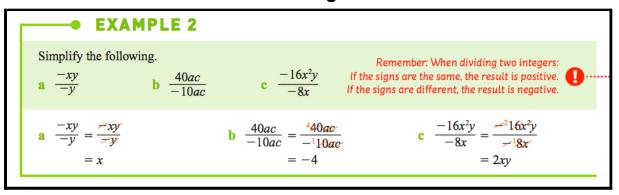
Do now on writing expressions

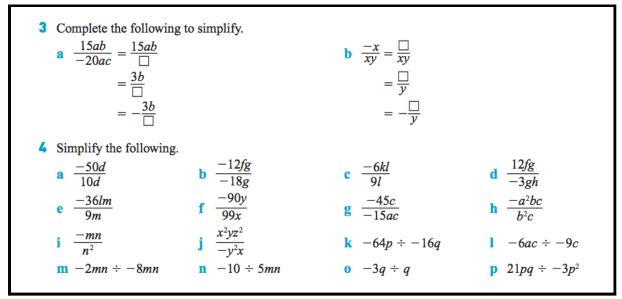
WALT Dividing algebraic terms

Success Criteria

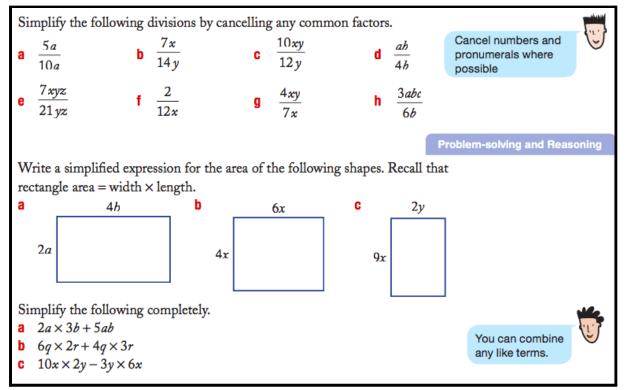
When dividing algebraic terms containing pronumerals and numbers, follow these steps. Step 1: Write the division as a fraction.

Step 2: Cancel the numbers, if possible.


Step 3: Cancel the pronumerals, if possible.


Step 4: Write your answer as a fraction. (Remember: Cancel means divide the numerator and denominator by the same number or pronumeral.)

Step 4: Write your answer as a fraction.


1 Complete the following to simplify.		
a $10y \div 15 = \frac{10y}{\Box}$	b $8m \div 12m = \frac{\Box}{12m}$	c $6x \div 8xy = \frac{\Box}{8xy}$
$=\frac{2y}{\Box}$	$=\frac{\Box}{3}$	$=\frac{\Box}{4y}$
2 Simplify the following.		
a $9x \div 18$ b	$3m \div 12$ c $5p \div 25$	d $16d \div 4$ e $\frac{10c}{2}$
f $\frac{8a}{4}$ g	$\frac{6a}{12a} \qquad \qquad \mathbf{h} \frac{44m}{22m}$	i $\frac{12a}{15a}$ j $\frac{20d}{10d}$
$k \frac{3f}{9f}$ l	$\frac{4t}{20t}$ m $\frac{18p}{20d}$	n $\frac{6xy}{15x}$ o $\frac{24ab}{36bc}$
$\mathbf{p} \frac{16r}{20qr} \qquad \mathbf{q}$	$\frac{8yz}{40xyz} \qquad \mathbf{r} \frac{70dkl}{10klm}$	s $\frac{15pqr}{12q}$ t $\frac{14mn}{35mp}$

Challenge

Extension

Fill in the missing terms to make the following equivalences true.
a 3x × x = 6xyz
b 4a × = 12ab
c 4r = 7s
d 2ab = 4b
Joanne claims that the following three expressions are equivalent: 2a/5, 2/5 × a, 2/5a.
a Is she right? Try different values of a.
b Which two expressions are equivalent?
c There are two values of a that make all three expressions are equal. State one of them.

Check if you can work on it

- **a** Simplify $2a \times 3b + 5b \times 2a$ to a single term.
- **b** State another way to fill in the blanks to make the simplification correct: $a \times b + b \times a = 16ab$
- **c** Give an example of an even longer expression that is equivalent to 16ab.

1 $a \frac{{}^{2}10y}{{}^{3}15} = \frac{2y}{3}$ $c \frac{{}^{2}8^{1}m}{{}^{3}12^{1}m} = \frac{2}{3}$ $c \frac{{}^{3}6^{1}x}{{}^{4}8^{1}xy} = \frac{3}{4y}$ 2 $a \frac{x}{2}$ $b \frac{m}{4}$ $c \frac{p}{5}$ d 4d e 5cf 2a $g \frac{1}{2}$ h 2 $i \frac{4}{5}$ j 2 $k \frac{1}{3}$ $l \frac{1}{5}$ $m \frac{9p}{10d}$ $n \frac{2y}{5}$ $o \frac{2a}{3c}$ $p \frac{4}{5q}$ $q \frac{1}{5x}$ $r \frac{7d}{m}$ $s \frac{5pr}{4}$ $t \frac{2n}{5p}$ 3 $a \frac{{}^{3}15^{1}ab}{{}^{-4}20^{1}ac} = -\frac{3b}{4c}$ $b \frac{-{}^{1}x}{{}^{1}xy} = -\frac{1}{y}$ 4 a -5 $b \frac{2f}{3}$ $c -\frac{2k}{3}$ $d -\frac{4f}{h}$ e -4l $f -\frac{10y}{11x}$ $g \frac{3}{a}$ $h -\frac{a^{2}}{b}$ $i -\frac{m}{n}$ $j -\frac{xz^{2}}{y}$ $k \frac{4p}{q}$ $l \frac{2a}{3}$ $m \frac{1}{4}$ $n -\frac{2}{mn}$ o -3 $p -\frac{7q}{p}$

Check your answers

Extension answers

a
$$\frac{1}{2}$$
 b $\frac{x}{2y}$ **c** $\frac{5x}{6}$ **d** $\frac{a}{4}$
e $\frac{x}{3}$ **f** $\frac{1}{6x}$ **g** $\frac{4y}{7}$ **h** $\frac{ax}{2}$
a $8ab$ **b** $24x^2$ **c** $18xy$
a $11ab$ **b** $24qr$ **c** $2xy$
a $2y$ **b** $3b$ **c** $28rs$ **d** $8ab^2$
a no **b** $\frac{2a}{5}$ and $\frac{2}{5} \times a$ **c** $a = 1$ or $a = -1$
a $16ab$ **b** $2, 5, 6, 1$ others possible
c $2a \times 3b + 3a \times 2b + 4a \times b$. Others possible.