

Three sides equal

This triangle is equilateral.
What is its perimeter?

Parallel Lines application

21 In this Tamoil sign, each one of the obtuse angles is 115°. What size is each of the acute angles?

22 In the diagram $\mathrm{AB}\|\mathrm{DE}\| \mathrm{CF}, \mathrm{EF} \| \mathrm{DC}$ and $\mathrm{AE} \| \mathrm{BC}$. $\angle \mathrm{AED}=78^{\circ}$ and $\angle \mathrm{DEF}=63^{\circ}$.

23 In the diagram ABCE is a parallelogram and $\triangle C D E$ is isosceles, with $C D=D E$. $\angle \mathrm{EDC}=124^{\circ}$.

Calculate the size of $\angle \mathrm{ABC}(x)$, giving reasons for each step.
24 A rafter meets the top of a wall at an angle of 22.5°. What is the size of the angle marked x ?

Answers

216°
$22 \angle \mathrm{DCF}=63^{\circ}$ (opp \angle 's of \|gram are equal)
$\angle \mathrm{ABC}=78^{\circ}$ (opp $\angle '$ s of $\|$ gram are equal)
Angles DCF, BCD and ABC are
supplementary (co-int \angle 's, || lines, add to 180°)
$x+63+78=180$
$x=39^{\circ}$
$23 \angle \mathrm{CED}=28^{\circ}(\angle$ sum isos $\triangle)$
$\angle \mathrm{AEC}=152^{\circ}\left(\angle '\right.$ s on line add to $\left.180^{\circ}\right)$
$x=152^{\circ}$ (opp \angle 's of \|gram are equal)
24112.5°

Polygons

12 Some regular polygons have special names.
a What is the special name for a regular triangle?
b What is the special name for a regular quadrilateral?
13 The diagram shows the cross-section of a community hall and adjoining kitchen. Calculate the size of the angles marked x and y. Give reasons.

14 Explain what is wrong with Lucy's reasoning.
"All regular polygons have equal angles.
A rectangle has four equal angles. Therefore a rectangle is a regular quadrilateral."
15 Explain what is wrong with Ralph's statement. Include a drawing to show he is wrong.
"A hexagon with six equal sides must be regular."

19 The diagram shows a regular hexagon, with one exterior angle marked.
a Calculate the size of the angle marked x.

b How many lines of symmetry does a regular hexagon have?
c What is the angle between two adjacent lines of symmetry?
20 Calculate the sum of the interior angles and hence the size of each angle in a regular 12 -sided polygon.
21 Find the number of sides of a regular polygon if each exterior angle is:
a 30°
b 40°
c 18°
22 The sum of the interior angles of a polygon is 2340°. How many sides does it have?
23 Find the number of sides of a regular polygon if each interior angle is:
a 120° b 144°

16 The diagram shows a regular octagon with an exterior angle, and two line segments from the centre to adjacent vertices. Calculate the size of the angles marked x and y.

17-18 Work out the size of the marked angles.

17

17

24 Is it possible to draw a regular polygon with each interior angle as:
a 160° ? b 145° ?
Explain why or why not.
25 If a regular polygon had 360 sides, what would be the size of:
a each exterior angle?
b each interior angle?
c What would the polygon look like?
26 a Which one of these diagrams shows an exterior angle of a polygon?
A

B

b Explain in words, without using a diagram, how you form an exterior angle of a polygon.

27 One property of regular hexagons is that they tessellate. This means that hexagonal cobblestones, for example, fit together without
 leaving gaps.

Explain why regular pentagons do not have the same property.

28-33 Calculate the marked angles.

29

30

31

34 Some equal regular pentagons are placed together with the intention of forming a ring. The diagram shows the first three in position.

a Will the pentagons form a complete ring or will there be a gap?
b How many pentagons will be needed altogether before no more will fit?
35 A pentagram is a regular five-pointed star.
a How many interior angles does a pentagram have?
b Calculate the size of each acute interior angle.

c Calculate the size of each reflex interior angle.
36 The diagram s2ws a septagram, or regular sevenpointed star. Calculate the size of the angle at one of its points.

12 a Equilateral triangle
b Square
$13 x=100^{\circ}$ (quad, \angle sum is 360°)
$y=10^{\circ}$ (ext \angle of $\triangle=$ sum of int
opp \angle 's)
14 To be regular a polygon must not only have equal angles, but must also have equal sides, and a rectangle does not necessarily have equal sides.
15 The angles must also be equal - it is possible for a hexagon with 6 equal sides not to have equal angles.

