Do now on writing expressions

WALT Dividing algebraic terms

Success Criteria

When dividing algebraic terms containing pronumerals and numbers, follow these steps. Step 1: Write the division as a fraction. Step 2: Cancel the numbers, if possible.
Step 3: Cancel the pronumerals, if possible.
Step 4: Write your answer as a fraction. (Remember: Cancel means divide the numerator and denominator by the same number or pronumeral.)
Step 4: Write your answer as a fraction.

Video On dividing algebraic terDividing Algebraic Termsms

1 Complete the following to simplify.
a $10 y \div 15=\frac{10 y}{\square}$
$=\frac{2 y}{\square}$
b $8 m \div 12 m=\frac{\square}{12 m}$

$$
=\frac{\square}{3}
$$

c $6 x \div 8 x y=\frac{\square}{8 x y}$
$=\frac{\square}{4 y}$

2 Simplify the following.
a $9 x \div 18$
b $3 m \div 12$
c $5 p \div 25$
d $16 d \div 4$
e $\frac{10 c}{2}$
f $\frac{8 a}{4}$
g $\frac{6 a}{12 a}$
h $\frac{44 m}{22 m}$
i $\frac{12 a}{15 a}$
j $\frac{20 d}{10 d}$
k $\frac{3 f}{9 f}$
l $\frac{4 t}{20 t}$
m $\frac{18 p}{20 d}$
n $\frac{6 x y}{15 x}$

- $\frac{24 a b}{36 b c}$
p $\frac{16 r}{20 q r}$
q $\frac{8 y z}{40 x y z}$
r $\frac{70 \mathrm{dkl}}{10 \mathrm{klm}}$
s $\frac{15 p q r}{12 q}$
t $\frac{14 m n}{35 m p}$

Challenge

EXAMPLE 2

Simplify the following.
Remember: When dividing two integers: If the signs are the same, the result is positive. If the signs are different, the result is negative.
a $\frac{-x y}{-y}$
b $\frac{40 a c}{-10 a c}$
c $\frac{-16 x^{2} y}{-8 x}$
a $\frac{-x y}{-y}=\frac{-x y}{-y}$
b $\frac{40 a c}{-10 a c}=\frac{{ }^{4} 40 a c}{-{ }^{1} 10 a c}$
$=-4$
c $\frac{-16 x^{2} y}{-8 x}=\frac{-^{-2} 16 x^{2} y}{-{ }^{1} 8 x}$
$=2 x y$

3 Complete the following to simplify.
a $\frac{15 a b}{-20 a c}=\frac{15 a b}{\square}$
b $\frac{-x}{x y}=\frac{\square}{x y}$
$=\frac{3 b}{\square}$
$=-\frac{3 b}{\square}$

$$
\begin{aligned}
& =\frac{\square}{y} \\
& =-\frac{\square}{y}
\end{aligned}
$$

4 Simplify the following.
a $\frac{-50 d}{10 d}$
b $\frac{-12 f g}{-18 g}$
c $\frac{-6 k l}{9 l}$
d $\frac{12 f g}{-3 g h}$
e $\frac{-36 l m}{9 m}$
f $\frac{-90 y}{99 x}$
g $\frac{-45 c}{-15 a c}$
h $\frac{-a^{2} b c}{b^{2} c}$
i $\frac{-m n}{n^{2}}$
j $\frac{x^{2} y z^{2}}{-y^{2} x}$
k $-64 p \div-16 q$
$1-6 a c \div-9 c$
$\mathrm{m}-2 m n \div-8 m n$
n $-10 \div 5 m n$
o $-3 q \div q$
p $21 p q \div-3 p^{2}$

Extension

Simplify the following divisions by cancelling any common factors.
a $\frac{5 a}{10 a}$
b $\frac{7 x}{14 y}$
c $\frac{10 x y}{12 y}$
d $\frac{a b}{4 b}$
Cancel numbers and pronumerals where possible
e $\frac{7 x y z}{21 y z}$
f $\frac{2}{12 x}$
g $\frac{4 x y}{7 x}$
h $\frac{3 a b c}{6 b}$

Problem-solving and Reasoning
Write a simplified expression for the area of the following shapes. Recall that rectangle area $=$ width \times length .
a

Simplify the following completely.
a $2 a \times 3 b+5 a b$
b $6 q \times 2 r+4 q \times 3 r$
You can combine
c $10 x \times 2 y-3 y \times 6 x$

Fill in the missing terms to make the following equivalences true.
a $\quad 3 x \times \square \times z=6 x y z$
b $4 a \times \square=12 a b$
c $\frac{\square}{4 r}=7 \mathrm{~s}$
d $\frac{\square}{2 a b}=4 b$

Joanne claims that the following three expressions are equivalent: $\frac{2 a}{5}, \frac{2}{5} \times a, \frac{2}{5 a}$.
a Is she right? Try different values of a.
b Which two expressions are equivalent?
c There are two values of a that make all three expressions are equal. State one of them.

Check if you can work on it

a Simplify $2 a \times 3 b+5 b \times 2 a$ to a single term.
b State another way to fill in the blanks to make the simplification correct:

$$
\square a \times \square b+\square b \times \square a=16 a b
$$

c Give an example of an even longer expression that is equivalent to $16 a b$.

Check your answers

$1 \mathrm{a} \frac{{ }^{2} 10 y}{{ }^{3} 15}=\frac{2 y}{3}$
c $\frac{{ }^{2} 8^{1} m}{{ }^{3} 12^{1} m}=\frac{2}{3}$
c $\frac{{ }^{3} 61 x}{4^{1} x y}=\frac{3}{4 y}$
2 a $\frac{x}{2}$
b $\frac{m}{4}$
c $\frac{p}{5}$
d $4 d$
e $5 c$
f $2 a$
g $\frac{1}{2}$
h 2
i $\frac{4}{5}$
j 2
k $\frac{1}{3}$
1 $\frac{1}{5}$
$\mathrm{m} \frac{9 p}{10 d}$
n $\frac{2 y}{5}$
o $\frac{2 a}{3 c}$
p $\frac{4}{5 q}$
q $\frac{1}{5 x}$
r $\frac{7 d}{m}$
s $\frac{5 p r}{4}$
t $\frac{2 n}{5 p}$
3 a $\frac{{ }^{3} 15^{1} a b}{-{ }^{4} 20^{1} a c}=-\frac{3 b}{4 c}$
b $\frac{-{ }^{1} x}{{ }^{1} x y}=-\frac{1}{y}$
4 a - 5
b $\frac{2 f}{3}$
c $-\frac{2 k}{3}$
$\mathrm{d}-\frac{4 f}{h}$
e $-4 l$
f $-\frac{10 y}{11 x}$
g $\frac{3}{a}$
$\mathrm{h}-\frac{a^{2}}{b}$
i $-\frac{m}{n}$
j $-\frac{x z^{2}}{y}$
k $\frac{4 p}{q}$
$1 \frac{2 a}{3}$
$\mathrm{m} \frac{1}{4}$
n $-\frac{2}{m n}$
0-3
$\mathrm{p}-\frac{7 q}{p}$

| a $\frac{1}{2}$ | b $\frac{x}{2 y}$ | c $\frac{5 x}{6}$ | d $\frac{a}{4}$ |
| :--- | :--- | :--- | :--- | :--- |
| e $\frac{x}{3}$ | f $\frac{1}{6 x}$ | g $\frac{4 y}{7}$ | h $\frac{a c}{2}$ |
| a $8 a b$ | b $24 x^{2}$ | c $18 x y$ | |
| a $11 a b$ | b $24 q r$ | c $2 x y$ | |
| a $2 y$ | b $3 b$ | c $28 r$ a | d $8 a b^{2}$ |
| a no | b $\frac{2 a}{5}$ and $\frac{2}{5} \times a$ | c $a=1$ or $a=-1$ | |
| a $16 a b$ | b $2,5,6,1$ others possible | | |
| c $2 a \times 3 b+3 a \times 2 b+4 a \times b$. Others possible. | | | |

