Do now using like terms

Write this in your book

WALT - Multiply algebraic terms

Success Criteria - To multiply algebraic terms I know I need to multiply numbers and multiply the numerals By taking the following steps

- 1. Leave or remove the multiplication sign between the pronumerals or variables
- 2. Remove the multiplication sign between the numbers and variables (coefficient and variable)
- 3. Separate numbers and variables and arrange them number first and then variable (group them together)
- 4. Multiply the numbers and then write the variables in alphabetical order

Checking your understanding

- 1 Are the following true (T) or false (F)?
 - a $3 \times a$ can be written as 3a.
 - **b** $k \times 5$ can be written as 5k.
 - c 2x is short for 2 + x.
 - **d** 4ab could also be written as $4a \div b$.
 - e $q \times q$ can be written as q^2 .

```
EXAMPLE 1
Simplify the following.
\mathbf{a} \quad p \times s
                      b p \times p
                                             c 3p \times s
                                                                   d 5 \times 2k
                                                                                                                  f 4pq \times 3ps
                                                                                            e 3p \times 2s
p \times s = ps
                                           (leave out the multiplication sign between the pronumerals)
 b \quad p \times p = pp \text{ or } p^2 
c 3p \times s = 3 \times p \times s = 3ps
                                           (leave out the multiplication sign between the numbers and pronumerals)
\mathbf{d} \quad 5 \times 2k = 5 \times 2 \times k
                                           (split into numerical and pronumeral parts)
             = 10 \times k = 10k
e 3p \times 2s = 3 \times p \times 2 \times s
                                          (split into numerical and pronumeral parts)
                                          (group the numbers together and the pronumerals together)
               = 3 \times 2 \times p \times s
               = 6 \times p_S = 6p_S
\mathbf{f} \quad 4pq \times 3ps = 4 \times p \times q \times 3 \times p \times s
                                                        (split into numerical and pronumeral parts)
                  = 4 \times 3 \times p \times q \times p \times s
                                                        (group the numbers and pronumerals together)
                  = 4 \times 3 \times p \times p \times q \times s
                  = 12 \times p^2 qs = 12p^2 qs
```

- 1 Complete the following to simplify.
 - $\mathbf{a} \quad 5t \times w = \underline{\qquad} \times \underline{\qquad} \times w = \underline{\qquad}$
 - c $7y \times 2 = \underline{\hspace{1cm}} \times y \times \underline{\hspace{1cm}}$ = ___ × ___ × y = ___
 - e $2ab \times 3a = \underline{\hspace{1cm}} \times a \times b \times \underline{\hspace{1cm}} \times a$
 - = $\underline{\hspace{1cm}}$ \times $\underline{\hspace{1cm}}$ \times a \times a \times b = $\underline{\hspace{1cm}}$
- **2** Simplify the following.
 - a $4x \times y$
- b $3k \times m$
 - f $6 \times 10p$
- d $4 \times 7w$

= $\underline{\hspace{1cm}}$ \times $\underline{\hspace{1cm}}$ \times p^2 \times q = $\underline{\hspace{1cm}}$

- e $5 \times 4k$

 $\mathbf{c} \quad x \times 5y$

h $6z \times 3$

- $i \quad 3m \times 4n$
- $\begin{array}{ll}
 \mathbf{g} & 2x \times 8 \\
 \mathbf{k} & 4p^2 \times 7q
 \end{array}$

- $\mathbf{m} 4ab \times 5c$

- $\mathbf{q} \quad 2 \times 3a \times 4b$
- j
 $6v \times 2w$ k
 $4p^2 \times 7q$ l
 $5a \times 6b^2$

 n
 $3xz \times 6xy$ o
 $10pq \times 2qr$ p
 $5bc \times 7bc$

 r
 $2a \times 3b \times 4c$ s
 $4p \times 5q \times 2r$ t
 $3a \times 4a \times 3c$

EXAMPLE 2

Simplify the following.

- $a 5 \times 3t$
- b $-2m \times -3n$

Remember: When multiplying two integers: If the signs are the same, the answer is positive. \blacksquare If the signs are different, the answer is negative.

 $\mathbf{a} - 5 \times 3t = -5 \times 3 \times t$ = -15t

b $-2m \times -3n = -2 \times m \times -3 \times n$ $= -2 \times -3 \times m \times n$

b $4 \times 3m = 4 \times __ \times __ = __$

d $3p^2 \times 7q = \underline{\hspace{1cm}} \times p^2 \times \underline{\hspace{1cm}} \times q$

=6mn

- **3** Simplify the following.

 - $\mathbf{a} \quad -2 \times 5x \qquad \qquad \mathbf{b} \quad -5 \times 4y$
- $\mathbf{c} -6 \times -2w$
- d $-4 \times -8z$

- $e 4 \times -3m$
- f $10 \times -8p$
- $g -3m \times 2n$
- h $4a \times -5b$

- $\mathbf{i} -6x \times -2y$ $\mathbf{m} -2p \times -5p$
- $\mathbf{j} -9s \times -2t$ $\mathbf{n} \quad 4mn \times -2mp$
- $\mathbf{k} -4p^2 \times 6q$ 0 $-5abc \times -6b$
- $1 -5a \times 8a$ $p -7mn \times 4kn$

Check your

answers

- 1 a $5 \times t \times w = 5tw$
 - **b** $4 \times 3 \times m = 12m$
 - c $7 \times v \times 2 = 7 \times 2 \times v = 14v$
 - d $3 \times p^2 \times 7 \times q = 3 \times 7 \times p^2 \times q = 21p^2q$
 - e $2 \times a \times b \times 3 \times a = 2 \times 3 \times a \times a \times b = 6a^2b$
- 2 a 4xy
 - \mathbf{b} 3km
- c 5xy

- d 28w g 16t
- e 20k
- f 60p

- j 12vw
- h 18z $\mathbf{k} \ 28p^2q$
- i 12mn $1 3ab^2$

- m 20abc
- $\mathbf{n} = 18x^2yz$
- $0 20pq^2r$

- $\mathbf{p} \ 35b^2c^2$
- **q** 24*ab*
- r 24*abc*

- 40pqr
- t $36a^2c$

- 3 a -10x
- **b** -20v

- d 32z
- c 12w f -80p

- $\mathbf{g} 6mn$
- e 12mh -20ab
- i 12xy

- j 18*st*
- $k 24p^2q$ $n - 8m^2np$
- $1 -40a^2$

 $m 10p^2$ $\mathbf{p} - 28kmn^2$ \mathbf{o} 30ab²c

Multiplying terms with squares

Simplify $3xy \times 5xz$.								
Solution	Explanation							
$3xy \times 5xz = 3 \times x \times y \times 5 \times x \times z$ $= 3 \times 5 \times x \times x \times y \times z$ $= 15x^{2}yz$	Write the expression with multiplication signs and bring the numbers to the front.							
= 13x yz	Simplify, remembering that $x \times x = x^2$.							

Simplify the following.

- $\mathbf{a} \quad x \times x$

- d $5d \times 2d \times e$

- g $4xy \times 2xz$

- $9ab \times 2a$
- b
 $a \times a$ c
 $3d \times d$

 e
 $7x \times 2y \times x$ f
 $5xy \times 2x$

 h
 $4abc \times 2abd$ i
 $12xy \times 4x$

 k
 $3xy \times 2x \times 4y$ l
 $2ab \times 4a \times 3b$

Write each expression without a division sign.

- **a** $k \div 4$ **b** $x \div 5$

- **d** $3k \div 10$

- **e** 5 ÷ a
- $f \quad a \div b$
- c $2q \div 5$ d $3k \div 10$ g $x \div y$ h $12 \div g$

 $\frac{k}{4}$ is the same as $k \div 4$.

Check your answers

а	x^2	b	a^2	C	$3d^2$	d	$10d^2e$
е	$14x^2y$	f	$10x^2y$	g	$8x^2yz$	h	$8a^2b^2cd$
i	$48x^2y$	j	$18a^{2}b$	k	$24x^2y^2$	١	$24a^2b^2$
а	$\frac{k}{4}$	b	x 5	C	$\frac{2q}{5}$	d	$\frac{3k}{10}$
e	$\frac{5}{a}$	f	$\frac{a}{b}$	g	$\frac{x}{y}$	h	12 g

Extension Activities

- 12 Marcela buys 7 plants from the local nursery.
 - **a** If the cost is \$10 for each plant, what is the total cost?
 - b If the cost is \$\alpha\$ for each plant, write an expression for the total cost in dollars.
 - c If the cost of each plant is decreased by \$3 during a sale, write an expression for:
 - i the new cost per plant in dollars
 - ii the new total cost in dollars of the 7 plants.
- 13 Francine earns \$p per week for her job. She works for 48 weeks each year. Write an expression for the amount she earns:
 - a in a fortnight
 - **b** in one year (of 48 weeks)
 - c in one year if her wage is increased by \$20 per week after she has already worked 30 weeks in the year.

🛖 DVD Dilemma –

- 14 Tom would like to purchase some DVDs of two television shows.
 - a Write an expression for the total cost of:
 - i 4 seasons of Numbers
 - ii 7 seasons of Proof by Induction
 - iii 5 seasons of both shows
 - iv all 7 seasons of both shows, if the final price is halved in a sale.
 - b If a is 20 and b is 30, how many DVDs could he buy for \$200?

Towels cost \$c each at a shop.

- **a** John buys 3 towels, Mary buys 6 towels and Naomi buys 4 towels. Write a fully simplified expression for the total amount spent on towels.
- On another occasion, Chris buys n towels, David buys twice as many as Chris and Edward buys 3 times as many as David. Write a simplified expression for the total amount they spent on towels.

- **a** Make a substitution to prove that 4a + 3b is not equivalent to 7ab.
- **b** Is 4a + 3b ever equal to 7ab? Try to find some values of a and b to make 4a + 3b = 7ab a true equation.
- **c** Is 4a + 3a ever not equal to 7a? Explain your answer.

Check your answers