown in this table below．

$\mathbf{S}, \mathbf{P}, \mathbf{A}, \mathrm{I}$	G，F，A，I
$\mathbf{S , F}, \mathbf{A}, \mathrm{I}$	$\mathbf{S , F} \mathbf{I}$
$\mathbf{S}, \mathbf{C}, \mathbf{A}$	$\mathbf{G}, \mathbf{F}, \mathbf{A}, \mathrm{I}$
$\mathbf{G}, \mathbf{C}, \mathrm{A}, \mathrm{I}$	$\mathbf{S}, \mathbf{G}, \mathbf{C}, \mathrm{I}$
$\mathbf{S}, \mathbf{G}, \mathbf{P}, \mathbf{I}$	$\mathbf{G}, \mathbf{C}, \mathbf{A}, \mathbf{I}$

4．Organise this data into a dot plot graph．
5．How many people ordered chicken？
6．What was the most popular food item ordered？7．How many people ordered pork？
8．Jan has $\$ 40.00$ If she ordered $\mathbf{S}, \mathbf{G}, \mathbf{C}, \mathbf{A}$ and \mathbf{I} what would it cost her and how much money would she have left？
9．List what you would order and how much it would cost．
10．Collect your own data and present your data as dot plot graphs．

Task 17

Create dot plot graphs from the frequency tables created in Task 5，questions 1 and 4，Worksheet 3. Look back at the frequency tables you created to collect and organise data from your questionnaire．
Create dot plot graphs from the frequency tables you created in Task 6，Worksheet 3 （if appropriate）．

Creating strip graphs / percentage bar graphs:

In a strip graph, all the data is contained in a single strip or bar.
The strip graph is divided into different sized sections, based on the data involved.
A strip graph can also be called a bar graph or percentage bar graph.
Example: Richard has $\$ 50$. This strip graph shows what he did with his money.

HowRichard spent his money

All strip graphs or percentage bar graphs should have ...

- a title or name,
- akey,
- a scale stating the value of each square or section, expressed as a percentage or as a number.

In this example, there are 10 squares, so each square equals 10%. 10% of $\$ 50$ is $\$ 5$, so each square represents $\$ 5$.

How much did Richard spend on books, clothes and food?
Answers: $\$ 15, \$ 30$ and $\$ 5$.

Task 18

Given the total for each strip graph below, work out what one square represents.
1.

Total $=\$ 80.00$
2.

3.

Total $=72 \mathrm{~kg}$
4.

Total $=\$ 59.50$

For each strip graph below work out 10% of each total.
5. $\boldsymbol{\alpha}$
6. \boldsymbol{B}
7. \boldsymbol{x}

Total $=24 \mathrm{~kg}$
Total $=\$ 36.00$
Total $=84 \mathrm{~m}$

Jason recorded the daily weather conditions as mainly sunny, cloudy or raining. This strip graph shows the results.

8. How many days does each square of the strip graph represent?
9. For how many days did Jason record the weather conditions?
10. How many days was it raining?
11. Which weather condition occurred on 25 days?

In Karen's class there are 16 girls and 20 boys.
12. Draw a strip graph that is nine squares long and shade in the squares needed to display these results.

Peter has a collection of different mathematical shapes, as drawn.
13. Organise this data into a frequency table.
14. Draw a percentage bar graph (10 squares) to display these results.
15. How many shapes are represented by 10% ?
16. What percentage of the shapes are triangles?
17. What percentage of the shapes are squares?

18. Collect your own data and present your data as a strip graph or a percentage bar graph.

Understanding pie graphs:

A pie graph is a circle that has been divided into sectors, like cutting up a round pie.
Each sector represents a fraction or percentage of the total.
Example: Tracey has $\$ 50.00$. This pie graph shows how she spent her money.

All pie graphs should have ...

- a title or name,
- akey,
- a scale stating the value of each sector, expressed as a fraction, a percentage or as a number.

In this example, there are 10 sectors, so each sector equals $1 / 10$ or 10% or $\$ 5.00$, $(\$ 50.00 \div 10=\$ 5.00)$.

What fraction of her money did Tracey spend on books?
What percentage of her money did she spend on clothes?
How much did Tracey spend on food?

Answer: 3/10
Answer: 50\%
Answer: $\$ 10.00$

Task 19

Julie recorded the daily weather conditions as mainly sunny, cloudy, raining or stormy. This pie graph shows the results.

1. How many sectors in this pie graph?
2. What fraction does each sector represent?
3. How many days does each sector represent?
4. On how many days was it stormy?
5. For what fraction of the days was it sunny?
6. On how many days was it sunny?
7. For what fraction of the days was it raining?

8. On how many days was it raining?
9. What weather condition occurred $3 / 10$ of the time?
10. What time of the year do you think Julie collected this data? Explain your answer.

In Siona's class there are 12 girls and 20 boys.
11. Draw a pie graph that has eight sectors.
12. How many pupils are represented by each sector?
13. Shade in the sectors to display this data.

Linda spent $\$ 40$ on some new clothes, banked $\$ 60$ and spent $\$ 20$ on a birthday present.
14. Draw a pie graph that has 12 sectors and state how much each sector is worth.
15. Shade in the sectors to display this data.

Robin has a collection of different mathematical shapes, as drawn.
16. Organise this data into a frequency table.
17. How many shapes are there altogether?
18. How many shapes are represented by one sector?
19. Draw a pie graph with 8 sectors to display these results.
20. What fraction of the shapes are diamonds?
21. What fraction of the shapes are squares?
22. Which shape makes up $3 / 24$ or $1 / 8$ of the total number?
23. Collect your own data and present your data as a pie graph.

Creating pie graphs using a protractor:

By using a protractor, a pie graph can be divided into sectors to represent the data. To draw a pie graph we must first calculate the angles needed to be able to divide the pie graph into sectors.
Example: This table shows the eye colours of pupils in Room 4.
Follow these steps to calculate the pie graph sector angles.

Eye colour	F
blue	9
hazel	12
brown	9
green	6
	36

Step 1: Add up the frequency column.
Example: 36
Step 2: Divide the number of degrees in a circle $\left(360^{\circ}\right)$ by the frequency total. Example: $360^{\circ} \div 36=10^{\circ}$. This means that each person is represented by a 10° angle sector in the pie graph.
Step 3: Multiply each group of data by your answer in Step 2.
Example: blue eyes is $9 \times 10^{\circ}=90^{\circ}$, hazel eyes colour is $12 \times 10^{\circ}=120^{\circ}$, brown eyes is $9 \times 10^{\circ}=90^{\circ}$, green eyes is $6 \times 10^{\circ}=60^{\circ}$
Step 4: Draw a circle with a compass, draw in one radius, then draw the sectors using your angle answers from Step 3, using a protractor.

Task 20

1. Draw a pie graph with sector angles of $80^{\circ}, 160^{\circ}$ and 120°.
2. Draw a pie graph with sector angles of $45^{\circ}, 125^{\circ}, 60^{\circ}$ and 130°.

Calculate the sector angles required to draw pie graphs for the data in these frequency tables, following the steps outlined above.

Survey on pupils' shoe sizes
3.

Shoe size	F
6	16
7	24
8	12
9	8
	60

Weather conditions recorded for 45 days

Number of each type of book sold

Type of book	F
adventure	70
nature	110
fiction	130
travel	50

Andrew has a collection of different mathematical shapes, as drawn.
6. Organise this data into a frequency table.
7. How many shapes are there altogether?
8. What percentage of the shapes are triangles?
9. What fraction of the shapes are circles?
10. Which shape makes up $5 / 40$ or $1 / 8$ of the to tal number?
11. Which shape makes up 25% of the to tal number?
12. Calculate a sector angle for each mathematical shape.
13. To display this data, draw a pie graph using a compass, protractor and the sector angles calculated in question 12.
14. Collect your own data and present your data as a pie graph.

Task 21

Create pie graphs from the frequency tables created in Task 5, questions 1 and 4, Worksheet 3. Look back at the frequency tables you used to collect and organise data from your questionnaire. Create pie graphs from the frequency tables you created in Task 6, Worksheet 3 (if appropriate).

Creating time-series data:

Data that changes with time can be graphed as a time-series graph. Time-series graphs will always have time on the horizontal axis. This may be in years, months, weeks, days, minutes or seconds.

Example: Jeremy recorded the maximum daily temperatures for one week.

All time-series graphs should have

- a title or name,
- time on the horizontal axis,
- a label and scale on each axis,
- or X to mark each point, joined by lines.

In this example, the maximum temperature on Sunday was $17^{\circ} \mathrm{C}$. List the maximum temperatures for the other days of the week, in order.
Answers: $19^{\circ} \mathrm{C}, 16^{\circ} \mathrm{C}, 18^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}, 18^{\circ} \mathrm{C}$ and $17^{\circ} \mathrm{C}$

Task 22

Martin made himself a cup of milo, but it was too hot to drink.
The time-series graph below shows the temperature of the milo as it cooled.

Mr Jones has been training each day for a running race. He runs the same distance each day and this table shows how long it takes him, with time recorded in minutes.
6. Draw a time-series graph to display this data.
7. On which day did he run the fastest time?
8. On which day was he feeling really tired?
9. What is the difference between his fastest and slowest training times?

10. For how many minutes has Mr Jones been training so far?

Rainfall is collected in a rain gauge and is measured in millimetres.
This table shows the volume of rainfall that fell, collected in Sam's rain gauge.

Week	1	2	3	4	5	6	7	8	9	10
Rainfall (mm)	8	14	3	20	15	9	17	6	12	10

11. How often is the rainfall measured?
12. Draw a time-series graph to display this data. 13. In which week did it rain the most?
13. In which week was there the least rain?
14. How much rain fell in the 8 th week?
15. In which week did 14 mm of rain fall?
16. How much rain fell altogether?
17. Collect your own time-series data and present your data as a time-series graph.

If these chocolates are to be shared equally amongst the four girls, how many will each girl have? Answer: 5

By doing this calculation, you are finding the 'average' or mean number of chocolates that each girl would have.

To find the mean for a list of scores (numbers), there are two steps.
Step 1: Add up all the scores.
Step 2: Divide this total by the number of scores you added up.
Example: Find the mean of $8,10,6,7$ and 9 .

The working is as follows ...
Add $8+10+6+7+9=40$. There are 5 scores, so $40 \div 5=8$. The mean of these numbers is 8 .

Task 23

Calculate the mean (average) for each list of scores.

1. $10,8,9$
2. $9,7,6,10$
3. $12,16,14$
4. $11,6,8,7$
5. $12,4,7,9,13$
6. $9,6,12,15,7,11$
7. $5,9,3,0,8$
8. $9,7,6,11,6$
9. $5.3,4.7,2.9$
10. $1.2,3.4,2.3,2.7$
11. $9.2,10.5,18.1$
12. $126,165,117,158$
13. $\$ 2.40, \$ 5.60, \$ 5.95$
14. $\$ 9.70, \$ 1.25, \$ 4.30, \$ 6.35$
15. $\$ 1.27, \$ 2.38, \$ 5.43, \$ 3.96$

James has been playing a computer car racing game. He recorded the time taken to complete each race several times. The times are recorded in seconds.

$$
45,53,42,55,49,58,46,50,52
$$

16. How many times did James play this car racing game?
17. Find the mean time taken for these races.

18. What was the difference between the fastest and slowest times?

As cereal boxes are filled, they are weighed in grams by a machine.

$$
705,698,701,695,692,714,703,699,704,709
$$

19. How many boxes of cereal have been filled so far?
20. Calculate the mean weight for these cereal boxes.
21. What was the difference between the lightest and the heaviest cereal box?

Jeremy listed the price of cars in a local car sales yard.

\$8500, \$9300, \$10200, \$7500, \$8900, \$11200, \$14500, \$19900

22. How many cars are in this car sales yard?
23. Calculate the mean cost for these cars.

24. What is the difference between the cheapest and the most expensive car?
25. Create your own list of scores or numbers, then calculate the mean value for each list.

Calculating the median (middle score):

A second type of 'average' that can be found for a list of scores is called the median.
The median is the middle score, once the scores have been placed in order from smallest to largest.
Example: Find the median for each list of scores.
List $A \quad 18,11,4,15,7,6,8,10,3$ List B

$$
2,18,4,17,6,15,9,10,12,14
$$

To find the median, list the scores in order.
Then, start counting one off from each end until there is only one number left in the middle.
However, in List B there are two numbers left \dagger in the middle. The median would be the 'average' or mean of these two numbers in the middle.

Example: List A $3,4,6,7,8,10,11,15,18$

Answer: median for List $A=8$
Example: List B $\quad 2,4,6,9,10,12,14,15,17,18$
Answer: median for List $B=(10+12) \div 2=11$

Task 24

Calculate the median (middle score) for each list of scores. To help, rewrite the scores in order.
1.
$5,9,12,14,19,21,23$
2. $9,12,14,15,19,21,23$
3. $8,9,13,15$
4. $9,14,16,19,21,25$
5. $6,3,9,14,8,0$
6. $6,14,2,10,9,7,6,4,11$
7. $6,9,4,10,14,8$
10. $0.4,3.4,1.9,0.6$
8. $1.3,1.9,1.7,1.6,1.9$
9. $2.4,2.9,2.3,2.1,2.7$
11. 6.1, 7.6, 5.0, 8.9
12. $14.3,12.6,11.7,19.4$
13. $141,129,139,117,129,132$
14. $12.6,5.6,3.7,14.6,7.6,11.9$
15. $3.04,3.45,3.95,3.64,3.08$

Rangi has been training for the school cross-country race later this term.
Below are the distances he has been running in training.

$$
1.4 \mathrm{~km}, 1.9 \mathrm{~km}, 1.6 \mathrm{~km}, 1.8 \mathrm{~km}, 2.4 \mathrm{~km}, 1.5 \mathrm{~km}
$$

16. How many times has Rangi been out training?
17. Find the median distance of his training runs.
18. What was the difference between the shortest and the longest run?

As cereal boxes are filled, they are weighed in grams by a machine.

```
995, 1009, 995, 1012, 1008, 999, 1014, 996, 1009, 1006
```

19. How many boxes of cereal have been filled so far?
20. Calculate the median weight for these cereal boxes.
21. What was the difference between the lightest and the heaviest cereal box?

Jeremy likes playing golf and below are his scores for each hole for his latest round of golf.

$$
4,5,8,7,4,5,5,3,8,7,6,6,5,4,3,5,6,7
$$

22. How many holes of golf did he play?
23. Calculate the median number of shots taken during this round.
24. What is the difference between the best and the worst hole score?
25. What was Jeremy's total score for this round of golf?

26. Create your own list of scores or numbers, then calculate the median value for each list.

Finding the mode (most common score):

A third type of 'average' that can be found for a list of scores is known as the mode. The mode can often be worked out by looking at a data display.

The most common score is known as the mode.
There may be more than one mode or no mode, if all scores are different.

Example: What is the most popular dress size sold during one day.

Looking at this graph, we can see that a size 12 dress was the mos \dagger common dress size sold.

Find the mode for these scores.
$5,9,12,9,6,5,3,7$
Answer: Both 5 and 9 are modes.
$2,3,9,6,7,4,5,0$
Answer: There is no mode.

Task 25

Find the mode (most common number) for each list of scores.

1. $5,6,9,8,4,5,9,7$
2.

$6,8,6,7,2,10$
3. $3,1,6,8,3,4,2,1,3,6,2$
4. $9,10,5,6,8,7,0,2$
5. $23,14,15,23,17,15$
7. $10,9,6,8,10,9,8,5$
8. $14,23,27,31,29,20,16$
10. $1.3,1.6,1.3,1.4,1.3,1.9$
11. $2.3,5.6,4.2,1.2,2.3,4.2$
6. $9,14,23,14,9,5,7,9,2,9$
9. $45,12,35,64,25,14,35$
12. $126,165,117,158,156,161$
13. 12.01, 12.10, 12.01, 12.00
14. $1,2,1,2,1,4,1,2,1,3,2$
15.
$3,6,2,1,3,2,1,4,2,3,1,2$

At a local supermarket, juice cartons come in three sizes, $250 \mathrm{~mL}, 600 \mathrm{~mL}$ and 1000 mL . The number of each size container sold is recorded below.
$250,600,250,1000,1000,600,250,600,250,1000,600,250,250,250,600,1000$
$250,600,600,1000,1000,600,250,250,600,250,600,1000,1000,600,250,250$
16. Organise this data into a frequency table.
17. From your frequency table, state the mode or most common size sold.
18. How many juice cartons were sold altogether?

In the evenings and weekend, telephone calls cost only $\$ 5.00$ and you can talk for as long as you like. The length of some telephone calls is shown below, recorded in minutes.

$$
\begin{aligned}
& 15,18,19,16,20,15,16,18,19,12,15,14,15,14,12,19,19,15 \\
& 16,17,20,20,18,15,14,13,19,12,16,15,20,17,12,19,17,15
\end{aligned}
$$

19. Organise this data into a frequency table.
20. From your frequency table, state the mode or most common length of telephone call.
21. How many telephone calls were made altogether?
22. Create your own list of scores or numbers, then state the mode value for each list.

Calculating the range (spread):

Finding the mean, median or mode for a list of scores can tell us a lot about the scores, but consider these two lists

Both of these sets of scores have a mean of 32 and a median of 34, but the highest and lowest scores from List A are quite different to the highest and lowest scores of List B.

How spread out the scores are is called the range.

Range = highest score - lowest score

Find the range for List A and List B above.
Answer: List A, 50-11=39 List B, 37-25=12

Task 26

Calculate the range (spread) for each list of scores.
1.
$6,8,13,15,18,22,25$
2.
$7,11,18,13,8,32,14$
3. $7,8,15,13$
4. $7,13,19,17,28,31$
5. $7,2,14,19,7,0$
7. $9,1,4,17,19,7$
10. $0.7,3.3,1.7,0.2,2.9$
8. $1.2,1.9,1.1,1.7,1.8$
6. $6,13,2,11,9,6,3,2,15$
9. $2.2,2.8,2.9,2.3,2.5$
11. $6.3,7.1,4.0,8.7$
12. 14.1, 12.9, 11.9, 19.1
13. $142,117,137,116,124,139$
14. $12.2,5.4,3.9,14.4,7.2,11.8$
15. $3.09,3.65,3.87,3.42,3.07$

Jackie has been looking at buying a new bicycle. She has been around several shops looking at the prices of bicycles. Below is a list of the prices she saw.

$$
\$ 195, \$ 235, \$ 295, \$ 175, \$ 320
$$

16. How many bicycles did Jackie look at?
17. Calculate the range of prices for these bicycles.

18. Calculate the mean price of these bicycles.

As cans of baked beans are filled, they are weighed in grams by a machine.

$$
333 \mathrm{~g}, 338 \mathrm{~g}, 330 \mathrm{~g}, 338 \mathrm{~g}, 335 \mathrm{~g}, 339 \mathrm{~g}, 334 \mathrm{~g}, 332 \mathrm{~g}, 337 \mathrm{~g}, 334 \mathrm{~g}
$$

19. How many cans of baked beans have been filled so far?
20. Calculate the range of weights for these baked bean cans.
21. Find the median weight of these baked bean cans.

Jeremy likes playing golf and below are his scores for each hole, for his latest round of golf.

$$
5,6,7,8,5,4,4,7,3,4,7,5,6,5,4,4,7,5
$$

22. How many holes of golf did he play?
23. Calculate the range for the number of shots taken per hole during this round.
24. What was the mode or most common score that Jeremy got?
25. What was Jeremy's total for this round of golf?

26. If the highest score is 123 and the range is 39 , calcluate the lowest score.
27. If the lowest score is 58 and the range is 47 , calculate the highest score.
28. If the range is 26 and the score 34 is exactly in the middle, calculate the lowest and highest scores.
29. Create your own list of scores or numbers, then calculate the range value for each list.

Interpreting data display:

The purpose of drawing various graphs and working out means, medians, modes and ranges is to be able to answer questions that have been raised by an investigation.
The ability to interpret a data display is an important skill.
Example: Billy scored $45 \%, 45 \%, 87 \%, 75 \%$ and 69% in her exams, but said, "I didn't do very well because my most common mark was only 45% !" Was she right?

Answer: While the mode was 45%, her other three scores were all good, so she did quite well.

Task 27

Look at each data display. Read the comments written beside them. Are the comments correct? Explain your answers.
1.

Car colour

Colour	Frequency
white	11
black	9
red	7
blue	8
	35

Test scores for Room 4

Anna recorded the colour of cars in the school car park. Kevin said, "Most teachers have white coloured cars."

Is his statement correct?
2.

$$
8,9,7,7,6,7
$$

This is a back-to-back stem and leaf graph showing test scores for two classes. David, who is in Room 4 said, "We are the top class as three pupils scored 20 out of 20."

Is his statement correct?
3.

This column graph shows the number of boys and girls in Room 3.
Sally said, "Because the column for girls is twice as tall as the column for boys, there must be twice as many girls as boys in this class."
Is her statement correct?

4. This pie graph shows the colour of Room 7 pupil's eyes. Tony said, "Most pupils have hazel coloured eyes."

Is his statement correct?
5. Look back at the data displays you and your classmates created as a
 result of your investigations. Compare your displays with classmates and comment about the features of your displays.

Task 28

Collect some frequency tables/data displays from the newspaper or some magazine.
Look at each table / data display and talk about the features that make the data displays stand out.

Creating statistical reports:

Working in small groups of 2 or 3 , your task is to create a statistical report.
Organise the data into various tables and displays, perform calculations such as finding the mean, median, mode and range, as you try to prove or disprove the statement written beside the data.

Remember to finish your report with a conclusion.

Task 29

John and Rangi like playing a computer car racing game. They have turns (1, 2, 3, 4\&5) playing the game and they record the time in seconds taken to drive around each of the three courses $(A, B, \& C)$.

$\boldsymbol{X} \boldsymbol{X}$	A	B	C
$\mathbf{1}$	66	124	46
$\mathbf{2}$	59	129	44
$\mathbf{3}$	69	137	41
$\mathbf{4}$	71	115	55
$\mathbf{5}$	63	127	43

Rangi's lap times			
\mathbf{X}	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{1}$	62	119	50
$\mathbf{2}$	64	126	36
$\mathbf{3}$	60	135	42
$\mathbf{4}$	70	117	48
$\mathbf{5}$	63	130	43

John believes he is the better driver as he has the faster lap times. Is he correct?

Task 30

At a local restaurant, records are kept about people who attend the restaurant.

	Size of group	Choice for main meal	Total cost of meal	Time spent at restaurant
	3 people	C, C, F	\$48.00	$21 / 2 \mathrm{hrs}$
	5 people	F, F, P, C, C	\$96.00	4 hrs
Key for main meals	2 people	C, B	\$37.50	11/2 hrs
	4 people	B, B, C, F	\$86.50	4 hrs
	2 people	B, C	\$34.50	$31 / 2 \mathrm{hrs}$
$\mathbf{C}=\text { chicken }$	5 people	P, B, C, C, F	\$127.50	3 hrs
$\begin{aligned} & \mathbf{B}=\text { beef } \\ & \mathbf{P}=\text { pork } \end{aligned}$	6 people	C, F, P, P, B, B	\$142.00	5 hrs
	3 people	C, F, B	\$73.00	41⁄2 hrs

The owner of the restaurant believes that ...

- average group size is about 3 people,
- most people like fish best,
- the average price per meal is $\$ 20.00$ per person,
- people stay for about 3 hours.

Is the owner correct?

Task 31

By now you know how to
\square plan an investigation, write a questionnaire / conduct a survey,
\square collect and display data,
\square perform calculations on this data

- make predictions and write a conclusion based on the results of the investigation.

Conduct an investigation to demonstrate the above skills.

Understanding probability words:

Probability is a measure of how likely it is that an event will happen.
The likelihood of an event or something happening could be described by using one of the following words ... certain, possible, impossible.

Other words that could be used are ... certain, likely, unlikely, impossible certain, good chance, even chance, poor chance, impossible.

Task 32

1. Use the words ...
certain, likely, unlikely and impossible,
to write statements about events that you know of, that could be described by using these words. Example: There is a good chance it will rain tomorrow.

2. Arrange these events in order of likelihood, starting with the most likely event first.

A If you roll a die (dice) the number 4,5 or 6 will come up.
B The Prime Minister will visit your school tomorrow.
C Someone in New Zealand will win 1st prize in lotto this week.
D If today is Monday, tomorrow will be Tuesday.
E A glass jar will break when dropped.

Decide if these events are certain, likely, unlikely, possible or impossible.
3. Today it will be dark at 7:00 p.m.
4. I will win the school cross-country race.
5. Tomorrow I will go to the doctor.
6. 10 pupils in your class will be away sick tomorrow.
7. It will snow on Christmas day this year.
8. It is your birthday tomorrow.
9. The sun will rise tomorrow.
10. There will be a February 29th this year.

11. You will get a job when you leave school.
12. New Year's day is the 1st January.

Use even chance, good chance or poor chance to describe the likelihood of the following events happening.
13. A coin is tossed and a tail comes up.
14. Two coins are tossed, one is a tail and one is a head.
15. Two coins are tossed and two heads come up.
16. A die (dice) is rolled and an odd number comes up.
17. A die is rolled and a number less than 4 comes up.
18. A die is rolled and a six comes up.

19. A die is rolled and a 1,3 or 5 comes up.
20. A card is drawn from a deck of cards and it is an ace of spades.
21. A card is drawn from a deck of cards and it is a heart.
22. A card is drawn from a deck of cards and it is a black card.

Calculating relative frequency / probability scales:

The relative frequency of an event occurring is the fraction or proportion of times the event occurs. Relative frequency could also be known as experimental probability.
Example: In an experiment, two coins are tossed 50 times (50 trials).
The event that Kaye recorded is, 'how many times two heads occur'. This occurred 12 times.

In Kaye's experiment the number of trials was 50 , and the number of times the event occurred was 12 , therefore the relative frequency of this event was ${ }^{12 / 50}$.
This event could be marked on a probability scale.

Task 33

Below is a frequency table recording the results of an experiment where two coins were tossed.

1. Copy this frequency table and complete the frequency column.

Event	Tally	F
HH	H H H III	
HT	H H 册 H II	
TH	IHIIHIIH IIII	
TT	IIH IIH I	

2. How many trials were there in this experiment?
3. Calculate the relative frequency for the event head/head.
4. Which event had a relative frequency of ${ }^{11} / 60$?
5. Calculate the relative frequency for the event tail/head, in any order.
6. Draw a probability scale and mark on the scale where these three events would be ... HH, TT and HT / TH combined.

Working in small groups, repeat the above experiment of tossing two coins.
7. Record your results in a frequency table,
8. Work out the relative frequency of all events.

9. Mark the results of your experiment on a probability scale.

Inside a container are the mathematical shapes shown in this diagram.
10. Organise the data in a frequency table.
11. If a shape is selected at random from the container, work out the relative frequencies that it could be ...
a circle, a square, a triangle or a diamond.
12. Draw and mark on a probability scale these events ...

Event A: a square is selected from the container.
Event B : a diamond is selected from the container. Event C : a mathematical shape is selected from the container.
Event D: a hexagon is selected from the container.

Working in small groups, place up to 20 coloured blocks, preferably all the same size, in a container or bag, noting how many of each coloured block you have.
13. Select a block from your container and record which one. Replace the block and repeat 50 times.
14. Based on your results, work out the relative frequency of selecting each different coloured block.
15. Mark the results of your experiment on a probability scale.

Finding outcomes using grids:

All possible results of an experiment are called outcomes. When James is thirsty he will have a drink. If he can have either a drink of water or a drink of juice, the choice is easy. His two choices of water or juice are called outcomes.

Finding all possible outcomes is not always easy.
Example: A coin and a die are thrown at the same time. List all possible outcomes.
One way to find the outcomes is to use a grid or box.

\footnotetext{
6 sided die

The outcomes can be obtained from the grid ...

$$
\begin{aligned}
& (H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\
& (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6) \ldots
\end{aligned}
$$

where $(H, 1)$ means heads on the coin and a ' 1 ' on the die came up.

Task 34

Pupils in Room 7 can choose (C) cricket, (Sb) softball or (T) tennis as their summer sport. In winter they can choose (R) rugby or (Sc) soccer. Pupils can play only one summer and one winter sport.

1. Copy and complete this grid to help work out the combinations of sports that pupils can play.
2. List all the possible outcomes or choices that the pupils have.

Alex has two bags containing different coloured beads. Bag A has some (R) red, (B) blue and
(G) green beads. Bag B has some (P) purple, (Y) yellow and (O) orange beads.
3. Alex picks one bead from each bag. Use a grid to help work out all possible combinations of coloured beads she could select.
4. List all the possible outcomes or combinations of coloured beads.

Alex adds some (W) white and (BI) black beads to Bag A and some (Br) brown beads to Bag B.
5. Draw a grid to help work out the new combinations of coloured beads that Alex could
 select if she selects one bead from each bag.
6. How many possible outcomes are there altogether?

'Breakfast 'Meru'	
(B) Bacon \& Eogis	\$4.60
(I) Loast e jam	\$3.50
(C) Cereal	\$4.00
Drinkes	
(M) Moilo	\$1.20
(E) Eruit jouice	\$0.90
(H) Hot chocolate	\$1.50

For breakfast, Miri has a choice of one of the three 'Breakfast Menu' items and one of the 'Drinks'.

7. Draw a grid to help work out all the possible choices Miri has.
8. List all possible breakfast combinations.
9. If Miri had bacon \& eggs and fruit juice, what would it cost her?
10. If she paid for breakfast with a $\$ 20.00$ note, what change did she receive?

11. If her breakfast cost $\$ 4.70$, what did she have to eat and drink?

During the holidays, Martin has a choice of going to the (M) movies, hiring a (V) video, going to the (P) park to play or going to a (F) friend's place. He is allowed to do one of the above activities, but only on one day of the week.

12. Draw a grid to work out all possible combinations of these activities on the days of the week.
13. How many possible outcomes are there altogether?
14. If Martin cannot go out on Monday or Wednesday, how does this alter the number of possible outcomes?

Finding outcomes using tree diagrams:

A tree diagram, so named because of its shape, is another way of working out all possible outcomes.
Example: Jack will go shopping on Monday or Tuesday and might buy a new toy.

To find all possible outcomes, follow each branch of the tree diagram.
There are four branches so there will be four outcomes.

The outcomes would be ...
(Monday, will buy), (Monday, will not buy)
(Tuesday, will buy), (Tuesday, will not buy).

Task 35

Michelle is going to select a picture card, toss a coin and select a numbered ball from a bag.

1. Draw a tree diagram to help work out all possible combinations, as Michelle selects a card, tosses a coin and selects a numbered ball, in that order.
2. Use your tree diagram to list all possible outcomes.
3. How many outcomes include the King of spades?
4. How many outcomes include a coin showing heads?
5. How many outcomes include a ball with the number 7 showing?
6. Michelle changes the order to tossing a coin, selecting a ball and then selecting a card.

Draw a new tree diagram to show this combination.

'Breakfast 'Menu’	
(B) Bacon e Egigs	\$4.60
(I) loast \& Jam	\$3.50
(e) Cereal	\$4.00
'Eruit'	
(O) Orange	$\$ 0.50$
(K) Kiwi fruit	\$0.30
(A) Apple	\$0.40
Drinks	
(M) M Milo	\$1.20
(P) Epuit jouce	\$0.90
(H) Hot chocolate	\$1.50

For breakfast, John has a choice of one of the three
'Breakfast Menu' items, a piece of 'Fruit' and one of the 'Drinks'.
7. Draw a tree diagram to help work out all the possible combinations that John could have.
8. How many outcomes are there altogether?
9. If John does not like bacon \& eggs, how many combinations does he have to choose from?
10. If John had some toast, an orange and a drink of milo for breakfast, how much did it cost?

11. If John paid for his breakfast with a $\$ 20.00$ note, how much change did he receive?
12. If his breakfast cost $\$ 5.90$, what did he have to eat and drink?
13. Think of some events in your life. Create your own grid diagrams or tree diagrams as above to work out all possible outcomes for these events.

Using probability to predict outcomes:

Data that has been collected can be used to make predictions.
Example: A coin is tossed 100 times. How many times would you expect 'heads' to come up?

head	For a coin, the probability or chance of getting heads is '1 out of 2 ' or $\frac{1}{2}$ or 50%.
	If a coin is tossed 100 times, you could expect heads to occur 50 times ($100 \times \frac{1}{2}=50$).
tails	How many times would you expect tails to occur if a coin is tossed 200 times?
	Answer: $200 \times \frac{1}{2}=100$ times.

Task 36

This tree diagram shows the possible outcomes when two coins are tossed.

1. List all possible outcomes.
2. What is the probability or chance that two heads come up?
3. What is the probability or chance that two tails come up?
4. What is the probability that a head and a tail, in any order come up?
5. If the two coins are tossed 100 times, how many times would you expect HH to come up?
6. If HT and TH came up 150 times altogether, how many times do you think the two coins were tossed?

A six sided die (dice) is rolled several times.
7. What is the probability that it lands showing the number 6 ?
8. What is the probability that it lands showing a number less than 4 ?

9. What is the probability that it lands showing the number 2 or 4 ?
10. If a die is rolled 60 times, how many times would you expect the number 5 to occur?
11. If a die is rolled 200 times, how many times would you expect a number greater than 3 to occur?

A local shop-keeper kept a record of the number of different drinks that he sold to pupils in one day. This table shows the result.

Drink	Number sold
Coca Cola	50
Fanta	30
Flavoured milk	20
Fruit juice	15
Ginger beer	5

12. How many drinks has he sold altogether?

13. What is the probability that a pupil had a drink of Coca Cola?
14. What is the probability that a pupil had a drink of fruit juice?
15. 20 out of 120 pupils chose which drink?
16. If 240 pupils ordered drinks, how many Fanta drinks would the shop-keeper expect to sell?
17. If 360 pupils ordered drinks during the week, how many Ginger beer drinks would the shop-keeper expect to sell?

A radio station surveyed 40 people, asking them to name their favourite style of music, given a choice between, rock (R), jazz (J), country \& western (W) and classical (C).
18. Organise this data into a frequency table.
19. What was the probability that a person liked rock music?
20. What was the probability that a person liked classical music?
21. Based on these survey results, predict how many people would like each style of music if 400 people were surveyed.

Music survey results
R, C, C, W, J, R, J, C,
W, J, R, R, J, C, W, W,
C, J, R, C, R, W, R, R,
C, J, R, C, R, W, J, W,
R, C, C, W, R, J, J, C

22. Make up some frequency tables as above and use your information to work out the probability of each outcome. Then use your probability values to make predictions for larger populations.

'In-class' Worksheet

Teaching Notes \& Answers

How to use this section:
Teaching notes are enclosed in a box with a 'push-pin' at the top left corner. The teaching notes precede the answers for each worksheet / task. The teaching notes have been included to provide assistance and background information about each topic or unit of work.

Introduction:

The topic of Statistics is concerned with the planning of investigations, providing an opportunity to study issues that are important to the pupils at your school. The ability to collect the appropriate data and to display the data in various tables or graphs to communicate the results of the investigation is an important skill. From the displays, distinctive features can be highlighted and further calculations can be performed, to interpret the data to support the investigation. From these interpretations, statements and conclusions can be made that are consistent with the results of the statistical investigation.
Exploring probability is also investigated through the use of relative frequency tables and tree diagrams.

Introduction to statistical investigation:
 Designing a questionnaire:

Worksheets 182

In Task 1 pupils are introduced to important statistical words and their meanings.
Key statistical words are listed below:
Survey: A survey is a brief or detailed study, whereby data that is collected can be used to draw various statistical graphs, interpret the information and make conclusions or predictions based on the evidence of the survey.
Questionnaire: A questionnaire is one way of surveying a population when you are asking for an opinion about an issue. A good questionnaire has questions that are clear and concise, but not too many questions.
Population: In everyday language the word 'population' refers to the number of people in a town, city or country. In statistics, a 'population' can refer to a group of not just people or animals, but a group of anything. Example: a population of trees, a population of books, etc.
Sample: A sample is part of a population you are interested in. A sample of a population is used if the population is very large or if it is not necessary to survey the whole population.
Representative sample: When we want to make statements about a population, using a survey to sample the population, the sample should be a representative sample. Example: 10% of the pupils at a school are to be surveyed. If there are 200 pupils, 10% would be 20 pupils. If there are 90 boys and 110 girls and 10% are to be surveyed, for the sample to be a representative sample, there would be 9 boys and 11 girls surveyed, giving us a total of 20 pupils.
Random sample: Choosing at random, means that every person, or item, has an equal chance of being chosen.
Biased sample: A sample that is not a representative sample is called a biased sample. Example: In a class of 15 girls and 15 boys, if 10 boys and 5 girls were surveyed about what sport they wanted to play at lunchtime, the pupils surveyed would be a biased sample as more boys were asked than girls.
In Task 2 pupils are to work in small groups and decide on any important issues that they could investigate. The main features of an investigation are listed with the task.

In Task 3 pupils are to consider what type of questions they would use when designing a questionnaire, given points about what makes a good questionnaire. Questions are to have 'yes' / 'no' answers and pupils are to create similar questions. Other questions are to be answered and created where choices for answers are given.
In Task 4 pupils are to look back at the issues they considered investigating in Task 2, Worksheet 1 and design a suitable questionnaire. Having designed the questionnaire, pupils are to decide what is the best way the data can be collected and organised.

Task 1

1. population 2. sample 3. survey 4. representative sample 5. biased 6. random 7. questionnaire 8.- 9. - 10. The population may be too large to survey. It is quicker to do. 11. 10% of 180 pupils is 18.10% of 100 boys is 10 and 10% of 80 girls is 8 , therefore 10 boys surveyed and 8 girls surveyed, gives a total of 18 pupils. 12. Teachers are a small percentage of the whole population and could be a biased sample. 13. All interested parties, pupils, parents / caregivers, teachers and principal 14. Choose 10% of the pupils in each class, draw 50 family names from the school records at random, ask every 5 th pupil / parent coming through the school gate in the morning, etc.

Worksheets 3 \& 4

Collecting and organising discrete data using a fequency table: Organising grouped data:

The are two types of data, discrete and continuous data. Discrete data is any data that has been collected by counting. Continuous data is any data that has been collected by measuring.

The use of a frequency table (or tally chart) is an effective way to collect data that is randomly being collected, called out or presented as a random list. Encourage pupils to count in 'fives' as this makes it easier when adding up. Marking data in the appropriate row as you go, rather than searching for all the same data at once, will make it less likely that data items are overlooked. By adding up the frequency column, the number of data items collected can be found.
To use a frequency table to collect discrete data that is well spread out, the data can be grouped. Grouping data avoids having too many rows in the frequency table and the grouped data is easier to display. Each grouping or category is called a class interval. Class intervals should be the same widith or size.
Example: The class interval 1 - 5 includes the numbers 1, 2, 3, 4 \& 5 The class interval 6-10 includes the numbers $6,7,8,9,10$. Both class intervals are made up of five numbers.

The only disadvantage with grouped data is that you do not know exactly what the number is, once the number has been recorded, only that it falls within a certain class interval.
Example: There are 5 numbers in the class interval 6-10, but are the numbers 6 's, 7 's, 8 's, 9's or 10's?
In Task 5 pupils are to organise discrete data in a frequency table, utilising a tally column, marking off in fives. The number of items collected is found by adding up the frequency column. By studying the frequency tables created, pupils are to write a statement about the data.
In Task 6 pupils are to create frequency tables for any appropriate questions that were created in Task 4, Worksheet 2. Having created the frequency tables, pupils are to collect the data, recording the responses in the frequency table.
In Task 7 pupils are given data that is to be recorded in frequency tables that have class intervals already given. In later questions, pupils are decide on the class intervals that will be used. As a general rule, somewhere between 5 and 7 equal class intervals is usually enough.

Task 5
1.

4.

Travel	Tally	F
walk	HHT HH IIII	14
bike	HH IH	10
bus	HH I	6
car	IIII	4
		$\mathbf{3 4}$

5． 34 pupils

2． 2 mistakes
 3． 33 pupils

Distance	Tally	F
1	HHI III	8
2	HH IH	10
3	HIt	5
4	II	2
5	IIII	4
6	III	3
7	II	2

6．The most common way pupils in Room 9 travel to school is by walking，followed by biking to school． The most common distance that pupils live away from the school is 2 km ，followed closely by 1 km distance．

Task 7

1.

Number of Lego blocks used			
C I	Tally		F
11－15	册		6
16－20	H		5
21－25	冉	III	8
26－30	H	I	6
31－35	III		3
			28

6.

Speech competition scores		
C I	Tally	F
$11-15$	IIII	4
$16-20$	H．III	8
$21-25$	H⿻ I II	7
$26-30$	H\＃	5

Number of trees per garden		
C I	Tally	F
1－5	III	3
6－10	H 1 Ht	10
11－15	成 III	8
16－20	H＋1I	7
		28

2． $21-25$
3． 11 pupils
4． 9 pupils
5． 28 pupils
7． 30
8． 12 pupils
9． 24 pupils
11．6－10
12． 13 gardens
13． 15 gardens
14． 28 houses

Displaying ungrouped discrete data as a column graph：
Displaying grouped discrete data as a histogram：
Collecting and organising continuous data using a frequency table：
To avoid confusion I would suggest that column graphs are always referred to as column graphs and are not called bar graphs．A bar graph is a different type of graph and is referred to in more detail in Worksheet 11，Creating strip graphs／Percentage bar graphs．

A column graph is used to display ungrouped discrete data，that is，data that has been collected by counting．All column graphs should have ．．．

$$
\begin{aligned}
& \text { a title or name a label on each axis } \\
& \text { a scale on the vertical axis, usually starting from zero } \\
& \text { gaps between columns all columns should be the same width }
\end{aligned}
$$

The gaps occur between the columns because the data is ungrouped discrete，discrete meaning separate．Example：A column graph displaying the number of cars of each colour in the staff car park has gaps because each column represents a different colour．

If a column graph is drawn without gaps between the columns it is called a histogram．A histogram is used to display grouped discrete data or continuous data．Within each column there will be various scores represented．The＇groupings＇are called class intervals．All class intervals on the same graph should be the same width，just as they are for frequency tables．The features of histograms are the same as for column graphs，except there are no gaps between the columns．

In Task 8 pupils are to create column graphs, given data presented in a frequency table. Data is also presented in a table, from which frequency graphs can be created, followed by the drawing of a column graphs. Remind pupils to present the graph neatly, with all necessary labels etc.
In Task 9 pupils are to create column graphs from frequency tables created in Task 5, Worksheet 3 and from data collected in their investigations. Having created the column graphs, pupils are to write statements about the data. Remind pupils that the whole purpose of drawing any form of graph is to 'tell a story about the data', so presentation is important.
In Task 10 pupils are to interpret information displayed as a histogram, create histograms from grouped discrete data and from frequency tables created in Task 7, Questions 6 \& 7 .
In Task 11 pupils are to create histograms from continous data displayed in frequency tables. Pupils are also to organise data into frequency tables before drawing more histograms.
In Task 12 pupils collect their own continuous data, utilising frequency tables and then draw histograms to display the data.

Task 8

7.

Number of brothers / sisters		
Number	Tally	F
0	IIII	4
1	HI	5
2	HI HI II	12
3	HI I	6
4	III	3

2. Steven
3. 5 goals
4. Mark
5. 32 goals
6. Michelle could have set up a frequency table and recorded the pupil's responses in them directly, rather than in the table she used.

Birthday months		
Month	Tally	F
J	III	2
F	III	1
M	IIII	4
A	III	3
M	III	3
J	II	2
J	II	2
A	III	3
S	III	5
O	II	2
N	I	1
D	III	2
		30

Favourite pet		
Pet	Tally	F
cat	HI III HI III	18
dog	IIH III II	12
		30

9. Examples of possible statements:

More pupils in Michelle's class have 2 brothers and / or sisters. The most common month for a birthday was September. More pupils prefer cats as pets than dogs as pets.

Task 9

Column graphs using the data from Task 5, Questions 1 and 4.

Task 10

1. 6 pupils
2. 9 pupils
3. $10-15$
4. 5 pupils
5.

6.

Speech competition scores		
C I	Tally	F
$11-20$	H\# I	6
$21-30$	H\# IHI	11
$31-40$	H\# III	8
$41-50$	H\#	5
		30

8. 49 and 11 9. 21-30

Task 11

1. 3 runners 2. 6 runners 3.18 runners
2.

Fish weights in competition		
Weights	Tally	F
$1.0-$	HI II	7
$2.0-$	HII III	8
$3.0-$	H. IH	10
$4.0-$	HI II	7
$5.0-6.0$	IIII	4

Weight of salmon (kg)
6. 5.7 kg
7. 25 fish
8. 36 fish
9. 4 fish

Creating stem and leaf graphs:

A stem \& leaf graph is so called because of its shape. Stem \& leaf graphs can be used to collect data in the same way as a frequency table can be used. Visually stem \& leaf graphs can be useful when displaying two sets of similar data, when you want to compare results. When drawn this way, it is called a back-to-back stem \& leaf graph. Stem \& leaf graphs should have a title.
In Task 13 pupils are to interpret the data displayed as a stem \& leaf graph and create graphs given the data. Pupils are to collect and present data as stem \& leaf graphs.

Task 13

1. $44,41,45,49,45,40,50,52,58,57,52,59,51,62,65,61,68,67,61,66,61,78,72,73,77$
2. $8,9,7,6,15,13,19,11,13,18,10,18,29,20,23,24,25,27,23,31,30,34,35$
3. $104,108,109,111,115,117,118,119,121,122,122,126,127,128,129,133,134,135,137,139,139$
4. 25 pupils $5 . \$ 35, \$ 6 \quad 6.1 \mathrm{~min} 44 \mathrm{sec}, 2 \mathrm{~min} 19 \mathrm{sec}$
5. Heights of pupils in Room 10
6.

English test results
Mathematics test results
1.1

9, 5, 9
$1.27,3,7,6,9,9,1$
1.3 5, 4, 7, 7, 7, 2
1.4
$1,6,2,3$
8. 1.46 m \& 1.15 m
9. 20 pupils
11. In both tests the lowest mark was 8 and the highest mark was 50 . However, in the Mathematics tes \dagger there were three pupils who scored 50, whereas only one pupil scored 50 in the English test. Overall there were more scores in the 30's and 40's in the Mathematics test, than in the English test.

Creating pictograms:

Worksheet 9

As the name implies, pictograms are created using pictures to represent data. All pictogram should have ...

- a title or name a a key a a scale stating how much each picture is worth

Each picture represents a certain number of data items and part pictures can also be used, therefore the number of pictures drawn for pictogram questions will vary depending on the value of each picture.

In Task 14 pupils are to interpret the data displayed as a pictogram and create graphs given the data. Pupils are to collect and present data as pictograms.
In Task 15 pupils are to create pictograms from the frequency tables created in Task 5, Questions 1 \& 4, Worksheet 3 . Pupils are to look back at the data they collected during their investigation and graph appropriate data as a pictogram.

Task 14

1. 12 people
2. 36 people
3. 42 people
4. 132 people
5. 180 people
6.

AWS
7.

Survey on pupils'shoe sizes

8.

9.

Number of each type of book sold

Each picture $=40$ books

Task 15

Pictograms using the data from Task 5, Questions 1 and 4.

1. Spelling mistakes made
by pupils in Room 10

Each picture $=2$ pupils

4. Method of travelling to school by
pupils in Room 9 pupils in Room 9

Distance travelled to school by pupils in Room 9, in kilometres

The numbers refer to distance, measured in km . Each number $=2$ pupils

Creating dot plot graphs:

Worksheet 10

A dot plot graph is basically the same as a column graph, where the columns have been replaced by dots. Like the frequency table and stem \& leaf graphs, items of data can be added to the graph at any time, in any order, once the axes have been drawn up.

All dot plot graphs should have ...

- a name or title
- a label oneach axis
- a scale on the vertical axis
- gaps between the dots
- all dots should be the same size.

In Task 16 pupils are to organise data and create dot plot graphs, plus answer questions related to the data. Having collected their own data, pupils are to create their own dot plot graphs.

In Task 17 pupils are to create dot plot graphs from the frequency tables created in Task 5, Questions 1 \& 4, Worksheet 3. Pupils are to look back at the data they collected during their investigation and graph appropriate data as dot plot graphs.

Task 16

Dot plot graphs using the data from Task 5, Questions 1 and 4.

Creating strip graphs / percentage bar graphs:

Worksheet 11

A strip graph is also known as a bar graph or percentage bar graph. The strip graph can be divided into squares, where the squares represent a known number of items.
Example: A strip graph made of 8 squares, where each square represents 20 items.
All strip graphs or percentage bar graphs should have ...

- a title or name a key a a scale stating how much each square is worth (optional)

If a percentage bar graph is being created，the strip is divided into sections based on the percentage of each data item that is being represented．A percentage bar graph could be divided into 10 squares where each square represents 10% of the total．
Example：With a score of 120 ，each square represents 10% of $120=12$ ．
If the data is not conveniently worked out to fit neatly into a known number of squares，a percentage bar graph can be created using percentages．Follow these steps．
Step 1：Work out what percentage each group of data is of the total．
Example： 20 out of 80 pupils play soccer．$(20 \div 80 \times 100 \%=25 \%)$ Repeat this calculation for all groups of data．
Step 2：Draw a strip of known length．Example： 10 cm long
Step 3：Divide the strip up using the percentages calculated in step 1. Example： $10 \mathrm{~cm} \times 25 \%=2.5 \mathrm{~cm}$

In Task 18 pupils are to calculate how much each shaded square of a strip graph is worth，given a strip that is divided into squares and the total for all squares．Pupils are to calculate what 10% of a strip graph total is and interpret information displayed as strip graphs．Having learnt these skills，pupils are to create strip and percentage bar graphs from data that is first organised into a frequency table．

Task 18

1．$\$ 20.00$
2． 15 cm
3． 12 kg
4．$\$ 8.50$
5． 2.4 kg
6．$\$ 3.60$
7． 8.4 m
8． 5 days
9． 50 days
10． 10 days
11．sunny

12．Number of boys and girls in Karen＇s class

13.

Mathematical shapes		
Shape	Tally	F
$\overleftrightarrow{\Delta}$	IIII	4
回	H III	8
＊	II	2
θ	冉 I	6
		20

15． 2 shapes
16． 20%
17． 40%
ey：Each square $=2$ shapes
$=\mathbb{A}$ 富＝囲

．

Worksheets 12 8s 13

Understanding pie graphs：
 Creating pie graphs using a protractor：

A pie graph that is divided into sectors is very similar to a strip graph that has been divided into squares．Each sector，just like each square，will represent a certain amount of data．Simple pie graphs can be created this way．All pie graphs should have ．．．
－a title or name a a key a a scale stating how much each sector is worth，given as a number，a fraction，a percentage or in degrees

For data that cannot be conveniently divided up，calculations can be done to work out what fraction or percentage of the whole pie graph is required to be shaded to represent the data．The steps to work this out are outlined at the top of Worksheet 13.
In Task 19 pupils are to interpret information displayed in a pie graph divided into sectors．Pupils are required to create simple pie graphs，given the number of sectors required for each graph and to answer questions related to the data．Pupils can collect and graph their own data．

In Task 20 pupils are to draw accurate pie graphs using protractors to create the sector sizes following the steps outlined at the top of Worksheet 13. Having created the pie graphs, pupils are to answer questions related to the information displayed.
In Task 21 pupils are to create pie graphs from the frequency tables created in Task 5, Questions 1 \& 4, Worksheet 3 . Pupils are to look back at the data they collected during their investigation and graph appropriate data as pie graphs.

Task 19

1. 10 sectors
2. $1 / 10$
3. 5 days
4. 5 days
5. $2 / 10$ or $1 / 5$
6. 10 days
7. $4 / 10$ or $2 / 5$
8. 20 days
9. cloudy 10. winter because 50 stormy
10. \& 13 .

Pupils in Siona's class
14. \& 15.

16.

Mathematical shapes		
Shape	Tally	F
$\mathbb{\$}$	\#\#1	6
\#	He I	6
*	III	3
-	HII IIII	9
		24

17. 24 shapes
18.

20. $9 / 24$ or $3 / 8 \quad 21.6 / 24$ or $1 / 4$
22. circles

Task 20

2.

2.

3. Total of 60 pupils surveyed. Therefore $360^{\circ} \div 60=6^{\circ}$, sector angles: $16 \times 6^{\circ}=96^{\circ}, 24 \times 6^{\circ}=144^{\circ}, 12 \times 6^{\circ}=72^{\circ}$ $8 \times 6^{\circ}=48^{\circ}$
4. Total of 45 days surveyed. Therefore $360^{\circ} \div 45=8^{\circ}$, sector angles: $15 \times 8^{\circ}=120^{\circ}, 20 \times 8^{\circ}=160^{\circ}, 8 \times 8^{\circ}=64^{\circ}$ $2 \times 8^{\circ}=16^{\circ}$
5. Total of 360 pupils surveyed. Therefore $360^{\circ} \div 360=1^{\circ}$, sector angles: $70 \times 1^{\circ}=70^{\circ}, 110 \times 1^{\circ}=110^{\circ}, 130 \times 1^{\circ}=130^{\circ}, 50 \times 1^{\circ}=50^{\circ}$
6.

Mathematical shapes		
Shape	Tally	F
\triangle	HIt III	8
曲	H月	5
\geqslant	HHT IHT IIHTII	17
\rangle	HI 1 Ht	10
		40

7. 40 shapes
8. 20%
9. ${ }^{17} / 40$
10. squares
11. diamonds
12. Total of 40 shapes. Therefore $360^{\circ} \div 40=9^{\circ}$, sector angles: triangles $=8 \times 9^{\circ}=72^{\circ}$, square $=5 \times 9^{\circ}=45^{\circ}$, circle $=17 \times 9^{\circ}=153^{\circ}$, diamond $=10 \times 9^{\circ}=90^{\circ}$
13. Andrews collection of mathematical shapes

Task 21

Below in the tables are the sector angle calculations, but the pie graphs have not been drawn.

1. $F=30,360^{\circ} \div 30=12^{\circ}$
2. $F=34,360^{\circ} \div 34=10.6^{\circ}$

No.	F	sector angles
0	5	$5 \times 12^{\circ}=60^{\circ}$
1	8	$8 \times 12^{\circ}=96^{\circ}$
2	10	$10 \times 12^{\circ}=120^{\circ}$
3	4	$4 \times 12^{\circ}=48^{\circ}$
4	3	$3 \times 12^{\circ}=36^{\circ}$
	30	

\mathbf{T}	\mathbf{F}	sector angles
walk	14	$14 \times 10.6^{\circ}=148.4^{\circ}$
bike	10	$10 \times 10.6^{\circ}=106^{\circ}$
bus	6	$6 \times 10.6^{\circ}=63.6^{\circ}$
car	4	$4 \times 10.6^{\circ}=42.4^{\circ}$
	34	

\mathbf{D}	\mathbf{F}	sector angles
1	8	$8 \times 10.6^{\circ}=84.8^{\circ}$
2	10	$10 \times 10.6^{\circ}=106^{\circ}$
3	5	$5 \times 10.6^{\circ}=53^{\circ}$
4	2	$2 \times 10.6^{\circ}=21.2^{\circ}$
5	4	$4 \times 10.6^{\circ}=42.4^{\circ}$
6	3	$3 \times 10.6^{\circ}=31.8^{\circ}$
7	2	$2 \times 10.6^{\circ}=21.2^{\circ}$

Worksheet 14

Time-series graphs:
As the name implies, time-series graphs are used to display data that has been collected over time. Example: temperature, height or weight changes, etc. This type of data is often continuous data as it is obtained by measuring.
All time-series graphs should have ...

- a title or name
- a label on each axis
- a scale on the vertical frequency axis
- dots or X to mark points, joined by lines
- time on the horizontal axis

In Task 22 pupils are to interpret a time-series graph, create graphs given the data, and answer questions using the data display. Pupils are to collect and graph their own time-series data.

Task 22

1. $62^{\circ} \mathrm{C}$
2. 6 minutes
3. $70^{\circ} \mathrm{C}$
4. $70-54=16^{\circ} \mathrm{C}$
5. $53^{\circ} \mathrm{C}$
6.

7. Friday
8. Wednesday
9. 10 minutes
10. 149 minutes
11. Once a week
13. week 4
14. week 3
15. 6 mm
16. week 2
17. 114 mm

Calculating the mean（average）：

Calculating the median（middle score）：
Finding the mode（most common score）：
Calculating the range（spread）：
There are three different＇averages＇that can be worked out，depending on the data and what you are trying to find out．

The mean is commonly known as the＇average＇．To find the mean，add up all the scores and divide by the total number of scores，including any zeros that are among the scores．

The median is the middle score or half way between the two scores in the middle，once the scores have been placed in numerical order from smallest to largest．

The mode is the most common score．There can be more than one mode or no mode at all．
The range is a measure of how spread out the scores are．It is calculated by finding the difference between the highest and the lowest scores．
In Task 23 pupils are to calculate the mean，given a list of scores，and solve word problems involving finding the mean．

In Task 24 pupils are to calculate the median，given a list of scores，and solve word problems
involving finding the median．
In Task 25 pupils are find the mode，given a list of scores，and solve word problems involving finding the mode．

In Task 26 pupils are to calculate the range，given a list of scores，and solve word problems involving finding the range．

Task 23

1． 9 2． 8
3． 14
4． 8
5． 9
6． 10
7． 5
8． 7.8
9． 4.3
10． 2.4
11． 12.6
12． 114.5
13．$\$ 4.65$
14．$\$ 5.40$
15．$\$ 3.26$
16． 9 turns
17． 50 seconds
18． 16 seconds
19． 10 boxes
20． 702 g
21． $22 g$
22． 8 cars
23．$\$ 11250$
24．$\$ 12400$

Task 24

1． 14
2． 15
3． 11
4． 17.5
5．$(0,3,6,8,9,14) 7$
6．$(2,4,6,6,7,9,10,11,14) 7$
7．$(4,6,8,9,10,14) 8.5$
8．$(1.3,1.6,1.7,1.9,1.9) 1.7$
9．$(2.1,2.3,2.4,2.7,2.9) 2.4$
10．$(0.4,0.6,1.9,3.4) 1.25$ 11．$(5.0,6.1,7.6,8.9) 6.85$ 12．$(11.7,12.6,14.3,19.4) 13.45$
13．$(117,129,129,132,139,141) 130.5$ 14．$(3.7,5.6,7.6,11.9,12.6,14.6) 9.75$
15．$(3.04,3.08,3.45,3.64,3.95) 3.45 \quad$ 16． 6 runs 17 ．$(1.4,1.5,1.6,1.8,1.9,2.4) 1.7 \mathrm{~km}$
18． 1 km 19． 10 boxes 20．$(995,995,996,999,1006,1008,1009,1009,1012,1014) 1007$
21． 19 g 22． 18 holes 23．（3，3，4，4，4，5，5，5，5，5，6，6，6，7，7，7，8，8）5 24． 5 stokes 25． 98

Task 25

1． 5,9
2． 6
3． 3
4．no mode
5． 15,23
6． 9
7． $8,9,10$
8．no mode
9． 35
10． 1.3
11． $2.3,4.2$
12．no mode
13． 12.01
14． 1
15． 2
16.

Juice cartons sold		
Volume	Tally	F
250 mL	册 IHI III	13
600 mL	册 IHII	11
1000 mL	哂 III	8
		32

19.

Length of telephone toll call（minutes）

Time 12 13 14 15 16 17 18 19 20 F 4 1 3 8 4 3 3 6 4
21． 36 calls

17． 250 mL cartons
18． 32 cartons

1. 19
2. 25
3. 8
4. 24
5. 19
6. 13
7. 18
8. 0.8
9. 0.7
10. 3.1
11. 4.7
12. 7.2
13. 26
14. 10.5
15. 0.8
16. 5 bicycles
17. \$145
18. \$244
19. 10 cans
20. 9 g
21. $(330,332,333,334$,
, 334, 335, 337, 338, 338, 339) 334.5g
22. 18 holes
23. 5
24. 4,5
25. 96 shots
26. 84
27. 105
28. 21 and 47

Worksheets 19 to 21

Interpreting data displays:
 Creating a statistical report:
 Misleading data displays:

The whole purpose of creating a data display, doing calculations using the data, is to convey a message or prove or disprove a statement. A data display tells a story about the data and being able to interpret that story is an important skill.

Task 27 is a revision exercise where pupils are to interpret various data displays.
In Task 28 pupils are to look at and talk about data displays that have been collected from newspapers or magazines, discussing the features that make the displays stand out.
In Tasks 29 to 31 pupils are presented with some data. Using all the skills they have previously learnt about creating data displays and doing calculations using the data, pupils are to create a statistics report to prove or disprove a statement about the data.

Task 27

1. 11 teachers do have white cars and while it was the most common car colour, 24 teachers did not have white cars. It is therefore incorrect for Anna to say that 'most' teachers have white cars as 11 out of 35 only 31.4% of teachers.
2. David is correct in that three pupils in his class did score 20 , whereas only one from Room 5 scored 20. The range for both classes is also the same (20-7 = 13). However, looking at the distribution of scores, Room 5 had more pupils score in the 10's than Room 4 did. The mean for Room 4 marks was 11.2 (1 dp) and the mean for Room 5 was 14.8 (1 dp), further proving that David's statement is incorrect.
3. Sally's statement is incorrect. The scale on the vertical axis does not startat zero, but starts at 10. From the graph we can see that there are 15 boys and 20 girls.
4. For similar reasons as in question 1 above, most pupils do not have hazel eyes as only 33.3% of all pupils have hazel eyes. That means that 66.6% do not. In Room 7, hazel is the most common eye colour, but that does not mean that 'most' pupils have hazel coloured eyes.

Task 29

For this task various graphs and calculations could be done; below are some examples.
John does have the faster lpas times for all three courses, but does that make him a better driver.
Calculating the range and mean would be useful.

```
Range for John's lap times
Course A: 71-59=12 sec
Course B: \(137-115=22 \mathrm{sec}\)
    Course C: 55-41=14 sec
Mean for John's lap times
    Course A: 65.6 sec
    Course B: 126.4 sec
    Course C: 45.8 sec
Range for John's lap times
Course A: 71-59 = 12 sec
Course B: 137-115=22 sec
Course C: 55-41=14 sec
```


Mean for John's lap times

```
Course A: 65.6 sec
Course B: 126.4 sec
Course C: 45.8 sec
```


Range for Rangi's lap times
 Course A: 70-60=10 sec

Course B: 135-117=18 sec
Course C: 50-36=14 sec

Mean for Rangi's lap times

Course A: 63.8 sec
Course B: 125.4 sec
Course C: 43.8 sec

Looking at the range values, Rangi's is the more consistent driver as his range values are less than those for John's lap times. Also Rangi's mean lap times for all courses are better than those of Rangi.

Who is the 'better' driver?

This data could be displayed as column graphs (not drawn to scale), such as

Similar column graphs could be drawn to display mean lap times and range values.
Conclusion: While John does have the faster lap times for all courses, Rangi has the more consistent lap times has his range values are narrower and his mean lap times are fastest. Based on these calculations, John's statement is incorrect, therefore Rangi is the better driver.

Task 30

Possible displays and calculations that could be done, as you consider the restaurant owner's statements:
Group size: Organise data into a frequency table and then draw a graph.
Calculate the mean, median and mode for group size.
Mean $=30 \div 8=3.75$ people, Median $(2,2,3,3,4,5,5,6)=3.5$ people, Mode $=2,3 \& 5$
Choice of main meal: Organise data into a frequency table and then draw a graph.

Cost per meal per person: Calculate the mean cost of a meal.
Total cost of all meals $=\$ 645$. Total number of meals $=30$
Mean cost $=\$ 645 \div 30=\$ 21.50$

Meal	F
chicken	11
fish	7
beef	8
pork	4

Length of time spent at the restaurant: Draw column or dot plot graph.
Calculate the mean, median and mode times.
Mean $=28 \mathrm{hrs} \div 8=3.5 \mathrm{hrs}$, Median ($1 \frac{1}{2}, 2 \frac{1}{2}, 3,3 \frac{1}{2}, 4,4,4 \frac{1}{2}, 5$) $=3 \frac{3}{4} \mathrm{hrs}$, Mode $=4 \mathrm{hrs}$
Conclusion: To summarise the results, the average number of people per group is 3.5 , the mos \dagger popular main meal is chicken. The average cost per person is $\$ 21.50$ and the groups stay for an mean (average) time of 3.5 hours. Based on these results, the restaurant owner was about right for group size, cost per person per meal and length of stay, but was incorrect in his choice of the most popular main meal.

Understanding probability words:

Worksheets 21 to 25
Calculating relative frequency I probability scales:
Finding outcomes using grids:
Finding outcomes using tree diagrams:
Using probability to predict outcomes:
Probability is a measure of the chance of how likely something will happen. Different words can be used to describe the chance of something happening and there are several probability calculations that can be performed. Some important probability words include experiment, trial, outcome \& event.
The rolling of a die, the drawing of a card are called experiments. When a die is rolled it is called a trial. An outcome is the result of an experiment. Finding all possible outcomes can be a challenge. An event is one of the possible outcomes.
In Task 32 pupils are to use probability words to describe the likelihood of events happening.
In Task 33 pupils are to calculate the relative frequency of something happening. Relative frequency can also be known as experimental probability. The relative frequency is worked out on actual results of an experiment.

Having calculated the relative frequencies of various events，these results are to be displayed on a probability scale．
In Tasks $348 \mathbf{8 5}$ pupils are to work out all possible outcomes for an experiment or situation in a systematic way using a simple grid or tree diagram．Pupils are to use information they have calculated to work out various questions associated with the data．
In Task 36 pupils are to work out the probability of events happening，based on data contained in tree diagrams，frequency tables or lists．Having worked out the probability values，pupils are to use this information to predict what they would expect to happen，given a larger population．

Task 32

2．D, E, A, C, B
For questions 3 to 22，some answers will vary depending on the pupils and the time of the year，therefore no answers have been given．Discuss each question with your class，explaining why different answers are acceptable．

Task 33

1． $\mathrm{HH}=13, \mathrm{HT}=17, \mathrm{TH}=19, \mathrm{TT}=11$
2． 60 trials
3．${ }^{13} / 60$
4．TT
5． $36 / 60$ or $3 / 5$
6.

10.

Mathematical shapes		
Shape	Tally	F
$\mathbb{\$}$	罤 IIII	9
回	\＃ H	5
\geqslant	Hent He Hent	15
\bigcirc	册 H 1 I	11
		40

11． circle $=15 / 40$ ，square $=5 / 40$, triangle $=9 / 40$, diamond $=11 / 40$ ． 12.

Task 34

3.

	R	B	G
P	PR	PB	PG
Y	YR	YB	YG
\bigcirc	OR	OB	OG

2．（rugby，cricket），（rugby，softball），（rugby，tennis）， （soccer，cricket），（soccer，softball），（soccer，tennis）．
4．（purple，red），（purple，blue），（purple，green），（yellow，red），（yellow，blue），（yellow，green），（orange，red）， （orange，blue），（orange，green）
6．（purple，red），（purple，blue），（purple，green），（purple，white），（purple，black），（yellow，red），（yellow，blue）， （yellow，green），（yellow，white），（yellow，black），（orange，red），（orange，blue），（orange，green）， （orange，white），（orange，black），（brown，red），（brown，blue），（brown，green），（brown，white）， （brown，black） 20 outcomes

	M	F	H	8．（bacon \＆eggs，milo），（bacon \＆eggs，fruit juice），（bacon \＆eggs，hot choc）， （toast \＆jam，milo），（toast \＆jam，fruit juice），（toast \＆jam，hot choc）， （cereal，milo），（cereal，fruit juice），（cereal，hot choc）
B	BM	BF	BH	
T	TM	TF	TH	
c	CM	CF	CH	

12.

	M	T	W	T	F	S	S
M	MM	MT	MW	MT	MF	MS	MS
V	VM	VT	VW	VT	VF	VS	VS
P	PM	PT	PW	PT	PF	PS	PS
F	FM	FT	FW	FT	FF	FS	FS

13. 28 outcomes
14. reduces the outcomes by 8 , therefore only 20 outcomes

Task 36

1. (H,H), (H,T), (T,H), (T,T) 2. 1 out of 4 or $1 / 4 \quad 3.1$ out of 4 or $\frac{1 / 4}{} \quad 4$. 2 out of 4 or $\frac{1}{2}$ 2 5. $\frac{1}{4}$ of $100=25$ times 6. 300 times $\quad 7.1$ out of 6 or $1 / 6 \quad 8$. 3 out of 6 or $\frac{1}{2} \quad 9$. 2 out of 6 or $1 / 3$ $10 . ~$
$1 / 6$ of $60=10$ times $\quad 11.1 / 2$ of $200=100 \quad$ 12. 120 drinks $\quad 13.50 / 120$ or $5 / 12 \quad 14.15 / 120$ or $1 / 8$
2. flavoured milk 16. 60 Fanta drinks 17. 15 ginger beer drinks
3.

19. ${ }^{12} / 40$ or $3 / 10 \quad$ 20. ${ }^{11 / 40}$
21. rock $=120$, jazz $=90$, country \& western $=80$, classical $=110$

Table of Contents for the Homework / Assessment Worksheet Masters for Statistics, Level 4

Worksheet Number	Topic	Statistics Objective(s)
1	Statisitical words / Designing a questionnaire / What would you investigate?	S1
2	Types of data / frequency tables / More frequency tables / Collecting data	S2 / S3
3	Interpreting column \& dot plot graphs / Creating a column graph / Creating a dot plot graph	S3
4	Understanding histograms / Creating a histogram	S3
5	Understanding stem \& leaf graphs / Creating a stem \& leaf graph	S3
6	Understanding pictograms / Understanding pie and strip graphs / Creating a pictogram, a strip graph and a pie graph	S3
7	Creating percentage bar graphs / Pie graph calculations / Creating a pie graph using a protractor	S3
8	Understanding time-series graphs Creating a time-series graph / Collecting data	S4
9	Mean, median, mode \& range / Finding the mean / Finding the median / Finding the mode / Finding the range / Word problems	S5
10	Interpreting data displays / Creating a statistical report	S6 / S7
11	Relative frequency / probability scales / Experiment \& investigation	S8
12	Listing outcomes / Creating a tree diagram / More outcomes / Creating a grid diagram	S9
13	Using probability to predict outcomes / probability	S9
	Answers	

Class:

Complete by:

A: 10 'Quick Questions'

1. $15-3 \times 4+9=$
2. Convert 435 mm to cm
3. Change $15: 45$ in 24 hr time to a.m or p.m. time
4. Calculate 2^{3}
5. Find the missing angle X
$x=$ \qquad
6. Find $\frac{1}{2}$ of $\$ 39.50$
7. Estimate 97.56×10.53 by rounding first
\qquad
8. Shade in 33.3% of these circles
9. $5.7 \times 100=$ \qquad
10. Circle the digit that represents the tenths in the number ... 15.67

B: Types of data / frequency tables

There are two types of data that can be collected, discrete data and continuous data. Complete these sentences using these words.

1. Data that is obtained by counting is called data.
2. Data that is obtained by measuring is called data.

Sally recorded the number of library books each pupil in Rooms 4 and 5 read in one week.
3. Organise this data in the
frequency table below.

Number of books	Tally	F
1		
2		
3		
4		

5. How many pupils read at least 3 books?
6. How many pupils in Rooms 4 and 5 ?

C: More frequency tables

When there is large range of data scores, data can be grouped to avoid having too many rows in the frequency table.
The following data shows the number of Lego blocks used to create some models.

$9,12,23,28,32,19,39$, 10, 21, 34, 8, 29, 37, 21, 39, 26, 11, 38, 9, 29, 26, $18,16,24,35,40,16,26$, $13,24,36,34,26,27,18$, $9,23,27,34,40,16,21$, $18,11,26,13,24,8,38$

Number of blocks	Tally	F
$1-10$		
$11-20$		
$21-30$		
$31-40$		

1. Organise the data into the frequency table.
2. What numbers occur in the class interval or group 11 to 20?
3. How many Lego models had at least 21 blocks?
4. How many Lego models had no more than 30 blocks?
5. How many Lego models were made altogether?
6. What was the mos \dagger common number of books read?

Number of books each pupil reads
1, 3, 4, 2, 3, 1, 2, 4, 3,
$2,4,3,1,3,2,4,3,2$,
$1,3,2,4,3,3,2,1,1$,
$2,3,4,3,1,2,3,2,1$,
2, 3, 2, 1, 2, 3, 2, 1, 3,
$2,4,2,3,2,3,2,4,1$,
$2,3,2,4,3,2,1,2,4$
\qquad

D: Collecting data

If you are at school or at home, collect this data about these objects in your house or your classroom.

Number of ...	Tally	F
windows		
doors		
tables		
chairs		
light bulbs		
televisions		
radios		

What was the most common object you counted?

Homework / Assessment Worksheet

Name:

A: 10 'Quick Questions'

1. $9 \times 7-8 \times 6=$
2. Calculate $\sqrt{169}=$ \qquad
3. Round $\$ 29.86$ to the nearest dollar \qquad
4. If the perimeter of a square is 20 cm , what is the area?
5. Find the missing angle X $X=$ \qquad

6. Solve the equation $6 y-11=25 \quad y=$
7. Change $14: 35$ in 24 hr time to a.m or p.m. time
8. Convert 40\% to a decimal
9. $\quad 3.6 \times 0.8=$
10. Measure the length of this line to the nearest mm

C: Experiment \& investigation

Select a card from a pack of cards 30 times, replacing the card each time. Record the results in the table below.

heart	
diamond	
spade	
clubs	

Based on your results, what is the relative frequency of selecting each suit?
hearts =
diamonds = \qquad
spades $=$
clubs $=$

B: Relative frequency / probability scales

The relative frequency of an event is the proportion or fraction of times the event occurs.
A die is rolled 150 times and the results are shown in this table.

1. Find the relative frequency of each number occurring.
1 = \qquad $2=$
3 = \qquad 4 =
$5=$ \qquad

	Number	F
	1	23
	2	25
	3	28
	4	21
	5	27
	6	26

This frequency table was used to record the results as two coins were tossed.
2. Complete the frequency column in the table.
3. How many times were the
coins tossed? \qquad

Event	Tally	F
HH	H+\# H+1 H+ II	
HT		
TH		
TT		

4. What is the relative frequency of the event 'TT'?
5. Which event had a relative frequency of ${ }^{17} / 70$?
6. What is the relative frequency of the events 'HT' and 'TH' combined?

7. Mark on the probability scale below the events 'TT', 'HH' and 'HT' / 'TH' combined.
impossible

Michelle has a bag of Lego blocks containing different coloured blocks. This table shows how many of each coloured Lego block is in the bag.

(R) red	(W) white	(B) blue	(G) green	$(\mathrm{Y}$ yellow
25	40	15	20	100

8. How many Lego blocks does Michelle have?
9. If a block is selected from the bag, calculate the relative frequency of selecting each colour of block.
red = \qquad white $=$ \qquad
blue = \qquad green $=$ \qquad
yellow = \qquad
10. If the relative frequency of selecting a ball is 10%, which colour ball has been selected?
11. Mark on the probability scale below the events of choosing each colour of Lego block.
impossible
certain

Comments:
\qquad

Class:

Complete by:

Name:

A: 10 'Quick Questions'

1. $8 \times 9-7 \times 5=$
2. Calculate $\sqrt{196}=$ \qquad
3. Round $\$ 59.51$ to the nearest dollar
4. If the area of a square is $49 \mathrm{~cm}^{2}$, what is the perimeter?
5. Find the missing angle X $X=$ \qquad

6. Solve the equation
$9 y-23=49 \quad y=$
7. Change $18: 15$ in 24 hr time to a.m or p.m. time
8. Convert 65% to a decimal
9. $4.8 \times 0.9=$
10. Measure the length of this line to the nearest cm

C: Probability
The calendar below is for June.

\mathbf{S}	\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

Mary is going to go to the movies in June.

1. What is the probability she will go on a Monday or on a Wednesday?
Mon \qquad Wed \qquad
2. What is the probability that she will go during the second week? \qquad
3. What is the probability she will go in the weekend?

B: Using probability to predict outcomes

A six-sided die (dice) is rolled several times.

1. What is the probability that it lands showing a 5?
2. What is the probability that it lands showing a 2 or 3 ?
3. What is the probability that it lands showing a number less than 4 ?
4. If a die is rolled 120 times, how many times would you expect it to land showing a 6?
5. If a die is rolled 240 times, how many times would you expect it to land showing a number greater than 4 ?

A local shop-keeper kept a record of the number of different drinks that he sold to pupils in one day. This table shows the result.

Drink	Number sold	6. 7.	How many drinks has he sold altogether? \qquad
Coca Cola	30		
Fanta	50		a pupil had a drink of Coca
Flavoured milk	15		Cola?
Fruit juice	20	8.	What is the probability that
Ginger beer	5		juice?

9. 5 out of 12 pupils chose which drink?
10. If 60 pupils ordered drinks, how many Fanta drinks would the shop-keeper expect to sell?
11. If 360 pupils ordered drinks, how many fruit juice drinks would the shop-keeper expect to sell?

Jim wants to go to the movies.
The tree diagram below shows the choices he has to make.

12. How many outcomes does Jim have to choose from?
13. What is the probability that Jim goes to the movies on Friday?
14. What is the probability that Jim goes to a comedy movie?
15. What is the probability that Jim goes to a horror movie on a Saturday?
16. What is the probability that Jim goes to an action movie on Friday, Saturday or Sunday?

Homework／Assessment Worksheet Answers

Worksheet 1

A：
1． 48
2． 225
3． $21,27,33,39$
4． 75%
5． 31^{0}
6．$\$ 9.20$
7． $400 \div 4=100$
8.
9． 0.0093 10． 9 cm
B：
1．population
2．sample
3．survey
4．representative sample
5．biased
6．random
7．questionnaire

C：

Possible answers for questions 1 to 4.
\square What questions relating to the＇issue／s＇are you going to ask？
\square Do not ask questions that are not important to the issue．
\square Make the questions clear and concise and not too many of them．
\square How are these questions going to be answered？
Example：multi－choice，single words，short answers or long answers．
\square Have you allowed for every possible answer？
\square Do you need to give instructions as to how the questionnaire has to be filled out？
\square How are you going to organise and display the data you have collected？

Worksheet 2

A：
1． 12
2． 43.5 cm
3． $3: 45$ p．m．
4． 8
5． 29°
6．$\$ 19.75$
7． $100 \times 10=1000$
8.
．$\bigcirc \bigcirc$
9． 5700
10．circle the digit＇ 6 ＇

B：
1．discrete
2．continuous
3.

Number of books	Tally	F
1	HIt H＋It II	12
2	冉 冊 H H H II	22
3	冊 冊 H I\＃IIII	19
4	冊	10
		63

4． 2 books
5． 29 pupils
6． 63 pupils
C：
1.

Number of blocks	Tally	F
1－10	\＃\＃I	6
11－20	冊 冊 II	12
21－30		18
31－40	IIII IIII III	13
		49

2． $11,12,13,14$ ， 15，16，17，18， 19， 20
3． 21 models
4． 13
5． 49 models

Worksheet 3

A：
1． 7
2． 2.3 m
3． $22,27,32,37$
4． $16: 25$
5.
8.

9． 0.0083
10． 7 cm
6．$\$ 6.20$
7． $500+900=1400$

B：
1．The number of each colour of jelly beans in one jacket．
2． 9 red
3．green
4． 34 jelly beans

5．Money Julie earned from a part－time job．6．\＄14
7．Thursday
8．\＄106

C：

Days of the week

Worksheet 4

A:

1. 33
2. 5.6 km
3. $27,34,41,48$
4. 0.40
5. 0.057 10. circle the digit 9
B:
6. Maths test scores for Room 10 pupils
7. $10,11,12,13,14$
8. 3 pupils
9. 16 pupils
10. 29 pupils
11. Weights of fish in a fishing competition
12. 12.00 kg to 15.99 kg
13. 22 fish
14. 44 fish

$G:$

A:

1. 12
2. 15
3. $\$ 17$
4. $9 \mathrm{~cm}^{2}$
5. 124^{0}
6. $y=6$
7. 9:25 a.m.
8. <
9. 1.08
10. 43 mm

B:

1. Test results for pupils in Room 7
2. 40
3. $12,13,19,18,13,11,27,23,27,29,24,27,22,38,34,33$, 31,
$36,37,32,30,40,40$
4. 17 pupils
5. 23 pupils
6. Lap times for a car race recorded in seconds 7. 230 seconds 8. 269 seconds
7. fastest time $=3 \mathrm{~min} 50 \mathrm{sec}$, slowest time $=4 \mathrm{~min} 29 \mathrm{sec}$
8. 20 cars

G:
1.

English test scores	Maths test scores	
$8,8,9$	1	9,6
$4,8,9,4,9,4,6$	2	$7,5,7,6,6$
$1,5,1,6,8$	3	$9,7,9,1,8,9$
$6,2,8,1$	4	$2,9,2,7,1$
0,0	5	$0,0,0$

2. English: 50 \& 18, Mathematics: 50 \& 16
3. 3 pupils scored 50 out ot 50 for the mathematics test, whereas only one pupil got 50 in the English test. Overall, the Mathematics were better than the English scores as there were more Mathematics scores in the 30's, 40's and 50's.

Worksheet 6

A:

1. 60
2. 6.3 L
3. $29,38,47,56$
4. 0.60
5. 49.2
6. circle the digit 3

7. $h=6$
8. $500 \times 10=5000$
9. <

B:

1. fries $=20$ items, hamburgers $=24$ items, juice $=28$ items

G:

1. Pie graph: sunny $=20$ days, cloudy $=25$ days, raining $=5$ days
Strip graph: sunny $=15$ days, cloudy $=25$ days, raining $=10$ days
2. 50 days

D:

Pictogram

Strip graph \square

Worksheet 7

A:

1. 18
2. 400
3. $\$ 68.85$
4. 25%
5. 39°
6. $\$ 13.25$
7.

8. $y=7$
9. 4500 m
10. $-4^{\circ} \mathrm{C}$

B:

1. $\$ 12$
2. 6.3 kg
3. 150 m
4. $\$ 2.56$
5. 18.5 mm
6.

What Shelley did with her money

C:
1.

2. $\$ 200$

3. $\$ 750$

D:

1. $360^{\circ} \div 60=6^{\circ}, 1$ day $=6^{\circ} \quad$ 2. sector angles, sunny $=168^{\circ}$, cloudy $=96^{\circ}$, raining $=72^{\circ}$, snowing $=24^{\circ}$

Worksheet 8

A:

1. 30
2. 5625 mg
3. $27,35,43,51$
4. 0.80
5. $15: 40$
6. 97.6
7. circle the digit 1

B:

1. Maximum daily temperature in Akaroa
2. 15 days
3. $15^{\circ} \mathrm{C}$
4. 2 days

C:

et A	Set B	Set C	Set D	Set
$9+13=22$	$8+17=25$	$7+29=36$	$59+6=65$	$7+16=23$
$23+9=32$	$24+7=31$	$38+5=43$	$8+47=55$	$45+8=53$
$21-8=13$	$33-9=24$	$32-10=22$.	$30-9=21$	$36-9=27$
$42-9=33$	$57-8=49$	$53-12=41$	$72-21=51$	$53-22=31$
$5 \times 8=40$	$6 \times 9=54$	$7 \times 10=70$	$9 \times 7=63$	$9 \times 7=63$
$6 \times 7=42$	$7 \times 8=56$	$8 \times 9=72$	$6 \times 8=48$	$8 \times 5=40$
$4 \times 9=36$	$9 \times 5=45$	$5 \times 10=50$	$9 \times 9=81$	$6 \times 9=54$
$32 \div 8=4$	$48 \div 6=8$	$56 \div 8=7$	$64 \div 8=8$	$56 \div 7=8$
$49 \div 7=7$	$54 \div 9=6$	$35 \div 7=5$	$63 \div 7=9$	$72 \div 8=9$
$36 \div 4=9$	$28 \div 4=7$	$111 \div 3=37$	$68 \div 4=17$	$48 \div 3=16$
Time taken:	Time taken:	ime taken:	Time taken:	Time taken:

Worksheet 9

A:

1.21

1. 21
2. 1.44
3. $\$ 59.40$
4. 65%
5. 40°
6. $\$ 29.50$
7.

8. $y=4$
9. 5.265 kg

B:

1. mean
2. median
3. mode
4. range

C:

1. 10
2. 9
3. 6
4. 5
5. 13.5
6. 52.5

D:

1. 11
2. 10
3. 14
4. 20
5. $6,11,13,18,21$, median $=13$
6. $3,5,7,9,11,12$, median $=8$

E:

1. 4
2. 7,8
3. no mode
4. 6,8
5. 5,7
6. 9

F:

1. $14-2=12 \quad$ 2. $17-1=16$
2. $\$ 205400-\$ 67900=\$ 137500$

G:

1. 5
2. $8-3=5$
3. 4
4. $3,4,4,4,4,5,6,7,8$
$5,5,6,6,7,7,7,8$ media
5. $3,3,3,4,4,4,4,4,4,5,5,5,6,6,7,7,7,8$ median $=4$
6. $41-9=32$
7. $\$ 198500-\$ 147990=\$ 50510$

Worksheet 10

A:

1. 32
2. 09:35
3. $h=6$
4. $3 / 4$
5. 25°
6. $\$ 27.60$
7. $500 \div 10=50$
8. OOOO
9. 0.00089 10. 12 cm
B:
10. Cats are the most popular choice of pets that pupils in Room 5 do have, however only 10 of the 26 pupils in Room 5 have a cat as a pet. Therefore, Sally's statement is incorrect as more pupils have pets that are not cats.
11. Consider Richard's scores: highest score $=59$, lowest score $=14$, therefore the range is 45 mean $=27$, median $=25.5$, mode $=28$
Consider David's scores: highest score $=45$, lowest score $=26$, therefore the range is 19 mean $=37$, median $=38.5$, mode $=$ no mode
While Richard did have the highest score, David's scores were better overall, therefore Richard's statement is incorrect.

C:

1. The strip graph shows the weather conditions for June. Each square represents 3 days. During June it was sunny for 12 days, cloudy for 12 days and raining on 6 days. Quite a good month as there was little rain.
2. In this frisbee throwing competition, 20 people took part. The best throw was 79 metres and the worst throw was 44 metres, therefore there was a range of 35 metres. The mean throw was 60.7 metres, with a median throw of 60.5. A good competition.

Worksheet 11

A:

1. 15
2. 13
3. $\$ 30$
4. $25 \mathrm{~cm}^{2}$
5. 111°
6. $y=6$
7. 2:35 p.m.
8. 0.40
9. 2.88
10. 34 mm

B:

1. $1={ }^{23} / 150,2={ }^{25} / 150,3={ }^{28} / 150,4={ }^{21} / 150,5={ }^{27} / 150,6={ }^{26} / 150$
2.

Event	Tally	F
HH		17
HT	冉 H 冉 H I I	16
TH		18
TT	H+1 H+1 H+1 IIII	19

3. 70 times
4. ${ }^{19} / 70$
5. HH
6. ${ }^{34} / 70$

7. 200 Lego blocks 9. red $={ }^{25} / 200$, white $={ }^{40} / 200$, blue $={ }^{15} / 200$, green $={ }^{20} / 200$, yellow $={ }^{100} / 200 \quad$ 10. green 11.

Worksheet 12

A:

1. 41
2. 2.47 m
3. $37,49,61,73$
4. 0.45
5.
6. 55.6 10. circle the digit 9
B:

7. $\mathrm{h}=5$
8. $450 \times 2=900$
9. $06: 52$

Let $\mathrm{T}=$ toast, $\mathrm{C}=$ cereal, $\mathrm{F}=$ fruit. $\mathrm{Mo}=$ milo, $\mathrm{Mi}=$ milk, $\mathrm{J}=$ juice

1. (T,Mo), (T,Mi), (T,J), (C,J), (C,Mo), (C,Mi), (C,J), (F,Mo), (F,Mi), (F,J)
2. 9 outcomes

C:

1. -
2. 8 outcomes

D:

1. Karen wears a skirt and t-shirt
2. Karen wears shorts and a tank-top
3. 9 combinations

E:

1.

	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6,6

Worksheet 13

A:

1. 37
2. 14
3. $\$ 60$
4. 28 cm
5. 113°
6. $y=8$
7. $6: 15$ p.m.
8. 0.65
9. 4.32
10. 5 cm
B:
11. $1 / 6 \quad$ 2. $\frac{2}{6}$ or $1 / 3 \quad$ 3. $\frac{3}{6}$ or $1 / 2 \quad$ 4. $1 / 6$ of $120=20$ times \quad 5. $1 / 3$ of $240=80$ times $\quad 6.120$ drinks 7. ${ }^{30} / 120$ or ${ }^{1} / 4$. ${ }^{20} / 120$ or ${ }^{1 / 6}$. Fanta 10. 25 Fanta drinks 11.60 fruit juice drinks 12. 9 outcomes 13. $1 / 3 \quad$ 14. $1 / 3 \quad 15 .{ }^{1} / 916.3 / 9$ or $1 / 3$

C:

1. Monday $=4 / 30$ or ${ }^{2} / 15$ Wednesday $=5 / 30$ or ${ }^{1} / 6 \quad$ 2. ${ }^{7} / 30 \quad$ 3. ${ }^{8} / 30$ or ${ }^{4} / 15$

Tracking Sheet: ‘In-class’ Activity Sheets

13	S3															
12	S3															
11	S3															
10	S3															
9	S3															
8	S3															
Z	S2 / S3															
6	S2 I S3															
5	S2 I S3															
4	S2															
3	S2															
2	S1															
1	S1															
	$\stackrel{\underset{\sim}{\mathbb{N}}}{\stackrel{\sim}{\mathbf{Z}}}$															

Tracking Sheet: ‘In-class’ Activity Sheets

Tracking Sheet: Homework / Assessment Worksheets

