WALT calculate different types of averages
Success Criteria I know different averages such as mean, Median and Mode have a different ways of calculating.
In statistics, it is referred to as a measure of central tendency.

1. We will first be examining the mean. The mean can only be calculated from Numerical data
2. The symbol for the mean is

Mean (\bar{x})

3.

EXAMPLE 1

Find the mean of each set of scores.
a $3,9,5,7,10,8$
b $12,15,15,11,13,10,8,6,9,7$
a Mean $=\frac{3+9+5+7+10+8}{6}=\frac{42}{6}=7$
b Mean $=\frac{12+15+15+11+13+10+8+6+9+7}{10}=\frac{106}{10}=10.6$

1 Complete the following to find the mean of $8,9,10,11,11,12$.
$\bar{x}=\frac{8+9+\ldots}{6}=\frac{\square}{6}=$ \qquad
2 Nikki completed question 1 using her calculator and her answer was 51 . What mistake did she make?
3 Find the mean (to 1 decimal place if necessary) of each set of data.
a $2,4,5,6,9,9,10$
b $2,3,3,4,5,6,7,8,9$
c $11,13,13,16,17$
d $27,28,29,27,30,31,27,31,30$
e $0,2,4,5,7,6,4,5,4,0,1$
f $20,20,20,23,25,27$
g $51,52,54,55,57,57,58,59$
h $1,1,2,4,4,4,4,7,7,8,9,10$
i $240,243,245,246,244,243$
j $104,101,104,102,104,105,106,101$

Finding Mean using Frequency Distribution Tables

Extension Work on the next page - Group three practice a few examples from the work above and then proceed to the distribution table work.

Find the mean of the scores given in this frequency distribution table.

Score	4	5	6	7	8
Frequency	3	2	4	8	6

For simplicity, use x for the values of the scores and f for the frequencies. Add an $f \times x$ column to the table.

Score (x)	Frequency (f)	$f \times x$
4	3	$3 \times 4=12$
5	2	$2 \times 5=10$
6	4	$4 \times 6=24$
7	8	$8 \times 7=56$
8	6	$6 \times 8=48$
	$\Sigma \boldsymbol{f}=\mathbf{2 3}$	$\Sigma f \boldsymbol{x}=\mathbf{1 5 0}$

This is the sum of all the 4 s . This is the sum of all the 5 s . This is the sum of all the 6 s . This is the sum of all the 7 s . This is the sum of all the 8 s .

This is the sum of all the $4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}$ and 8 s .
$\Sigma f=$ the sum of the frequencies $=$ the total number of scores $=23$
The Greek letter Σ is used to mean the 'sum of'.
$\sum f x=$ the sum of the subtotals $12,10,24,56$ and 48
$=$ the sum of all the scores $=150$
\therefore Mean $(\bar{x})=\frac{\text { sum of all scores }}{\text { number of scores }}=\frac{150}{23}=6.5$ (to 1 decimal place)

5 a Complete this frequency distribution table.
b Calculate the mean, correct to 1 decimal place.

Score (x)	Frequency (f)	$f \times x$
8	6	48
9	8	
10	15	
11	11	121
12	3	
	$\Sigma f=$	$\Sigma \boldsymbol{f}=$

6 a Complete this frequency distribution table.
b Calculate the mean, correct to 1 decimal place.

Score ($\mathrm{x}^{\text {) }}$	Frequency (f)	$\boldsymbol{f} \times \boldsymbol{x}$
18	3	
19	5	95
20	10	
21	15	
22	8	
23	1	
	$\Sigma f=$	$\Sigma f x=$

7 For each of the following frequency distribution tables:
i Copy the table and add an $f x$ column.
a

x	13	14	15	16	17
f	2	3	6	4	1

ii Calculate the mean.

b | \boldsymbol{x} | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| f | 4 | 6 | 5 | 3 | 2 |

c

x	50	51	52	53	54	55
f	3	5	8	6	2	4

d | x | 18 | 19 | 20 | 21 | 22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| f | 12 | 28 | 25 | 26 | 9 |

