Do Now work on level 4,5 and 6

WALT Solving Fractional equations

Success Criteria I know,that fractional equations can be simplified by finding the least common denominator (LCD) of the fractions. Each term is then multiplied by the fraction which makes the denominators the same (LCD) and then the numerators are equated.

Consider the following fractional equations:
$\frac{x}{2}=\frac{x}{3}$ has a LCD of $2 \times 3=6 \quad$ and $\quad \frac{5}{2 x}=\frac{3 x}{5}$ has a LCD of $2 x \times 5=10 x$.

Brample 5

Solve for $x: \quad$ a $\frac{x}{3}=\frac{3}{2} \quad$ b $\frac{4}{x}=\frac{2}{3}$

$$
\begin{aligned}
\frac{x}{3} & =\frac{3}{2} & & \text { has LCD of } 6 \\
\frac{x \times 2}{3 \times 2} & =\frac{3 \times 3}{2 \times 3} & & \text { \{to achieve a common denominator of } 6 \text { \} } \\
\therefore \quad 2 x & =9 & & \text { \{equating numerators \} } \\
\therefore \quad \frac{2 x}{2} & =\frac{9}{2} & & \text { \{dividing both sides by } 2 \text { \} } \\
\therefore \quad x & =4 \frac{1}{2} \quad & & \text { \{simplifying \} }
\end{aligned}
$$

$$
\begin{aligned}
\frac{4}{x} & =\frac{2}{3} & & \text { has LCD } 3 x \\
\therefore \quad \frac{4 \times 3}{x \times 3} & =\frac{2 \times x}{3 \times x} & & \text { \{to achieve a common denominator of } 3 x \text { \} } \\
\therefore \quad 12 & =2 x & & \text { \{equating numerators \} } \\
\therefore \quad \frac{12}{2} & =\frac{2 x}{2} & & \text { \{dividing both sides by } 2 \text { \} } \\
\therefore \quad x & =6 \quad & & \text { \{simplifying \}}
\end{aligned}
$$

EXERCISE 10B

1 Solve for x :
a $\frac{x}{2}=\frac{3}{5}$
b $\frac{x}{3}=\frac{2}{7}$
c $\frac{x}{5}=\frac{2}{3}$
d $\frac{x}{4}=-\frac{2}{3}$
e $\frac{3}{x}=\frac{1}{2}$
f $\frac{4}{x}=\frac{1}{7}$
g $\frac{5 x}{3}=\frac{1}{2}$
h $\frac{7}{2 x}=-\frac{1}{3}$

CROSS MULTIPLICATION

If two fractions are equal we can use cross multiplication to form an equation without denominators.

Notice that $\frac{4}{6}=\frac{2}{3}$ and so $4 \times 3=2 \times 6$.
We can use cross multiplication of two equal fractions to avoid having to equalise denominators.

Brample 6

Solve for $x: \quad \frac{7}{x}=\frac{4}{3}$
$\frac{7}{x}=\frac{4}{3}$
$\therefore \quad 4 \times x=7 \times 3 \quad$ \{cross multiplying
$\therefore \quad 4 x=21 \quad$ \{simplifying\}
$\therefore \quad \frac{4 x}{4}=\frac{21}{4} \quad$ \{dividing both sides by 4 \}
$\therefore \quad x=5 \frac{1}{4} \quad$ \{simplifying $\}$

To keep the unknown on the left hand side multiply x by 4 first and then 3 by 7 .

Note: We are using the rule: "if $\frac{a}{b}=\frac{c}{d}$ then $a \times d=b \times c$ ".

Solve for x :
a $\frac{x}{7}=\frac{2}{5}$
b $\frac{x}{9}=\frac{1}{2}$
c $\frac{x}{8}=-\frac{1}{3}$
d $\frac{2 x}{3}=\frac{1}{5}$
e $\frac{3}{x}=\frac{1}{2}$
f $\frac{5}{x}=\frac{3}{4}$
g $\frac{6}{7}=\frac{4}{x}$
h $-\frac{3}{4}=\frac{4}{3 x}$

Brample 7

$$
\text { Solve for } x: \quad \frac{x}{2}=\frac{3+x}{5}
$$

Notice the insertion of brackets here.

$$
\left.\begin{array}{rlrl}
\frac{x}{2} & =\frac{3+x}{5} & & \text { has LCD }=10 \\
\therefore \quad \frac{x \times 5}{2 \times 5} & =\frac{2(3+x)}{2 \times 5} & & \text { \{to create a common denominator\} } \\
\therefore \quad 5 x & =2(3+x) & & \text { \{equating numerators\} } \\
\therefore \quad 5 x & =6+2 x & & \text { \{expanding brackets\} } \\
\therefore \quad 5 x-2 x & =6+2 x-2 x & & \text { \{taking } 2 x \text { from both sides \} } \\
\therefore \quad 3 x & =6 & & \text { \{dividing both sides by } 3 \text { \} } \\
\therefore \quad x & =2 & & \\
& \therefore \quad \frac{x}{2} & =\frac{3+x}{5} & \\
\therefore \quad 5 x & =2(3+x) & \text { etc. } &
\end{array}\right\}
$$

3 Solve for x :
a $\frac{x+2}{2}=\frac{3}{7}$
b $\frac{3}{5}=\frac{x+1}{6}$
c $\frac{x}{5}=\frac{x-2}{3}$
d $\frac{x+1}{3}=\frac{2 x-1}{8}$
e $\frac{2 x}{3}=\frac{5-x}{4}$
f $\frac{3 x+2}{3}=\frac{2 x-5}{2}$

Challenge

Frample 8

Solve for $x: \quad \frac{2 x+1}{3-x}=\frac{3}{4}$.

$$
\begin{aligned}
\frac{2 x+1}{3-x} & =\frac{3}{4} & & \text { has LCD } 4(3-x) \\
& \therefore \quad 4(2 x+1) & =3(3-x) &
\end{aligned} \text { \{cross multiplying\} } \begin{aligned}
\therefore \quad 8 x+4 & =9-3 x & & \text { \{expanding the brackets \}} \\
\therefore \quad 8 x+4+3 x & =9-3 x+3 x & & \text { \{adding } 3 x \text { to both sides \}} \\
\therefore \quad 11 x+4 & =9 & & \\
\therefore \quad 11 x+4-4 & =9-4 & & \text { \{subtracting 4 from both sides \}} \\
\therefore \quad 11 x & =5 & & \\
\therefore \quad x & =\frac{5}{11} & & \text { \{dividing both sides by } 11 \text { \} }
\end{aligned}
$$

More explanation video
Solve for x :
a $\frac{2 x+3}{x+1}=\frac{4}{3}$
b $\frac{x+1}{1-2 x}=\frac{3}{5}$
c $\frac{2 x-1}{4-3 x}=-\frac{2}{3}$
d $\frac{x+3}{2 x-1}=\frac{1}{2}$
e $\frac{4 x+3}{2 x-1}=6$
f $\frac{3 x-2}{x+4}=-5$
g $\frac{6 x-1}{3-2 x}=10$
h $\frac{5 x-1}{x+4}=5$
I $3+\frac{2 x+5}{x-1}=-1$

Brample 9

Solve for $x: \quad \frac{x}{3}-\frac{1-2 x}{6}=-4$

$$
\begin{aligned}
\frac{x}{3}-\frac{1-2 x}{6} & =-4 & & \text { has LCD of } 6 \\
\therefore \quad \frac{x}{3} \times \frac{2}{2}-\left(\frac{1-2 x}{6}\right) & =-4 \times \frac{6}{6} & & \text { \{to create a common denominator\} } \\
\therefore \quad 2 x-(1-2 x) & ={ }^{-} 24 & & \text { \{equating numerators } \\
\therefore \quad 2 x-1+2 x & =-24 & & \text { \{expanding\} } \\
\therefore \quad 4 x-1 & =-24 & & \\
\therefore \quad 4 x-1+1 & =-24+1 & & \text { \{adding } 1 \text { to both sides \} } \\
\therefore \quad 4 x & =-23 & & \\
\therefore \quad x & =-\frac{23}{4} & & \text { \{dividing both sides by } 4 \text { \} }
\end{aligned}
$$

5 Solve for x :
a $\frac{x}{2}-\frac{x}{6}=4$
b $\frac{x}{4}-3=\frac{2 x}{3}$
c $\frac{x}{8}+\frac{x+2}{2}=-1$
d $\frac{x+2}{3}+\frac{x-3}{4}=1$
e $\frac{2 x-1}{3}-\frac{5 x-6}{6}=-2$
f $\frac{x}{4}=4-\frac{x+2}{3}$
g $\frac{2 x-7}{3}-1=\frac{x-4}{6}$
h $\frac{x+1}{3}-\frac{x}{6}=\frac{2 x-3}{2}$
I $\frac{x}{5}-\frac{2 x-5}{3}=\frac{3}{4}$
j $\frac{x+1}{3}+\frac{x-2}{6}=\frac{x+4}{12}$
k $\quad \frac{x-6}{5}-\frac{2 x-1}{10}=\frac{x-1}{2}$
| $\frac{2 x+1}{4}-\frac{1-4 x}{2}=\frac{3 x+7}{6}$

