A Complete Guide to ...

Utilising the objectives as written in
MATHEMATICS in the New Zealand CURRICULUM for

Level 5

This resource contains:
\boxtimes Table of contents
\square Teaching notes
\square In class activity sheets involving

- worked examples
- basic skills
- word problems
- problem solving
- group work

\square Homework / Assessment activity sheets
■ Answers
These resources are supplied as PHOTOCOPY MASTERS
Author: A. W. Stark

Author:
A. W. Stark

Copyright © $_{1998}$
A. W. Stark

First Published March 1998
Formatting and publishing by
Andrew Stark
Formerly trading as:

NOW trading as:

P 0 Box 21304
Edgeware
CHRISTCHURCH 8143
NEW ZEALAND

$$
\text { 胥 }+6433790516 \text { or 國 }+6433790619
$$

This resource unit has been supplied on the understanding that copies of any part of this publication will not be given or sold to teachers or students from other schools or institutions.

This resource unit may be used as a master, and therefore can be photocopied, only
by the school or institution that has purchased this resource unit.

Note from the author:
This resource ...

*A Complete Guide to Measurement

is one of a series of FIVE resources written utilising the objectives as stated in

Mathematics in the New Zealand Curriculum for Level 5.

With my experiences as a specialist mathematics teacher, I enjoyed mathematics as a subject, but I am aware that not all teachers feel the same way about mathematics. It can be a difficult subject to teach, especially if you are unsure of the content or curriculum and if resources are limited.

This series of resources has been written with you in mind. I am sure you will find this resource easy to use and of benefit to you and your class.

Resources in this series:

A Complete Guide to Number

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 5.

*A Complete Guide to Measurement

written utilising the objectives as stated in
Resource Code: L5MM
Mathematics in the New Zealand Curriculum for Level 5.

A Complete Guide to Geometry

written utilising the objectives as stated in

Mathematics in the New Zealand Curriculum for Level 5.

Resource Code: L5MG

Mathematics in the New Zealand Curriculum for Level 5.

A Complete Guide to Algebra

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 5.

A Complete Guide to Statistics

written utilising the objectives as stated in

Resource Code: L5MA

For more information about these and other resources, please contact ...

[^0]This resource has been divided into EIGHT sections as listed below. Although there are no page numbers, the sections follow in sequential order as listed.

Note: 'In-class’ Worksheets Masters are lesson by lesson reuseable worksheets that can be photocopied or copied on to an OHP.

Homework / Assessment Worksheets Masters can be used as homework to reinforce work covered in class or they can be used for pupil assessment.

Section	
¢!	
	List of Measurement Objectives: Table of 'In-class’ Worksheets / Objectives covered
Шயய!	
2	Table of Contents: 'In-class' Worksheets
9	'In-class’ Worksheets Masters

Teaching Notes I Answers for 'In-class’ Worksheets
 Table of Contents:
Homework / Assessment Worksheets
 Homework / Assessment Worksheets Masters

Answers for Homework I Assessment Worksheets

Measurement

The following are the objectives for Measurement, Level 5, as written in the MATHEMATICS in the New Zealand Curriculum document, first published 1992. [Refer Page 74]

Estimating and measuring

Within a range of meaningful contexts, students should be able to:

- M1 find perimeter, areas and volume of everyday objects (including irregular and composite shapes) and state the precision (limits) of the answer;
- M2 design and use models to solve measuring problems in practical contexts.

Developing concepts of time, rate and change

Within a range of meaningful contexts, students should be able to:

- M3 interpret and use information about rates presented in a variety of ways, for example, graphically, numerically, or in tables.

At the top of each 'In-class' worksheet and Homework I Assessment worksheet, the Measurement objective(s) being covered has been indicated. EXAMPLE: M1 means objective 1, M2 means objective 2, etc.

The Mathematical Processes Skills:Problem Solving,
 Developing Logic \& Reasoning, Communicating Mathematical Ideas,

are learned and assessed within the context of the more specific knowledge and skills of number, measurement, geometry, algebra and statistics. The following are the Mathematical Processes Objectives for Level 5.

Problem Solving	Achievement Objectives [Refer page 24]	
-	MP1	pose questions for mathematical exploration;
-	MP2	effectively plan mathematical exploration;
-	MP3	devise and use problem-solving strategies to explore situations mathematically;
-	MP4	find, and use with justification, a mathematical model as a problem-solving strategy;
-	MP6	use equipment appropriately when exploring mathematical ideas.

Developing Logic and Reasoning Achievement Objectives [Refer page 26]

- MP8 classify objects, numbers and ideas;
- MP9 interpret information and results in context;
- MP10 make conjectures in a mathematical context;
- MP11 generalise mathematical ideas and conjectures;
- MP15 use words and symbols to describe and generalise patterns.

Communicating Mathematical Ideas Achievement Objectives [Refer page 28]

- MP16 use their own language and mathematical language and diagrams to explain mathematical ideas;
- MP17 devise and follow a set of instructions to carry out a mathematical activity;
- MP20 record information in ways that are helpful for drawing conclusions and making generalisations;
- MP21 report the results of mathematical explorations concisely and coherently.

[^1]
'In-class' Measurement Worksheets

Table of Worksheet Number / Objectives Covered
See the opposite page for details of each objective.

	Measurement Objectives				Mathematical Processes Objectives																	
$\begin{aligned} & \text { Worksheet } \\ & \text { Number } \end{aligned}$	R	M1	M2	M3	MP 1	MP 2	MP 3	MP 4	MP 6	MP 8	9 MP 9	\|r		\|r	${ }^{\text {MP }} 11$	\|c	c		MP	\|r	(1) $\begin{aligned} & \text { MP } \\ & 20\end{aligned}$	(MP
1	*						\boldsymbol{x}				\boldsymbol{x}											
2	*				*		x				\times											
3	*						\times				\times											
4	*				*		*				\times											
5	*						*				$\boldsymbol{*}$											
6	*				*		*				$\boldsymbol{*}$											
7		*					*				\times											
8		*							*		*						*					
9		*			*		*		*		$\boldsymbol{*}$				\boldsymbol{x}							
10		*	*		*		*				\boldsymbol{x}				$\boldsymbol{*}$							
11		*			*	*			*		\times					\times						
12		*			*		*		*		\boldsymbol{x}					*						
13		*	*		*		$\boldsymbol{*}$				*		x									
14		*	*		*		*				$\boldsymbol{*}$		*									
15		*	*		*		*				\times		\boldsymbol{x}									
16		*	*		*		*				\times		\times									
17		*	*		*		*				$\boldsymbol{*}$					$\boldsymbol{*}$						
18		*	*		*		$\boldsymbol{*}$				\times		*			$\boldsymbol{*}$						
19		*	*		*		*				*		\times			$\boldsymbol{*}$						
20	*				*		*				*					*						
21	*						*				*											
22	*						*				*					$\boldsymbol{*}$						
23				*			*				*		*			*						

Table of Contents for the 'In-class' Worksheet Masters for Measurement, Level 5

Worksheet Number	Topic	Measurement Objective(s)
1	Units / conversions associated with length	Revision
2	Calculations involving mixed length units	Revision
3	Units / conversions associated with mass	Revision
4	Calculations involving mixed mass units	Revision
5	Units / conversions associated with capacity	Revision
6	Calculations involving mixed capacity units	Revision
7	Reading scales	M1
	Marking Scales Master Sheet	
8	Accuracy of measurement	M1
9	Finding the perimeter of a shape	M1
10	Word problems involving perimeter	M1 / M2
11	Finding the circumference of a circle	M1
12	'If you can paint it, it has area'	M1
13	Finding the area of a triangle	M1 / M2
14	Finding the area of a parallelogram	M1 / M2
15	Finding the area of a trapezium	M1 / M2
16	Finding the area of a circle	M1 / M2
17	'If you can fill it, it has volume'	M1 / M2
	Isometric Paper Master Sheet	
18	Finding the volume of a cube or similar shape	M1 / M2
19	More volume problems involving prisms	M1 / M2
20	Understanding and using scale diagrams	Revision
21	Understanding time units / Analogue \& digital time	Revision
22	Converting between a.m. / p.m. \& 24 hr time	Revision
23	Changes over time / Calculating rates	M3
	Teaching Notes / Answers	

Units / conversions associated with length:

In New Zealand, the Metric system is the measuring system we use.
The basic unit for measuring length is the metre.
The other most common units of length measurement are listed in this table. Depending on what you are measuring, one unit will be more suitable than another.

Example: What units would you use to measure the distance between two cities, the thickness of a match or the height of a door? Answers: km, mm and m .

kilometre	1000 times longer than a metre
metre	standard unit for length
centimetre	100 times shorter than a metre
millimetre	1000 times shorter than a metre

Task 1

Which unit of measurement, kilometre, centimetre, metre or millimetre would be best to measure ...

1. the thickness of a text book?
2. the distance between two towns?
3. your height?
4. the distance of a running race?
5. the thickness of a pen?

6. the width of a rugby field?
7. the height of a lamp post?
8. the length of the classroom?
9. the length of your shortest finger?
10. the height of a tree?

11. For each of the metric length units above, list 3 more items suitable to be measured by that unit.

The ability to convert between units is an important skill.
Copy each question and replace the with a number as you convert the following ...

12.	$1 \mathrm{~cm}=\mathrm{mm}$	13.	$10 \mathrm{~mm}=\mathrm{cm}$	14.	$9 \mathrm{~cm}=\mathrm{mm}$	15.	$30 \mathrm{~mm}=\mathrm{cm}$
16.	$40 \mathrm{~mm}=\mathrm{cm}$	17.	$67 \mathrm{~mm}=\mathrm{cm}$	18.	$243 \mathrm{~mm}=\mathrm{cm}$	19.	$361 \mathrm{~mm}=\mathrm{cm}$
20.	$4.5 \mathrm{~cm}=\mathrm{mm}$	21.	$8.3 \mathrm{~cm}=\mathrm{mm}$	22.	$15.6 \mathrm{~cm}=\mathrm{mm}$	23.	$41.6 \mathrm{~cm}=\mathrm{mm}$
24.	$1 \mathrm{~m}=\mathrm{mm}$	25.	$1 \mathrm{~m}=\mathrm{cm}$	26.	$6 \mathrm{~m}=\mathrm{cm}$	27.	$9 \mathrm{~m}=\mathrm{mm}$
28.	$190 \mathrm{~cm}=\mathrm{m}$	29.	$345 \mathrm{~cm}=\mathrm{m}$	30.	$954 \mathrm{~cm}=\mathrm{m}$	31.	$465 \mathrm{~cm}=\mathrm{m}$
32.	$1400 \mathrm{~mm}=\mathrm{m}$	33.	$7105 \mathrm{~mm}=\mathrm{m}$	34.	$3456 \mathrm{~mm}=\mathrm{m}$	35.	$1720 \mathrm{~mm}=\mathrm{m}$
36.	$1 \mathrm{~km}=\mathrm{m}$	37.	$1000 \mathrm{~m}=\mathrm{km}$	38.	$3500 \mathrm{~m}=\mathrm{km}$	39.	$5260 \mathrm{~m}=\mathrm{km}$
40.	$4.68 \mathrm{~km}=\mathrm{m}$	41.	$8650 \mathrm{~m}=\mathrm{km}$	42.	$3.75 \mathrm{~km}=\mathrm{m}$	43.	$6.042 \mathrm{~km}=\mathrm{m}$
44.	$69.3 \mathrm{~km}=\mathrm{m}$	45.	$905 \mathrm{~m}=\mathrm{km}$	46.	$14.56 \mathrm{~km}=\mathrm{m}$	47.	$0.785 \mathrm{~km}=\mathrm{m}$

48. A length of material measured 167 cm . Convert this length to metres.
49. The school cross-country race is 3.2 km . Convert this distance to metres.
50. The distance between two plates on a table is 34.6 cm . Convert this distance to millimetres.
51. A piece of wood is 2.75 m long. Convert this length to centimetres.
52. A stack of paper measured 0.65 m . Convert this height to centimetres.
53. The length of a bus is 0.0095 km . Convert this length to metres.
54. The height of a small tree is 1208 cm . Convert this height to metres.
55. The cross-country mountain bike race is 12500 m . Convert this distance to kilometres.

56. The height of a cupboard is 1.05 m . Convert this height to millimetres.
57. The height of Jodie is 1426 mm . Convert this height to metres.
58. Create 10 conversion questions as above.

Exchange questions with a classmate and complete the conversions.

Calculations involving mixed length units:

Example: Shane has two pieces of wood. One is 85 cm long the other is 2.1 m . What is the total length of wood that Shane has?

Is the answer as simple as adding 85 and 2.1 together?
To be able to add these two length measurements, the units must be the same.
One of the measurement values must be converted, so that both units are the same.
Example: We can answer in metres, ... $85 \mathrm{~cm}=0.85 \mathrm{~m}$, therefore $0.85 \mathrm{~m}+2.1 \mathrm{~m}=2.95 \mathrm{~m}$, or we can answer in centimetres, $\ldots 2.1 \mathrm{~m}=210 \mathrm{~cm}$, therefore $85 \mathrm{~cm}+210 \mathrm{~cm}=295 \mathrm{~cm}$.

Answer: Shane has 2.95 m or 295 cm of wood.

Task 2

Copy each question. Answer in the unit indicated in the brackets. All measurement units must be in the same unit before adding or subtracting.

1. $539 \mathrm{~mm}+11.7 \mathrm{~cm}=(\mathrm{cm})$
2. $7.125 \mathrm{~km}-3653 \mathrm{~m}=(\mathrm{km})$
3. $639 \mathrm{~cm}+3.95 \mathrm{~m}=(\mathrm{m})$
4. $795 \mathrm{~mm}-4.96 \mathrm{~cm}=(\mathrm{mm})$
5. $915 \mathrm{~m}+7.926 \mathrm{~km}=(\mathrm{m})$
6. $\quad 6.1 \mathrm{~cm}-49 \mathrm{~mm}=(\mathrm{mm})$
7. $1.439 \mathrm{~m}+7859 \mathrm{~mm}=(\mathrm{m})$
8. $7450 \mathrm{~m}-5.326 \mathrm{~km}=(\mathrm{km})$
9. $\quad 11.93 k m+2745 m=(m)$
10. $158 \mathrm{~mm}-7.94 \mathrm{~cm}=(\mathrm{cm})$
11. $\quad 3.79 \mathrm{~m}+169 \mathrm{~cm}=(\mathrm{m})$
12. $373 \mathrm{~mm}-4.79 \mathrm{~cm}=(\mathrm{cm})$
13. $9.36 \mathrm{~m}+587 \mathrm{~cm}=(\mathrm{m})$
14. $92.9 \mathrm{~cm}-0.485 \mathrm{~m}=(\mathrm{cm})$
15. $4.195 \mathrm{~m}+1735 \mathrm{~mm}=(\mathrm{mm})$

Mr Jones is building a brick fence using bricks that are 40 cm long.
16. If the length of the fence is 24 m , how many bricks are needed for each layer of the fence?
17. How many bricks are needed to build a fence made up of 8 layers?
18. If the bricks cost 35 cents each, how much will all the bricks cost?

Give your answer in dollars.

Mrs Proctor is going to recover a chair. She has worked out that she needs pieces of material that measure $1.65 \mathrm{~m}, 85 \mathrm{~cm}, 68 \mathrm{~cm}$ and 1.53 m in length.
19. Calculate the total length of material she needs. Give your answer in metres.
20. If the material costs $\$ 13.85$ per metre, what is the total cost of the material?

Jim runs around a local park each morning. The distance of each lap is 1200 m .
21. How many metres would Jim run, if he ran 3 laps? Convert your answer to kilometres.
22. How many laps will he need to run to complete a distance of 4.8 km ?

Last week he ran 5 laps, 7 laps, 6 laps, 7 laps, 12 laps, 4 laps and 9 laps during his morning runs.
23. How many laps did he run las \dagger week?
24. Calculate the total distance of his runs, stating your answer in both metres and kilometres.

Rangi is going to build a new book shelf. The book shelf is 840 mm high and each shelf is 1.2 m long. This diagram shows what the book shelf will look like when finished.
25. Calculate the total length of wood needed to build the book shelf. Answer in metres.
26. If the wood costs $\$ 7.85$ per metre, what is the cost of buying the wood?

David has measured and cut the following lengths of wallpaper for part of the bedroom walls ... $205 \mathrm{~cm}, 2050 \mathrm{~mm}, 185 \mathrm{~cm}, 750 \mathrm{~mm}, 1.6 \mathrm{~m}, 2.05 \mathrm{~m}$ and 1.75 m.

27. What is the total length of wallpaper he has cut so far? Answer in metres, centimetres and millimetres.
28. If one roll of wallpaper contains 5 metres of paper, how many rolls has David used so far?
29. If each roll costs $\$ 13.25$, how much has he spent so far?
30. Make up some similar word questions as above that you can exchange with a classmate.

Units / conversions associated with mass (weight):

The basic unit for measuring mass is the gram.
The mass of an object is often referred to as its weight.
The other most common units of mass measurement are listed in this table. Depending on what you are measuring, one unit will be more suitable than another.

Example: What units would you use to measure the weight of a piece of paper, the mass of a car and the weight of a person? Answers: mg, \dagger and kg .

tonne	1000 times heavier than a kilogram
kilogram	1000 times heavier than a gram
gram	standard unit for mass
milligram	1000 times lighter than a gram

Task 3

Which unit of measurement, tonne, kilogram, gram or milligram would be best to measure ...

1. the weight of a truck?
2. the weight of a horse?
3. your weight?
4. the weight of a potato chip?
5. the weight of apples on a tree?

6. the weight of a feather?
7. the weight of a building?
8. the weight of a packet of biscuits?
9. the weight of a pen?
10. the weight of a piece of tissue paper?

11. For each of the metric mass units above, list 3 more items suitable to be measured by that unit.

The ability to convert between units is an important skill.
Copy each question and replace the with a number as you convert the following ...

12.	1 g - mg	13.	$1000 \mathrm{mg}=\mathrm{g}$	14.	$9 \mathrm{~g}=\mathrm{mg}$
16.	$4.9 \mathrm{~g}=\mathrm{mg}$	17.	$8.1 \mathrm{~g}=\mathrm{mg}$	18.	$2.78 \mathrm{~g}=\mathrm{mg}$
20.	$635 \mathrm{mg}=\mathrm{g}$	21.	$975 \mathrm{mg}=\mathrm{g}$	22.	$0.424 \mathrm{~g}=\mathrm{mg}$
24.	$1 \mathrm{~kg}=\mathrm{g}$	25.	$1000 \mathrm{~g}=\mathrm{kg}$	26.	$6 \mathrm{~kg}=9$
28.	$4.3 \mathrm{~kg}=\mathrm{g}$	29.	$6600 \mathrm{~g}=\mathrm{kg}$	30.	$8.35 \mathrm{~kg}=\mathrm{g}$
32.	$1750 \mathrm{~g}=\mathrm{kg}$	33.	$1.05 \mathrm{~kg}=\mathrm{g}$	34.	$0.864 \mathrm{~kg}=\mathrm{g}$
36.	$1 \dagger=$ kg	37.	$1000 \mathrm{~kg}=\dagger$	38.	$2.6 t=\mathrm{kg}$
40.	$3.95 \dagger=$ kg	41.	$9.45 t=$ kg	42.	$6.34 \dagger=$ kg
44.	$5715 \mathrm{~kg}=\dagger$ ¢	45.	$635 \mathrm{~kg}=\dagger$	46.	$0.476 t=\mathrm{kg}$

15.	$8000 \mathrm{mg}=\mathrm{g}$
19.	$43.6 \mathrm{~g}=\mathrm{mg}$
23.	$0.963 \mathrm{~g}=\mathrm{mg}$
27.	$6.125 \mathrm{~kg}=\mathrm{g}$
31.	$4290 \mathrm{~g}=\mathrm{kg}$
35.	$706 \mathrm{~g}=\mathrm{kg}$
39.	$5300 \mathrm{~kg}=\mathrm{t}$
43.	$9.256 \mathrm{t}=\mathrm{kg}$
47.	$915 \mathrm{~kg}=\dagger$

48. A piece of wood weighs 5623g. Convert this weight to kilograms.
49. A small cat weighs about 2.05 kg . Convert this weight to grams.
50. A car weighs 1.25 tonnes. Convert this weight to kilograms.

51. A piece of concrete weighs 12500 kg . Convert this weight to tonnes.
52. A large tea bag weighs 1250 mg . Convert this weight to grams.
53. Twenty sheets of cardboard weigh about 2.45 g . Convert this weight to milligrams.
54. A pile of bricks weighs about 865 kg . Convert this weight to tonnes.
55. A bird's feather weighs 0.023 g . Convert this weight to milligrams.

56. 13 bags of potatoes weigh 0.52 tonnes. Convert this weight to kilograms.
57. 18 packets of breakfast cereal weigh 13500 g . Convert this weight to kilograms.
58. Create 10 conversion questions as above.

Exchange questions with a classmate and work out the conversions.

Calculations involving mixed mass units:

Example: Karen has two bags of rice. One weighs 650 g and the other weighs 0.9 kg .
What is the total weight of rice that Karen has?
Is the answer as simple as adding 650 and 0.9 together?
To be able to add these two mass (weight) measurements, the units must be the same.
One of the measurement values must be converted, so that both units are the same.
Example: We can answer in grams, ... $0.9 \mathrm{~kg}=900 \mathrm{~g}$, therefore $650+900=1550 \mathrm{~g}$,
 or we can answer in kilograms, ... $650 \mathrm{~g}=0.65 \mathrm{~kg}$, therefore $0.65+0.9=1.55 \mathrm{~kg}$.

Answer: Tracy has 1550 g or 1.55 kg of rice.

Task 4

Copy each question. Convert all measurements to the same unit before adding or subtracting.
Answer in the units indicated in the brackets.

1. $\quad 9.8 \mathrm{~g}+1525 \mathrm{mg}=(\mathrm{mg})$
2. $\quad 5.36 \mathrm{~kg}-4208 \mathrm{~g}=(\mathrm{g})$
3. $\quad 6.32 \mathrm{~kg}-3260 \mathrm{~g}=(\mathrm{kg})$
4. $\quad 9.35 \mathrm{~g}+6420 \mathrm{mg}=$ (g$)$
5. $7364 \mathrm{mg}-5.59 \mathrm{~g}=(\mathrm{mg})$
6. $3.85 \dagger+1750 \mathrm{~kg}=(\mathrm{kg})$
7. $9645 \mathrm{~kg}-4.59 \mathrm{t}=(\mathrm{t})$
8. $7.64 t+2065 \mathrm{~kg}=(\mathrm{kg})$
9. $1.2 \mathrm{~kg}+6263 \mathrm{mg}+75 \mathrm{~g}=$ (g$)$
10. $5740 \mathrm{mg}-2.56 \mathrm{~g}=(\mathrm{mg})$
11. $6.25 t+4140 \mathrm{~kg}=(t)$
12. $5230 \mathrm{mg}-3.57 \mathrm{~g}=(\mathrm{g})$
13. $\quad 9.48 \mathrm{~kg}+6424 \mathrm{~g}=(\mathrm{kg})$
14. $6235 \mathrm{~kg}-4.8 \dagger=(t)$
15. $\quad 7.015 \mathrm{~g}+945 \mathrm{mg}=(\mathrm{g})$

A local butcher shop sells Christmas hams of various sizes.
16. Today 7 hams were sold that weighed $6910 \mathrm{~g}, 5.85 \mathrm{~kg}, 4840 \mathrm{~g}, ~ 4.75 \mathrm{~kg}, 6.34 \mathrm{~kg}, 4529 \mathrm{~g}$ and 7.15 kg . What was the total weight of hams sold today? Answer in kilograms.
17. What was the total for ham sales, if ham sells for $\$ 15.90$ per kg ?

The butcher buys sausages in bulk and packs the sausages in 450 g packs.

18. How many 450 g packets can be made from 22.5 kg of sausages?
19. If packs of sausages sell for $\$ 3.95$ each, what will be the total sausage sales when all packs are sold?

A small truck has been used to move large rocks and can carry a maximum load of 1.5 tonnes per load.
24. During the week, loads of rocks weighing $560 \mathrm{~kg}, 1.15 \mathrm{t}, 1.47 \mathrm{t}, 954 \mathrm{~kg}, 805 \mathrm{~kg}$ and $1.12 \dagger$ were transported on the truck. Calculate the total weight of these loads. Answer in kgs.
25. How many maximum loads would it take if this truck is used to move 13500kg of materials?
26. If 7 loads averaging $1.37 \dagger$ were delivered in a week, what is the total weight delivered? Answer in tonnes, then convert your answer to kgs.

Pauline made a batch of 25 biscuits that required 250 g of butter and 180 g of sugar.
27. Pauline baked a batch of biscuits every week for 12 weeks. Calculate the weight of butter and sugar she used. Answer in kilograms.
29. If the butter costs $\$ 2.75 / 500 \mathrm{~g}$, how much did Pauline spend on butter?
28. If the sugar costs $\$ 3.10 / \mathrm{kg}$, how much did she spend on sugar?
30. How many batches of biscuits could she bake if she had 5 kg of butter?
31. How many batches of biscuits could she bake if she had 6 kg of sugar?
32. Make up some similar word questions as above that you can exchange with a classmate.

Units / conversions associated with capacity (volume):

The basic unit for measuring capacity is the litre. The capacity that an object will hold is also called its volume.

The other most common units of capacity measurement are listed in this table. Depending on what you are measuring, one unit will be more suitable than another.

Example: What units could be used to measure the volume of a small bottle, the capacity of a swimming pool and the volume of water in an ocean?

kilolitre	1000 times greater capacity than a litre
litre	standard unit for capacity
millilitre	1000 times smaller capacity than a litre

Answers: mL, L and kL .

Task 5

Which unit of measurement, kilolitre, litre or millilitre would be best to measure ..

1. the volume of water in a cup?
2. the volume of air in a room?
3. the capacity of a teaspoon?

4. the capacity of a hot water bottle?
5. the volume of paint needed to paint a wall?
the capacity of a teapot?
6. the capacity of a large petrol storage tank?
7. the volume of milk in a cow's udder?

8. For each of the metric capacity units above, list 3 more items that can be measured by that unit.

The ability to convert between units is an important skill.
Copy each question and replace the with a number as you convert the following ...

12.	$1 \mathrm{~L}=\mathrm{mL}$	13.	$1000 \mathrm{~mL}=\mathrm{L}$	14.	$8 \mathrm{~L}=\mathrm{mL}$	15.	$9000 \mathrm{~mL}=\mathrm{L}$
16.	$9.6 \mathrm{~L}=\mathrm{mL}$	17.	$4700 \mathrm{~mL}=\mathrm{L}$	18.	1.27 L - mL	19.	$2.26 \mathrm{~L}=\mathrm{mL}$
20.	$526 \mathrm{~mL}=\mathrm{L}$	21.	$637 \mathrm{~mL}=\mathrm{L}$	22.	$0.395 \mathrm{~L}=\mathrm{mL}$	23.	$0.842 \mathrm{~L}=\mathrm{mL}$
24.	$1 \mathrm{~kL}=\stackrel{L}{ }$	25.	1000L $=$ kL	26.	$7 \mathrm{~kL}=$ L	27.	$3000 \mathrm{~L}=\mathrm{kL}$
28.	$6.7 \mathrm{~kL}=\mathrm{L}$	29.	5200L $=$ kL	30.	$3.65 \mathrm{~kL}=$ - L	31.	$4.015 \mathrm{~kL}=\mathrm{L}$
32.	$3.09 \mathrm{~kL}=\mathrm{L}$	33.	7435L = kL	34.	$0.395 \mathrm{~kL}=\mathrm{L}$	35.	532L $=$ kL
36.	7.014L $=$ mL	37.	1952L $=$ kL	38.	$8525 \mathrm{~mL}=\mathrm{L}$	39.	$0.746 \mathrm{~kL}=\mathrm{L}$
40.	$634 \mathrm{~mL}=\mathrm{L}$	41.	$3.254 \mathrm{~kL}=\mathrm{L}$	42.	$4.652=\mathrm{mL}$	43.	$5330 \mathrm{~mL}=\mathrm{L}$
44.	$0.459 \mathrm{~L} \rightarrow \mathrm{~mL}$	45.	$429 \mathrm{~mL}=\mathrm{L}$	46.	$0.202 \mathrm{~kL}=$ - L	47.	$372 \mathrm{~L}=\mathrm{kL}$

48. A large jug holds 1250 mL of water. Convert this volume to litres.

49. A bottle contains 1.5 L of juice. Convert this volume to millilitres.
50. A cup will hold 250 mL of milk. Convert this volume to litres.

51. A backyard swimming pool holds 25 kL of water. Convert this volume to litres.
52. A water storage tank hold 15000L. Convert this volume to kilolitres.
53. A garden fish pool requires 0.85 kL of water. Convert this volume to litres.
54. Twenty containers of milk hold 25000 mL . Convert this volume to litres.
55. An oil tanker can hold 75 kL . Convert this volume to litres.

56. A bottle of wine holds 0.75 L . Convert this volume to millilitres.
57. A teaspoon of medicine is 5 mL . Convert this volume to litres.
58. Create 10 conversion questions as above.

Exchange questions with a classmate and work out the conversions.

Answer: Andrew bought 2700 mL or 2.7 L of juice.

Task 6

Copy each question. Answer in the unit indicated in the brackets. All measurement units must be in the same unit before adding or subtracting.

1.	$3.27 \mathrm{~L}+1420 \mathrm{~mL}=(\mathrm{mL})$	2.	9.46kL-5700L $=(\mathrm{kL})$
4.	$8.52 \mathrm{~kL}-3640 \mathrm{~L}=$ (L)	5.	$1.59 \mathrm{~L}+4150 \mathrm{~mL}=$ (L)
7.	$2.65 \mathrm{~L}+4620 \mathrm{~mL}=(\mathrm{L})$	8.	8095L-4.75kL $=(\mathrm{kL})$
10.	$5942 \mathrm{~mL}-4.75 \mathrm{~L}=(\mathrm{mL})$	11.	$6.56 \mathrm{~kL}+2449 \mathrm{~L}=(\mathrm{L})$
13.	$509 \mathrm{~L}+7.25 \mathrm{~kL}=$ (kL)	14.	$7020 \mathrm{~mL}-5.65 \mathrm{~L}=(\mathrm{mL})$

3. $\quad 9.25 \mathrm{~L}+8240 \mathrm{~mL}=(\mathrm{L})$
4. $3145 \mathrm{~L}-1.75 \mathrm{~kL}=(\mathrm{kL})$
5. $4.75 \mathrm{~L}+7230 \mathrm{~mL}=(\mathrm{mL})$
6. $7450 \mathrm{~mL}-5.29 \mathrm{~L}=(\mathrm{L})$
7. $\quad 1.045 \mathrm{~kL}+955 \mathrm{~L}=(\mathrm{kL})$

Jodie has a collection of several differently shaped bottles.
16. If the capacity of seven bottles was $0.56 \mathrm{~L}, 3.7 \mathrm{~L}, 750 \mathrm{~mL}, 2.5 \mathrm{~L}, 1.2 \mathrm{~L}, 350 \mathrm{~mL}$ and 1000 mL , calculate the total volume of these bottles. Answer in litres.

Laura made 7.5L of jam in a big pot on the stove.
17. How many 250 mL jars could she fill from this 7.5 L of jam?
18. If she sells the jam for $\$ 2.50$ / jar, how much money would she make?

A local swimming pool holds 31500L of water.
19. Calculate the time taken to fill the pool if a water pump can pump water into the pool at a rate of 750 L per hour.
20. If there is a water charge of $\$ 12.50$ per 1000 L , how much does it cost to fill the pool?

During a very hot week, water had to be added to the pool each day to replace the water lost because of evaporation.
21. If $2500 \mathrm{~mL}, 3250 \mathrm{~mL}, 1.2 \mathrm{~L}, 2150 \mathrm{~mL}, 0.95 \mathrm{~L}, 850 \mathrm{~mL}$ and 5400 mL of water was added during this week, calculate the total volume of water added. Answer in litres.

Mr Moore is repainting his house in various colours.
22. If he buys six 500 mL tins, three 10 L pails and four 4 L tins of paint, calculate the volume of paint he purchased. Answer in litres.
23. If the 500 mL tins cost $\$ 15.50$ each, the 10 L pails cost $\$ 89.95$ each and the 4 L tins cos \dagger $\$ 64.95$ each, calculate the total cost of buying this paint.
Mr Johnstone has been coughing for a long time. Each day he takes 7.5 mL of medicine, 4 times a day.
24. Calculate the volume of medicine he would take in four weeks. Answer in litres.
25. For how many days will a 360 mL bottle of medicine last?
26. For how many days will a 1.5 litre bottle of medicine last?
27. If 7.5 mL of medicine costs $\$ 0.15$, how much would a 0.6 L bottle of medicine cost?

A fire-engine can pump water at a rate of 650L per minute.
28. How much water was pumped from a swimming pool, if it took 27 min 30 sec to put out a fire using water from the pool?
29. Make up some similar word questions as above that you can exchange with a classmate.

Reading scales:

When reading a scale it is important to note the units and what each division on the scale represents.
Example: Look at these rulers.

What are the units on the rulers? What does each division on these rulers represent? List the readings indicated by the pointers.

Answers: Ruler A : units are millimetres, each division $=2 \mathrm{~mm}$. $A=6 \mathrm{~mm}, B=32 \mathrm{~mm}, C=49 \mathrm{~mm}$. Ruler B : units are centimetres, each division $=0.1 \mathrm{~cm}$. $D=0.9 \mathrm{~cm}, E=1.6 \mathrm{~cm}, F=2.75 \mathrm{~cm}$.

Task 7

Below are some diagrams of some measurement scales.
For each diagram ...
state the unit of measurement,
state what each division on the scale represents, give the measurements indicated by the pointers.

1.

3.

4.

6.

7. Mark each point on the various scales as indicated, using the 'Marking Scales' master.

Use this sheet for Question 7, Task 7.

1. Mark these points on ruler A.

$$
\begin{array}{ll}
A=17 \mathrm{~mm}, & B=24 \mathrm{~mm}, \\
C=46 \mathrm{~mm}, & D=3.2 \mathrm{~cm}
\end{array}
$$

Ruler B

2. Mark these points on ruler B.

$$
\begin{array}{ll}
A=1.9 \mathrm{~m}, & B=4.2 \mathrm{~m}, \\
C=2.7 \mathrm{~m}, & D=540 \mathrm{~cm}
\end{array}
$$

3. On this protractor, mark the following angles.

$$
A=70^{\circ}, B=15^{\circ}, C=107^{\circ}, D=154^{\circ}
$$

4. Mark these points on the dial above.
$A=20 \mathrm{~kg}, B=60 \mathrm{~kg}, C=82.5 \mathrm{~kg}, D=147.5 \mathrm{~kg}$
5. Mark these points on ruler C.

$$
\begin{array}{ll}
A=0.8 \mathrm{~m}, & B=5.3 \mathrm{~m}, \\
C=320 \mathrm{~cm}, & D=4100 \mathrm{~mm}
\end{array}
$$

6. Mark these points on ruler D.

$$
\begin{array}{ll}
A=56 \mathrm{~cm}, & B=21 \mathrm{~cm}, \\
C=0.34 \mathrm{~m}, & D=125 \mathrm{~mm}
\end{array}
$$

7. Mark these points on ruler E.

$$
\begin{array}{ll}
A=53 \mathrm{~mm}, & B=37 \mathrm{~mm}, \\
C=1.2 \mathrm{~cm}, & D=0.029 \mathrm{~m}
\end{array}
$$

Accuracy of measurement:

The degree of accuracy of a measurement depends on the measuring device being used and the scale that is on the instrument, plus the ability of the user to read the scale accurately.
Example: Measure the length of this pencil using two different rulers.

How long is this pencil?
Answer: About 47 millimetres and about $4 \frac{1}{2}$ centimetres.
On the first ruler measuring millimetres, the length could be recorded as follows $47 \mathrm{~mm} \pm 1 \mathrm{~mm}$, where the symbol \pm means 'plus or minus' and 1 mm is the smallest division on the ruler.
From this, we can say that the pencil is no shorter than 46 mm , but is no longer than 48 mm .
On the ruler measuring centimetres, the length of the pencil is greater than 4.5 cm , but less than 5 cm .
Because of the scale on the ruler, the measurement cannot be any more accurate than that.

Task 8

State the minimum and maximum measurement for each measurement given below.

1. $37 \mathrm{~mm} \pm 1 \mathrm{~mm}$
2. $42 \mathrm{~cm} \pm 1 \mathrm{~cm}$
3. $1450 \mathrm{~m} \pm 1 \mathrm{~m}$
4. $630 \mathrm{~km} \pm 2 \mathrm{~km}$
5. $31 \mathrm{mg} \pm 4 \mathrm{mg}$
6. $108.49 \mathrm{~m} \pm 0.05 \mathrm{~m}$
7. $8.95 \mathrm{~L} \pm 0.05 \mathrm{~L}$
8. $3.942 \mathrm{~L} \pm 0.150 \mathrm{~L}$
9. $1.342 \mathrm{mg} \pm 0.250 \mathrm{mg}$

Using millimetres as the unit of measurement, measure the distance between the points on these lines listed below with $\pm 1 \mathrm{~mm}$ degree of accuracy.
17. points $A D$
18. points $C G$
19. points EH
20. points $A J$
21. points $C E$
22. points $F B$
23. points $L M$
24. points $D G$
25. points HC
26. points $P E$
27. points JK

Task 9

Use measurement devices, such as bathroom scales, kitchen scales and measuring jugs for this task. Measure up to 10 items with each device.

1. Name the measuring device and state the degree of accuracy it can measure.
2. Using each device, measure at least 10 items. List the items measured and the weights / capacities.
3. Have a classmate measure the same items and compare your results.

Finding the perimeter of a shape:

The distance around the outside (or inside) of a shape is known as its perimeter.
Example: Find the perimeter for this rectangle below.

There are four sides ... side $A B=3.3 \mathrm{~cm}, \quad$ side $B C=0.5 \mathrm{~cm}$, side $C D=3.3 \mathrm{~cm}, \quad$ side $D A=0.5 \mathrm{~cm}$.

Add the length of the four sides to find the perimeter.
Answer: Perimeter $=7.6 \mathrm{~cm}$
An easy way to remember perimeter is to imagine that you are walking around the outside of a shape, starting and stopping at the same point or corner, as shown by the arrows on the diagram above.

Task 10

Calculate the perimeter of these shapes. Diagrams are not drawn to scale.

4.

5.

6.

7.

8.

Measure the length of the sides of these shapes below, to the nearest millimetre $\pm 0.5 \mathrm{~mm}$. Example: $27 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$ State the minimum and maximum value for the length of each side. Example: $27-0.5=26.5 \mathrm{~mm}, 27+0.5=27.5 \mathrm{~mm}$ Use this information to calculate the minimum and maximum perimeter of each shape.

Look around your classroom or school playground for at least 10 items that you can find the perimeter of. Example: a tennis court, your desk top, etc.

1. List the items, then estimate their perimeters.
2. Using rulers, tape measures or parts of your own body, such as your feet, measure the perimeter of your items.

Word problems involving perimeter:

Task 12

This diagram shows the course for a road cycling race that is to be cycled around country roads.

1. How far is one lap of this course?
2. Convert this distance to kilometres.
3. If the B Grade riders race is 3 laps, how far is their race?
4. How many laps do the A Grade riders do if their race is 125 km ?
5. If Allan averages $36 \mathrm{~km} / \mathrm{hr}$ during a race, how long will he take to complete a 100 km race?

Front of section

A new fence is to be built around a house on a section shaped like a trapezium. The section is 48.5 m wide at the back, 37.6 m along each side and 15.7 m across the front.
6. Calculate the total length of the fence to be built, allowing 2.5 m for a gate.
7. If the fence costs $\$ 17.50$ per metre to build, calculate the cost of building this fence.

A 25 metre fence is to be built around a swimming pool.
8. If the shape around the pool is square, how long is each side?

Pam is going to sew fancy tape down the sides and across the bottom of some curtains she has already made. Each window has one curtain, made from lengths of material that are twice the width of the window. The windows are $1.85 \mathrm{~m}, ~ 0.9 \mathrm{~m}$ and 2.25 m wide and ALL windows are 1.65 m high.
9. Calculate the length of curtain material needed for each window.
10. If curtain material is $\$ 11.95$ / metre, calculate the total cost of the material needed.
11. Calculate the length of tape required for each window.
12. If the tape costs $\$ 0.45$ per metre, calculate the total cost of the tape needed.

Mr McGregor is going to protect his vegetables by putting up shade cloth around his vegetable garden, as shown in this diagram.
13. Calculate the perimeter of his vegetable garden.
14. If Mr McGregor paid $\$ 318.99$ for the shade cloth, calculate the cost per metre of the shade cloth.

Alex is going to tie a ribbon around this parcel. The dimensions of the parcel are shown in the diagram.
15. Calculate the length of ribbon that is needed to go around the parcel, then add 650 mm to allow for a bow to be tied.
16. If the ribbon costs $\$ 0.35$ per metre, calculate the cost of the ribbon.

These 8 shaded squares have been arranged as shown in the diagram. Each square has sides that are 2.5 cm long.
17. What is the perimeter of this shaded shape?
18. Rearrange the 8 shaded squares to form a shape that has a perimeter of 35 centimetres. Draw a diagram to show your arrangement.
19. How would you rearrange these squares to form a shape with the maximum perimeter? Draw a diagram to show your arrangement.
20. Create word problems involving perimeter as above.

Exchange questions with a classmate and compare your answers.

Finding the circumference of a circle:

The distance around the outside of a shape with straight or curved sides is called the perimeter, but for a circle the same measurement is called the circumference.

A line across a circle, from one side to the other passing through the centre is called the diameter.

Task 13

How is the circumference of a circle and the diameter of a circle related?

1. Conduct this experiment to find out, using a cylinder (can of baked beans), some string and a ruler.

Step 1: Wrap some string around the circular part of the can once, marking the string where its joins.
Step 2:

Step 3:

Step 4:

Step 5: Divide the circumference measurement by the diameter measurement. Example: $21.5 \div 7=3.07 \mathrm{~cm}$
2. Create a table with the following headings ...

Object	Circumference (C) $\mathbf{m m}$	Diameter (d) $\mathbf{m m}$	$\mathbf{C} \div \mathbf{d}$
For example: 10c coin	71 mm	23 mm	3.09 mm

Locate up to 10 circular objects within your classroom or use the objects
 This represents the diameter of the circle. diameter
circumference

Unwrap the string and stretch it out straight.

Measure the length of the string between the marks. This represents the circumference of a circle. Example: 21.5 cm
Measure the distance across the centre of the circular end, passing through the centre.

Example: 7 cm
 supplied by your teacher.

Work out the circumference and measure the diameter of your objects, following the steps above.
Enter your measurements in the table and calculate $C \div \mathrm{d}$.

3. Write a rule for the relationship between the circumference of a circle and its diameter.

Example: Circumference $=\times$ diameter

Use your rule to find the circumferences of these circles, given the diameters.
4.

5.

6.

7.

8.

The circumference of a circle can be worked out using the formulae .. where $\mathrm{r}=$ radius, $\mathrm{d}=$ diameter and $\pi=p i=3.14$ (2 d.p.)

$$
\mathbf{C}=\mathbf{2} \pi \mathbf{r} \quad \text { or } \quad \mathbf{C}=\pi \mathbf{d}
$$

Use these formulae to work out the circumferences of these circles rounded to 2 d.p. where ...
9. $r=8 \mathrm{~cm}$
10. $d=50 \mathrm{~cm}$
11. $r=2.4 \mathrm{~mm}$
12. $d=3.6 \mathrm{~km}$
13. $r=0.6 m$
14. $d=45.8 \mathrm{~mm}$

'If you can paint it, it has area':

The amount of surface a shape takes up is called its area.
Example: A painter covered the floor with 10 square sheets of newspaper to
protect the carpet while he was painting. The area of the floor could be described as 10 square sheets.

In the metric system, the most commonly used area units are square millimetres, square centimetres, square kilometres or hectares. A hectare is a $100 \mathrm{~m} \times 100 \mathrm{~m}=10000$ square metres. These area units can be written as abbreviations ... $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$ and h .

Task 14

Estimate the area of the shaded shapes by counting whole and part squares.
1.

2.

3.

4.

5. Copy and complete the following rule for calculating the area of squares and rectangles.

Use your area rule to calculate the area of these shapes below.
Remember to include the name of the unit in your answers.
6.

7.

8.

9.

10.

11.

12.

13.

Measure the length of the base and height for each shape, then calculate its area, in mm^{2}.
14. A

D \quad 15. $\quad \mathbf{A}$

D 16 .

17. If the area of a rectangle is $56 \mathrm{~cm}^{2}$ and one side is 7 cm , how long is the other side?
18. If the area of a rectangle is $96 \mathrm{~m}^{2}$ and one side is 12 m , how long is the other side?
19. If the area of a square is $121 \mathrm{~mm}^{2}$, what is the length of each side?
20. If the area of a square is $225 \mathrm{~cm}^{2}$, what is the length of each side?

Finding the area of a triangle:

If the area of a Square or Rectangle $=$ Base \times Height, how do you calculate the area of a triangle?

A triangle is half the size of a square or rectangle with the same base and height, therefore the area of a triangle is half that of the square or rectangle.

To find the area of a triangle use ...
Area of Triangle $=1 / 2 b h$

Task 15

1. What is the size of the angle between the base and height of a square, rectangle or triangle? Calculate the area of each triangle using the formula $\boldsymbol{A}=\frac{1}{2} \mathrm{bh}$.
2.

3.

4.

5.

8.

9.

10.

Find the lengths of the missing sides, given the areas and one side for each triangles.
12. If the area of a triangle is $48 \mathrm{~cm}^{2}$ and base is 8 cm , what is the height of the triangle?
13. If the area of a triangle is $63 \mathrm{~cm}^{2}$ and height is 12 cm , what is the base of the triangle?
14. If the area of a triangle is $108 \mathrm{~cm}^{2}$ and base is 9 cm , what is the height of the triangle?
15. If the area of a triangle is $8.64 \mathrm{~cm}^{2}$ and height is 2.4 cm , what is the base of the triangle?

A triangular section of a wall, as shown in the diagram, is to be painted with three coats of paint.
16. Calculate the total area to be painted.
17. If 1 litre of paint covers $15 \mathrm{~m}^{2}$, what volume of paint will be needed to paint this area?

A second triangular section of wall has an area of $5.58 \mathrm{~m}^{2}$ and a base of 6.2 m .
18. Calculate the height of this section of wall.

This diagram shows the dimensions of a triangular sail for a yacht.
19. Calculate the area of sail cloth needed to replace the sail.
20. Sail cloth costs $\$ 264.50$ per square metre. To make the sail costs $\$ 450$.

Calculate the cost of replacing the sail.

A section of floor, as shown in the diagram, is to be tiled.
21. Calculate the total area to be tiled.
22. If 9 tiles are required per square metre of floor, calculate the number of tiles needed to cover this area.
23. If tiles cost $\$ 2.65$ each, plus a labour charge of $\$ 150$, calculate the cost of tiling this floor.
24. If a 10% discount is offered for cash, what price would you pay?
25. Make up some similar word questions as above that you can exchange with a classmate.

Please DO NOT write on the sheets

To find the area of a parallelogram use ...
Area of Parallelogram $=\mathbf{b h}$

Task 16

Calculate the area of each parallelogram.
1.

2.

3.

5.

7.

8.

9.

10.

Find the lengths of the missing sides, given the areas and one side for each parallelogram.
11. If the area of a parallelogram is $13.5 \mathrm{~cm}^{2}$ and base is 1.5 cm , what is the height of the parallelogram?
12. If the area of a parallelogram is $19.2 \mathrm{~mm}^{2}$ and height is 2.4 mm , what is the base of the parallelogram?
13. If the area of a parallelogram is $14.4 \mathrm{~cm}^{2}$ and base is 3.6 cm , what is the height of the parallelogram?
14. If the area of a parallelogram is $5.85 \mathrm{~cm}^{2}$ and height is 1.3 cm , what is the base of the parallelogram?

Part of a floor design for a shopping centre is made up of four parallelograms, as shown in the diagram. All parallelograms are the same size.
15. Calculate the area of one parallelogram.
16. What is the total area of these parallelograms?

The area is to be tiled with floor tiles that require 50 tiles per square metre.
17. Calculate the number of tiles needed to tile the four parallelograms.

The tiles cost $\$ 76.50$ per square metre to buy and there is a labour charge of $\$ 250$ to lay the tiles.
18. Calculate the cost of having this floor area tiled.

Choose the correct measurements needed to calculate the areas of these compound shapes.
19.

20.

21.

22.

Finding the area of a trapezium:

A trapezium has one pair of parallel sides, labelled $a \& b$.
How can you turn a trapezium into a square or rectangle?

New shape

Cut a triangular shape off each end and move it to the position shown on the diagram. This would make side ' a ' longer and side ' b ' shorter.
The parallel sides are now the same length. Side length is worked out using $\frac{1}{2}(a+b)$. The perpendicular distance ' h ' between the parallel sides is still the same.

To find the area of a trapezium use ...
Area of Trapezium $=1 / 2(a+b) h$

Task 17

Calculate the area of each trapezium.
1.

6.

17 cm
2.

4.

5.

9.

10.

A sheet of flooring particle board measures 2400 mm by 1200 mm . A triangular corner that measures 1200 mm by 720 mm has been cut off the sheet, as shown in the diagram.
11. Calculate the area of the sheet that is left.

This diagram shows the cross-section of a glasshouse that has been built against the side of a building (shaded area). Due to storm damage the glass in this end has to be replaced at a cost of $\$ 85.50 / \mathrm{m}^{2}$.
12. Calculate the area of glass needed and the cost to do this job.

If the area of a trapezium is given, the formula for the area of a trapezium $\mathbf{A}=1 / 2(\mathbf{a}+\mathbf{b}) \mathbf{h}$ can be rearranged so that the length of a missing side or the distance between the parallel sides can be found.
Example:

Use either rearranged formula above to find the missing measurements on these diagrams.

$\mathrm{A}=180 \mathrm{~mm}^{2}$
14.

12 cm
$\mathrm{A}=300 \mathrm{~cm}^{2}$

$\mathrm{A}=11.88 \mathrm{~mm}^{2}$

$A=1125 \mathrm{~mm}^{2}$

Finding the area of a circle:

A circle has been divided into 10 sectors, with half the sectors shaded.

Example:

The sectors were then cut out and arranged with half facing up and half facing down.

What shape has almost been created and how do you work out the area of this shape?

The shape created is called a parallelogram. Area of a parallelogram $=$ Base \times Height $=b h$.
On the diagram ... 'base' $=\frac{1}{2}$ circumference $=\frac{1}{2}(2 \pi r)=\pi r \quad$ and \quad 'height' $=$ radius $=\mathbf{r}$
From this we can create the formula for finding the area of a circle ...
Area of Circle $=\pi r^{2}$

Task 18

Calculate the area of each circle, using $\pi=3.14$. Round all answers in Task 18 to $2 \mathrm{~d} . \mathrm{p}$.
1.

2.

3.

4.

5.

A new circular outdoor spa pool has been built in the backyard of Linda's house and requires a cover to help keep the water warm. The dimensions are shown in the diagram.
6. Work out the radius of the cover and convert this measurement to metres.
7. Calculate the area of the cover, giving your answer in square metres (use $\pi=3.14$).

The cost of spa pool material is $\$ 165.60$ per square metre, plus a $\$ 150$ making charge.
8. Calculate the cost of making the spa pool cover.

1750 mm

The diagram shows a bird's eye view of a circular swimming pool. The diameter of the pool is 3.5 m . The shaded region is an area around the pool that is to be tiled and it is 25 cm wide.
9. Work out the radius of the pool and calculate the surface area of the pool (use $\pi=3.14$).
10. What is the radius of the pool and tiled area combined?
11. Calculate the area that is to be tiled (use $\pi=3.14$).

It costs $\$ 84.20$ / square metre to tile this area, plus a $\$ 200$ labour charge.
12. Calculate the cost of tiling this area.

This diagram shows a backyard in which there are four rose gardens, one in each corner.
13. Calculate the total area of rose gardens (use $\pi=3.14$).

Calculate the areas of these compound shapes or the area of the shaded region in each of these diagrams. Use $\pi=3.14$ and round your answers to 2 d.p.
14.

15.

16.

18.

Please DO NOT write on the sheets
Please DO NOT write on the sheets

'If you can fill it, it has volume':

Example: Chris used a 250 mL cup to fill a bottle with water. If the bottle required 7 cups to fill it, what is the volume of the bottle?

Answer: $7 \times 250 \mathrm{~mL}=1750 \mathrm{~mL}$ or 1.75 L
The volume or capacity of an object is the amount of liquid (or air) it holds.
Example: Keith likes building with bricks that are the shape of cubes.
If he neatly stacks 50 cubes in a pile, what is the volume of the stack?

Answer: As we do not know the size of the cubes, we can say the volume of this pile is 50 cubes.
The volume or capacity of a 3D shape is the amount of space it takes up.

Task 19

Work out the volume of each pile of cubes. Remember to include cubes you cannot see.

Draw shapes on some isometric paper that have the following volumes
5. 8 cubes
6. 14 cubes
7. 20 cubes
8. 30 cubes

John stacked a pile of cubes. The diagram below shows the 'end' view of the cubes.

base
9. Calculate the area of the 'end' 2D shape, using the rule ...

Area $=$ base \times height

The 'end' view for a 3D object is also known as the cross-section of the 3D object.

If you know the area of the cross-section of a 3D object, the volume can be calculated using the rule ...

Volume $=$ Area of cross-section \times depth

Calculate the volume of these objects, given the area of the cross section and the depth. The volume units are written as ... $\mathrm{mm}^{3}, \mathrm{~cm}^{3}$ and m^{3}.

10.

Area $=9 \mathrm{~cm}^{2}$
11.

15.

Area $=24 \mathrm{~cm}^{2}$
16.

Area $=50 \mathrm{~cm}^{2}$
12.

13. Area $=300 \mathrm{~mm}^{2}$

14.

18.

19.

Name:
Class:

- • • • • • • • • • • • • • •

Finding the volume of a cube or similar shape:

Following on from Task 19, the volume of an object can be found using the following rule

Volume $=$ base \times height \times depth

Example: Calculate the volume of this box.

20 cm

$$
\text { Volume }=20 \times 20 \times 20=8000 \mathrm{~cm}^{3}
$$

In the metric system, the most common units of volume are cubic millimetres, cubic centimetres and cubic metres. These volume units can be written as abbreviations ... $\mathrm{mm}^{3}, \mathrm{~cm}^{3}$ and m^{3}.

Task 20

Calculate the volume of these objects.
1.

3.

5.

In the olden days, tea was shipped around the world in wooden boxes called tea chests.
6. Calculate the volume of this tea chest. Answer in m^{3}.
7. If measurements for base, width and height of the tea chest were all doubled, what would the new volume of the tea chest be?

Mr Brown is making a new concrete path that is 75 metres long, 1.2 metres wide and 0.15 metres deep.
8. Calculate the volume of concrete he will need for this path.
9. If concrete costs $\$ 56.50$ per cubic metre, calculate the cost of concreting this path.

A cereal box is 30 cm high, 15 cm wide and 7 cm deep.
10. Calculate the volume of one cereal box.

Five cereal boxes were placed end on in a line, as shown in the diagram.
11. State the dimensions of the line of boxes and calculate total volume.

The dimensions of a swimming pool are shown in the diagram.
The swimming pool is to be filled with water, 10 centimetres from the top.
12. Calculate the volume of water needed to fill the pool.
13. What is the water level in the pool if it contains $65 \mathrm{~m}^{3}$ of water?
14. What is the water level when the pool is 75% full?
15. If the pool fills at a rate of $35 \mathrm{~m}^{3}$ of water per hour, how long will it take to fill the pool with water, rounded to the nearest minute?

16. Make up some similar word questions as above that you can exchange with a classmate.

More volume problems involving various prisms:

Remember, the volume of prism can be worked out by using the rule ...

Volume $=$ Area of cross-section \times depth

Task 21

Calculate the volume of these 3D objects. Use $\pi=3.14$ for all questions involving circles.
Round all your answers in Task 21 to 2 d.p.

3.

4.

A triangular shaped glasshouse has the dimensions as shown in the diagram.
5. Calculate the volume of air within the glasshouse.

On very hot days a fan is used to blow hot air out one end of the glasshouse, which is replaced with cooler air from outside.
6. If the fan can move air at a rate of $15 \mathrm{~m}^{3}$ per minute, how long would it take to replace the hot air with cooler air?

Six concrete columns the shape of cylinders are to be constructed to support the roof of a building. Each column is 3.5 metres tall, with a radius of 30 cm
7. Calculate the volume of concrete needed to create one column (use $\pi=3.14$).
8. If concrete costs $\$ 95.00$ / cubic metre, calculate the total cost for the concrete needed to construct all columns.

This diagram shows the size and shape of aluminium cans compressed down for recylcing.
9. Calculate the volume of this compressed block of aluminium cans.
10. If one compressed block of aluminium cans weighs 7.5 kg , how many blocks need to be compressed before you have 1 tonne of aluminium?
11. A rectangular prism has a volume of $576 \mathrm{~cm}^{3}$. If the base is 8 cm and the height is 12 cm , what is the depth of the rectangular prism?
12. A rectangular prism has a volume of $146.25 \mathrm{~m}^{3}$. If the depth is 9 m and the height is 2.5 m , what is the base of the rectangular prism?

16. Make up some similar word questions as above that you can exchange with a classmate.

Understanding and using scale diagrams:

This scale diagram of a model battleship has been drawn using the scale below the diagram.

For this scale, 1 cm on paper represents an actual length of 0.5 m . If the diagram is 6 cm long, what is the actual length of the model battleship?

Answer: 3 metres
Similar scales are used for maps and plans, such as house plans.

Task 22

For each scale diagram, use the scale that has been given to calculate the actual length.

1. Measure the length of the bus in this diagram.
2. Use the scale below to work out the actual length.

3. Measure the length of the killer whale in this diagram.
4. Use the scale to work out the actual length.

5. Measure the wing span of a model plane in this diagram.
6. Use the scale to work out the actual length.

7. Measure various objects in the classroom. Using an appropriate
 scale, draw scale diagrams of your objects.

This old map has been drawn using the scale below. The dots / letters represent towns

Measure, to the nearest millimetre, the shortest distances between these towns. Convert your measurements to actual distances using the scale above ...
8. Town A and Town C.
9. Town B and Town F.
10. Town A and Town D.
11. Town C and Town E.
12. Town D and Town F.
13. Town B and Town E.
14. Town A and Town F.
15. Town D and Town B.

16. Create your own map, with a suitable scale. Exchange your map with a classmate and have her / him work out the distances between various points on your map.

Understanding time units / Analogue \& digital time:

Being able to tell the time and convert between time units is an important skill.
Example: Is 5:17 p.m. in the morning or afternoon?

Are there 210 seconds in $3 \frac{1}{2}$ minutes?
If a TV programme starts at 1:25 p.m. and runs for 80 minutes, when will it end?
Answers: p.m. is in the afternoon, 210 seconds $=3 \frac{1}{2}$ minutes and the programme would end at $2: 45$ p.m. Discuss how you think we would get on if there was no way of telling the time.

Task 23

Time yourself as you answer these questions involving basic time units and replace the - as you convert between time units.

1. How many seconds in 5 minutes?
2. How many hours in $4 \frac{3}{4}$ days?
3. How many weeks in $\frac{1}{2}$ a year?
4. 435 seconds $=$ minutes
5. $\mathbf{1 6 5}$ minutes $=$ hours
6. 54 hours $=$ days
7. $45 \frac{1}{2}$ days $=$ weeks
8. How many minutes in $6 \frac{1}{4}$ hours?
9. How many days in 11 weeks?
10. How many days in a leap year?
11. $6 \frac{3}{4}$ minutes $=$ seconds
12. 260 minutes $=$ hours
13. 90 hours $=$ days
14. $11 \frac{1}{2}$ weeks $=$ days
15. How long did it take you to answer the above questions?

A clock with hands shows analogue time. When telling the time from an analogue clock we use expressions such as, 20 past 3 or $\frac{1}{4}$ to 4 . What would you say, as you read the time on these clocks?
16.

17.

18.

19.

20.

Draw clock faces to show these analogue times.
21. $\frac{1}{4}$ past 8
22. 5 to 5
23. 10 past 12
24. 20 to 1
25. 20 past 9

Some clocks do not have hands, but display the time as numbers. This is known as digital time.
Example:

03:25 means 25 past 3

04:50 means 10 to 5

26. Write the analogue times in questions 16 to 25 above as the time would appear on digital clocks.

Add and subtract these mixed time units. Give your answer in the time unit in the brackets.
27. $45 \mathrm{sec}+4 \mathrm{~min}=(\mathrm{sec})$
30. $4 \min -75 \mathrm{sec}=(\min)$
33. $3 \frac{1}{2} \mathrm{hrs}+270 \mathrm{~min}=(\mathrm{hrs})$
36. 54 hrs $-1 \frac{1}{2}$ days $=$ (hrs)
39. $2 \frac{1}{2} w k s+14$ days $=(w k s)$
42. $3 \frac{3}{4} \mathrm{hrs}+255 \mathrm{~min}=(\mathrm{hrs})$
45. $540 \mathrm{~min}-2 \frac{1}{4} \mathrm{hrs}=(\mathrm{min})$
28. $110 \mathrm{sec}-1 \frac{1}{4} \min =(\mathrm{sec})$
31. $210 \mathrm{~min}+4 \mathrm{hrs}=(\mathrm{min})$
34. $450 \mathrm{~min}-2 \frac{1}{4} \mathrm{hrs}=(\mathrm{min})$
37. $42 \mathrm{hrs}+4 \frac{1}{2}$ days $=$ (days)
40. 63 days $-3 \frac{1}{2} w k s=$ (days)
43. $3 \frac{1}{2} \mathrm{hrs}+315 \mathrm{~min}=(\mathrm{hrs})$
46. $76 \mathrm{~min}-1 \frac{3}{4} \mathrm{hrs}=(\mathrm{min})$
29. $150 \mathrm{sec}+5 \mathrm{~min}=(\min)$
32. $5 \mathrm{hrs}-255 \mathrm{~min}=(\mathrm{hrs})$
35. 2 days $+15 \mathrm{hrs}=(\mathrm{hrs})$
38. 5 days -60 hrs $=$ (days)
41. $24 \frac{1}{2}$ days $+5 \mathrm{wks}=(w k s)$
44. $4 \frac{1}{2} \mathrm{hrs}-240 \mathrm{~min}=(\mathrm{hrs})$
47. $2 \frac{1}{4}$ days +15 hrs $=$ (hrs)

Converting between a.m. / p.m. and 24hr time:

To avoid confusion between time in the morning (a.m.) and time in the afternoon (p.m.), time can be expressed as 24 hour time. Many electrical items use this format of time.

Example: To convert 3:45 p.m. to 24 hr time, add 12. Therefore the time would be 1545.
It may be written as 15:45 and you say the time is fifteen forty-five. The time 0000 is 12:00 a.m.
Any time expressed as a number greater than 12... indicates a p.m. time.

Task 24

Convert these a.m. and p.m. times to 24 hr time.

1.	5:23 a.m.	2.	4:48 p.m.	3.	8:25 a.m.	4.	9:06 p.m.	5.	4:56 a.m.
6.	8:13 p.m.	7.	9:06 a.m.	8.	10:17 p.m.	9.	3:14 a.m.	10.	7:41 p.m.
11.	10:32 a.m.	12.	1:34 a.m.	13.	2:24 p.m.	14.	10:56 a.m.	15.	11:27 p.m.
16.	12:45 a.m.	17.	6:12 p.m.	18.	7:49 a.m.	19.	12:08 p.m.	20.	6:37 a.m.
Convert these 24 hr times to a.m or p.m. time.									
21.	0256	22.	1236	23.	0859	24.	2006	25.	1049
26.	2132	27.	0714	28.	1827	29.	1014	30.	0853
31.	1452	32.	1942	33.	0048	34.	0914	35.	2358
36.	0146	37.	1636	38.	0523	39.	2243	40.	0009

On Saturday, Stu started a game of golf at 1315 and played for 3 hrs 42 min .
41. At what time did Stu finish playing golf? Give your answer in a.m. / p.m. time.

On Sunday, Stu started playing golf at 9:15 a.m. and finished playing at 1:10 p.m.
42. For how long did Stu play golf on Saturday?

On Wednesday, Stu averaged 7 min 20 sec per hole, for 18 holes of golf.
43. How long did this round of golf take?

Kate has a 3 hour video tape and would like to tape all four programmes on one tape. The starting and finishing times of the programmes are shown in this table.

	Start time	Finish time
Programme 1	9:35 a.m.	10:10 a.m.
Programme 2	11:15 a.m.	12:20 p.m.
Programme 3	5:20 p.m.	5:55 p.m.
Programme 4	11:15 p.m.	12:05 a.m.

44. How long is each programme?
45. Can Kate video all three programmes on one 3 hour tape?
46. Convert the start and finish time for each programme to 24 hr time.

This timetable shows when buses depart from the city and arrive at the airport.
47. How long does the bus trip take?

48. Complete the last three arrival times, that would appear in the table.
49. Redraw this timetable showing all times as a.m. / p.m. time.

Depart	Arrive
0850	0927
0920	0957
1140	1217
1530	$?$
1745	$?$
1950	$?$

50. During the school day you do lots of different activities, plus you do things after school.

Example: Maths, Science, English, Social Studies, playing sport, playtime, lunch break, homework etc.
Draw up your own timetable for a day, showing what you do and when you do it.

Changes over time / Calculating rates:

As time goes by, things change and they can change at various rates.
Example: A worker is paid $\$ 8.50 / \mathrm{hr}$, a plant grows at a rate of 7 mm per day,
the temperature dropped $3^{\circ} \mathrm{C}$ in 1 hour, water flows at 120 cubic metres per minute, etc.

Task 25

Sally works in a shop and earns $\$ 7.60$ per hour.

1. How much would she earn in 12 hours?
2. If Sally earned $\$ 49.40$, how many hours did she work?

James worked for 25 hours and was paid $\$ 140$.

4. At an hourly rate of $\$ 6.25$, how long would it take to earn $\$ 200.00$?

Paint is sold in various sized containers, ranging from 500 mL to 10 litres. Calculate the price per litre for the following sized paint containers and prices.
5. 500 mL for $\$ 15.95$
6. $\quad 2 \mathrm{~L}$ for $\$ 45.30$
7. 4 L for $\$ 69.92$
8. 10 L for $\$ 110.00$

At the supermarket, meat is sold by weight and priced accordingly.
Calculate the price for each pack of meat, if the meat sells for $\$ 11.90 / \mathrm{kg}$. Round to the nearest cent.
9. 1.5 kg
10. $\quad 2.2 \mathrm{~kg}$
11. 750 g
12. 400 g

Calculate the price per kilogram for the following products. Round to the nearest cent.
13. 2.5 kg of carrots for $\$ 1.73$
14. 500 g of cheese for $\$ 3.75$.
15. 5 kg of potatoes for $\$ 3.95$
16. $\quad 750 \mathrm{~g}$ of sliced ham for $\$ 10.35$
17. 1.5 kg of sugar for $\$ 2.40$
18. 25 kg of flour for $\$ 28.75$

Photocopying A4 sized pages cost a school 1.4 cents per copy. Calculate the cost of photocopying the following number of A4 pages.
19. 2500 copies 20. 32000 copies 21. 102452 copies 22. 452062 copies

Richard's pulse rate averages 72 beats per minute.
23. How many times would Richard's heart beat in 1 hour?
24. How many times would his heart beat in 1 day?
25. Measure your own heart rate and repeat the two calculations above.

This distance / time graph shows the distance Jodie travelled on a bicycle ride during an eight hour trip.
26. During the first two hours, how far did she travel?
27. What was her average speed during this time? Answer in $\mathrm{km} / \mathrm{hr}$.
28. Why is the line horizontal during the 3rd hour?
29. What was her average speed for the next 3 hours?
30. How far did she travel in the last 2 hours?
31. What was Jodie's average speed for the 8 hour bicycle journey?
32. If Jodie repeated the same trip with an average speed of $12 \mathrm{~km} / \mathrm{hr}$, how long would it take?
33. Perform a task that changes over time and can be repeated several times. Graph your results.

Example: The temperature in the classroom, measured every 30 minutes. Comment on your results.

'In-class' Worksheet

 Teaching Notes \& Answers

 Teaching Notes \& Answers}

How to use this section:
Teaching notes are enclosed in a box with a 'push-pin' at the top left corner. The teaching notes precede the answers for each worksheet / task. The teaching notes have been included to provide assistance and background information about each topic or unit of work.

Introduction:
The topic of Measurement is concerned with gaining an understanding of the importance of having standard units of measure for length, mass and capacity. The various units for length, mass and capacity are revisited, having been introduced at level 4. The ability to estimate and measure accurately using various devices is an important skill. The concepts of perimeter / circumference, area and volume are explored through practical activities. The use of scales and scale diagrams for plans and maps is also revisited as is the ability to convert between analogue, digital and 24 hour time. The concept of 'rate' is introduced in a variety of ways.

Units / conversions associated with length:
 Calculations involving mixed length units:

Worksheets 1 \& 2

In Task 1, pupils are to investigate the metric units for length, converting between various units.
In Task 2, pupils are to add and subtract metric length units; however, this can only be done when both units are the same. Therefore pupils are to convert some units before the calculations can be done. Word problems involving length units are also included.

Task 1

Task 2

1. 65.
1. 12 3. 5.48
2. 3.472
3. 9.298
4. 32.51
5. 10.34
6. 2.124
7. 15.23
8. 745.4
$\begin{array}{lllllllll}\text { 11. } 14675 & 12.44 .4 & 13.8841 & 14.7 .86 & \text { 15. } 5930 & 16.60 \text { bricks } & 17.480 \text { bricks } & 18 .\end{array} \$ 168 \quad 19.4 .71 \mathrm{~m}$
$\begin{array}{lllllll}\text { 20. } \$ 65.23 & \text { 21. } 3600 \mathrm{~m} \text { or } 3.6 \mathrm{~km} & \text { 22. } 4 \text { laps } \quad 23.50 \text { laps } \quad 24.60000 \mathrm{~m} \text { or } 60 \mathrm{~km} \quad 25.6 .48 \mathrm{~m} & 26 . \$ 50.87\end{array}$
9. $12.1 \mathrm{~m}, 1210 \mathrm{~cm}, 12100 \mathrm{~mm}$ 28. 2.42 rolls 29. $\$ 32.07$

Units / conversions associated with mass (weight):
Calculations involving mixed mass units:

Worksheets 3 \& 4

In Task 3, pupils are to investigate the metric units for mass (weight), converting between various units.
In Task 4, pupils are to add and subtract metric mass units. However, this can only be done when both units are the same. Therefore pupils have to convert some units before the calculations can be completed. Word problems involving mass units are also included.

Task 3

1. t 2. mg 3. kg 4. $\dagger \quad 5 . \mathrm{kg}$ 6. g 7. g or mg 8. g or mg 9. kg 10. mg 11. Students to answer $\begin{array}{llllllllll}12.1000 & 13.1 & 14 . ~ & 9000 & 15.8 & 16.4900 & 17.8100 & 18.2780 & 19.43600 & 20.0 .635\end{array} 21.0 .975$ $\begin{array}{lllllllllll}\text { 22. } 424 & 23.963 & 24.1000 & 25.1 & 26.6000 & 27.6125 & 28.4300 & 9.6 .6 & 30 . & 8350 & 31.4 .29\end{array}$
 $\begin{array}{lllllllll}42.6340 & 43 . & 9256 & 44.5 .715 & 45.0 .635 & 46.476 & 47.0 .915 & 48.5 .623 \mathrm{~kg} & 49.2050 \mathrm{~g} \\ 50\end{array}$. 1250 kg $51.12 .5 \dagger \quad 52.1 .25 \mathrm{~g} \quad 53.2450 \mathrm{mg} \quad 54.0 .865 \dagger \quad 55.23 \mathrm{mg} \quad 56.520 \mathrm{~kg} \quad 57.13 .5 \mathrm{~kg}$

Task 4

Units / conversions associated with capacity (volume): Calculations involving mixed capacity units:

Worksheets 5 \& 6

In Task 5, pupils are to investigate the metric units for capacity (volume), converting between various units.

In Task 6, pupils are to add and subtract metric capacity units. However, this can only be done when both units are the same. Therefore pupils have to convert some units before the calculations can be completed. Word problems involving capacity units are also included.

Task 5

1. mL 2. mL or L 3. L 4. mL or L 5. mL 6. mL 7. L 8. L 9. kL 10. L 11. Students to answer $\begin{array}{llllllllll}\text { 12. } 1000 & 13.1 & 14.8000 & 15.9 & 16.9600 & 17.4 .7 & 18.1270 & 19.2260 & 20.0 .526 & 21.0 .637\end{array}$ $\begin{array}{llllllllll}\text { 22. } 395 & 23.842 & 24.1000 & 25.1 & 26.7000 & 27.3 & 28.6700 & 29.5 .2 & 30.3650 & 31.4015\end{array}$ $\begin{array}{lllllllll}\text { 32. } 3090 & 33.7 .435 & 34.395 & 35.0 .532 & 36.7014 & 37.1 .952 & 38.8 .525 & 39.746 & 40.0 .634\end{array}$ $\begin{array}{lllllllll}41.3254 & 42.4652 & 43.5 .33 & 44.459 & 45.0 .429 & 46.202 & 47.0 .372 & 48.1 .25 \mathrm{~L} & 49.1500 \mathrm{~mL}\end{array}$ 50. 0.25 L 51. 25000 L 52. 15kL 53. 850L 54. 25L 55. 75000L 56. 750 mL 57. 0.005 L

Task 6

1. 4690	2. 3.76	3. 17.49	4. 48805 .	5.74	6. 1.395	7. 7.27	8. 3.345	9. 11980	10. 1192
11. 9009	12. 2.16	13. 7.759	14. 1370	15. 2	16. 10	L 17.	0 jars 18.	\$75	
19. 31500 at $750 \mathrm{~kL} / \mathrm{hr}=42 \mathrm{hrs}$			20. $\$ 393.75$	21.	16.3L	491	3. \$622.65	24. 0.84L	25. 12 days
26. 50 d	27. \$	2.0028.	17875 L or 17	875kL					

Reading scales:

Worksheet 7

In Task 7, pupils are to list the position of pointers on various diagrams of scales. Pupils are to state the unit of measurement and the smallest division for each scale. A 'Marking Scales' master sheet has been provided so that pupils can mark given points on various scales. The most important measurement instruments that pupils must be confident in using are rulers and protractors.

Task 7

1. Units are millimetres, each division $=1 \mathrm{~mm} . A=53 \mathrm{~mm}, B=27 \mathrm{~mm}, C=19 \mathrm{~mm}, D=8 \mathrm{~mm}, E=38.5 \mathrm{~mm}$
2. Units are degrees, each division $=1^{\circ} . A=80^{\circ}, B=5^{\circ}, C=122^{\circ}, D=38^{\circ}, E=162^{\circ}$
3. Units are metres, each division $=10 \mathrm{~cm}$ or 0.1 m . $A=5.3 \mathrm{~m}, B=1.5 \mathrm{~m}, C=2.7 \mathrm{~m}, D=0.35 \mathrm{~m}, E=4.15 \mathrm{~m}$
4. Units are kilometres per hour, each division $=10 \mathrm{~km} / \mathrm{hr} . A=10 \mathrm{~km} / \mathrm{hr}, B=90 \mathrm{~km} / \mathrm{hr}, C=65 \mathrm{~km} / \mathrm{hr}, D=35 \mathrm{~km} / \mathrm{hr}$
5. Units are kilograms, each division $=5 \mathrm{~kg}$. $A=10 \mathrm{~kg}, B=135 \mathrm{~kg}, C=90 \mathrm{~kg}, \mathrm{D}=40 \mathrm{~kg}, E=57.5 \mathrm{~kg}$
6. Units are centimetres, each division $=2 \mathrm{~mm}$ or 0.2 cm . $A=3 \mathrm{~cm}, B=5.6 \mathrm{~cm}, C=0.8 \mathrm{~cm}, D=10.4 \mathrm{~cm}, E=8.45 \mathrm{~cm}$ 7.

Accuracy of measurement:

Worksheet 8

The accuracy of a measurement will depend on the smallest division of the scale on the measuring device and what is being measured.
Example: The distance between two towns is described as 25.5 km . To say that the towns are 25.487 km apart is too accurate and most probably unnecessary, therefore the distance could be given as $25.5 \mathrm{~km} \pm$ 0.5 km .

In Task 8, pupils give the mimimum and maximum measurements, given the degree of accuracy or variation. The symbol ' \pm ' means 'plus or minus'. Pupils are to measure lines to the nearest millimetre \pm 1 mm .
In Task 9, pupils are to look at various measurement devices and to determine the degree of accuracy for each device. Using several devices, pupils are to measure various items.

Task 8

1. $36 \mathrm{~mm}, 38 \mathrm{~mm}$
2. $41 \mathrm{~cm}, 43 \mathrm{~cm}$
3. $1449 \mathrm{~m}, 1451 \mathrm{~m}$
4. $233 \mathrm{~mm}, 239 \mathrm{~mm}$
5. $87 \mathrm{~mL}, 91 \mathrm{~mL}$
6. $74 \mathrm{~g}, 80 \mathrm{~g}$
7. $628 \mathrm{~km}, 632 \mathrm{~km}$
8. $27 \mathrm{mg}, 35 \mathrm{mg}$
9. $6.3 \mathrm{~m}, 6.5 \mathrm{~m}$
10. $8.4 \mathrm{~kg}, 8.8 \mathrm{~kg} \quad 11.108 .44 \mathrm{~m}, 108.54 \mathrm{~m}$
11. 8.9L, 9L
12. $3.213 \mathrm{~m}, 3.223 \mathrm{~m}$
13. $2.023 \mathrm{~g}, 2.073 \mathrm{~g}$
14. $3.792 \mathrm{~L}, 4.0$
15. $79 \mathrm{~mm} \pm 1 \mathrm{~mm}$
16. $138 \mathrm{~mm} \pm 1 \mathrm{~mm}$
17. $12 \mathrm{~mm} \pm 1 \mathrm{~mm}$
18. $87 \mathrm{~mm} \pm 1 \mathrm{~mm}$
19. $96 \mathrm{~mm} \pm 1 \mathrm{~mm}$
20. $32 \mathrm{~mm} \pm 1 \mathrm{~mm}$
21. $25 \mathrm{~mm} \pm 1 \mathrm{~mm}$

Finding the perimeter of a shape:
Word problems involving perimeter:
Finding the circumference of a circle:
In Task 10, pupils are to find the perimeter of various shapes, either by adding the sides given on a shape or by measuring the sides of a shape so that the perimeter can be calculated. A good way to describe perimeter is to imagine you are going to walk along the sides of a shape, until you are back where you started. The distance travelled would be the perimeter.

In Task 11 , pupils are to find the perimeter of various items within the classroom or outside.
Example: The perimeter of a desk top or of a tennis / basketball / netball court. This task will involve measuring, but pupils could use their hands or feet as 'measuring, instruments, if ruler and tape measures are not available.

In Task 12, pupils are to answer word problems of practical situations that involve finding the perimeter of various shapes.
In Task 13, pupils are to find the circumference of a circle, an alternative name for perimeter. By using string and a ruler, pupils are to attempt to find the relationship between the length of the circumference of a circle and the diameter of the same circle. From this, pupils are to come up with a rule, $\mathrm{C}=$ approx. $3 \times$ d , which can be used to find the circumference of a circle, given the diameter. The concept of ' $\mathbf{p i}$ ' is to be introduced, using 3.14 as an approximation for 'pi'.

Task 10

1. 8.34 cm
2. 87.5 cm
3. 8.14 cm
4. 53.3 mm
5. 26 cm
6. 92 mm
7. 94.2 mm
8. 8.58 cm
9. $A B=159.5 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, B C=10 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, C D=159.5 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, D A=10 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$

Minimum perimeter $=159+9.5+159+9.5=337 \mathrm{~mm}$
Maximum perimeter $=160+10.5+160+10.5=341 \mathrm{~mm}$
10. $A B=62 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, ~ B C=15 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, C D=34.5 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, D E=34.5 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, E A=15 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$

Minimum perimeter $=61.5+14.5+34+34+14.5=158.5 \mathrm{~mm}$
Maximum perimeter $=62.5+15.5+35+35+15.5=163.5 \mathrm{~mm}$
11. $A B=72.5 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, B C=28 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, C D=24 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, ~ D E=15 \mathrm{~mm} \pm 0.5 \mathrm{~mm}, ~ E F=28 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$,
$F A=42.5 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$
Minimum perimeter $=72+27.5+23.5+14.5+27.5+42=207 \mathrm{~mm}$
Maximum perimeter $=73+28.5+24.5+15.5+28.5+43=213 \mathrm{~mm}$

Task 12

1. 25000 m
2. 25 km
3. 75000 m or 75 km
4. 5 laps 5 . 2 hrs 46 mins 40 secs
5. $139.4-2.5=136.9 \mathrm{~m}$
6. $\$ 2395.75$
7. 6.25 m
8. $3.7 \mathrm{~m}, 1.8 \mathrm{~m}, 4.5 \mathrm{~m}$
9. $\$ 119.50$
10. $7 \mathrm{~m}, 5.1 \mathrm{~m}, 7.8 \mathrm{~m}$
11. $\$ 8.96 \quad 13.14 .7 \mathrm{~m}$
12. $\$ 21.70 / \mathrm{m}$
13. 2590 mm
14. $\$ 0.91$ or 91 c
15. 30 cm
16. e.g.

Task 13

1-3. Students to answer 4. $C=62.8 \mathrm{~cm} \quad$ 5. $C=37.68 \mathrm{~cm} \quad$ 6. $C=75.36 \mathrm{~m} \quad$ 7. $C=4.71 \mathrm{~m} \quad$ 8. $C=113.04 \mathrm{~mm}$
9. $C=50.24 \mathrm{~cm}$
10. $C=157 \mathrm{~cm}$
11. $C=15.07 \mathrm{~mm}$
12. $C=11.30 \mathrm{~km}$
13. 3.77 m
14. $C=143.81 \mathrm{~mm}$

'If you can paint it, it has area':

Finding the area of a triangle:
Finding the area of a parallelogram:
Finding the area of a trapezium:
Finding the area of a circle:
In Task 14, pupils are introduced to area by way of an estimation activity. Area is defined as the amount of surface a shape takes up and the saying 'If you can paint it, it has area' is a good way to think of area. Having established a rule for finding the area of squares and rectangles, pupils are to calculate areas without having to count squares. An extension exercise involves finding the length of the base or height of a square or rectangle, given the area.
In Task 15, pupils are shown how the area rule for squares and rectangles has been adapted to create the area rule for a triangle. Using this rule, the areas of various triangles are to be found. Practical word problems are included.
In Task 16, pupils are shown how the area rule for squares and rectangles has been adapted to create the area rule for a parallelogram. Using this rule, the areas of various parallelograms are to be found. Practical word problems are included, plus the area of compound shapes.
In Task 17, pupils are shown how the area rule for squares and rectangles has been adapted to create the area rule for a trapezium. Using this rule, the area of a trapezium can be found. Practical word problems are included. An extension exercise involves finding the length of one missing side or the height of a trapezium, given the area.
In Task 18, pupils are shown how the area rule for a parallelogram has been adapted to create the area rule for a circle. Using this rule, the areas of various circles are to be found. Practical word problems are included, plus the area of compound shapes.

Task 14

Task 15

| 1. 90° or a right angle | 2. $1.26 \mathrm{~cm}^{2}$ | 3. $168 \mathrm{~mm}^{2}$ | 4. $1.71 \mathrm{~cm}^{2}$ | 5. $169 \mathrm{~mm}^{2}$ | 6. $240 \mathrm{~mm}^{2}$ | $7.1 .2936 \mathrm{~m}^{2}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8. $1.862 \mathrm{~m}^{2}$ | 9. $2.204 \mathrm{~m}^{2}$ | $10.0 .527 \mathrm{~cm}^{2}$ | $11.0 .8084 \mathrm{~cm}^{2}$ | 12. 12 cm | 13.10 .5 cm | 14.24 cm | 15.7 .2 cm | |
| 16. $19.44 \mathrm{~m}^{2}$ | 17. 1.296 litres of paint | 18. 1.8 m | 19. $7.64 \mathrm{~m}^{2}$ | 20. $\$ 2470.78$ | 1. $6.615 \mathrm{~m}^{2}$ | 22. 75.33 tiles | | |
| 23. $\$ 349.62$ | 24. $\$ 314.66$ | 25. Students to answer | | | | | | |

Task 16

1. $2.7 \mathrm{~m}^{2} \quad$ 2. $208 \mathrm{~mm}^{2} \quad$ 3. $20.09 \mathrm{~mm}^{2} \quad$ 4. $640 \mathrm{~m}^{2} \quad$ 5. $208 \mathrm{~mm}^{2} \quad$ 6. $405 \mathrm{~m}^{2} \quad$ 7. $15.54 \mathrm{~cm}^{2} \quad 8.1 .82 \mathrm{~m}^{2}$
$\begin{array}{llllllll}\text { 9. } 27000 \mathrm{~mm}^{2} & \text { 10. } 17.68 \mathrm{~m}^{2} & 11 . ~ & 9 \mathrm{~cm} & \text { 12. } 8 \mathrm{~mm} & \text { 13. } 4 \mathrm{~cm} & 14.4 .5 \mathrm{~cm} & 15.3 .15 \mathrm{~m}^{2} \\ 16 . ~ & 12.6 \mathrm{~m}^{2} & 17.630 \text { tiles }\end{array}$
2. $\$ 963.90$ + labour $=\$ 1213.90 \quad$ 19. $8.97 \mathrm{~cm}^{2} \quad$ 20. $670 \mathrm{~mm}^{2} \quad$ 21. $864 \mathrm{~mm}^{2} \quad$ 22. $4.575 \mathrm{~m}^{2}$

Task 17

1. $397.5 \mathrm{~mm}^{2}$
2. $360 \mathrm{~mm}^{2}$
3. $232 \mathrm{~m}^{2}$ 4. $273 \mathrm{~cm}^{2}$
4. $3.08 \mathrm{~cm}^{2}$
5. $530 \mathrm{~cm}^{2}$
6. $17.34 \mathrm{~m}^{2}$
7. $770 \mathrm{~mm}^{2}$
8. $7.68 \mathrm{~mm}^{2} \quad 10.6 .86 \mathrm{~m}^{2}$
9. $2448000 \mathrm{~mm}^{2}$
10. $3.96 \mathrm{~m}^{2}, \$ 338.58$
11. 10 mm
12. 17 m
13. 15 cm
14.

3.6 mm 17. 40 mm

Task 18

| 1. $314.00 \mathrm{~cm}^{2}$ | 2. $706.50 \mathrm{~cm}^{2}$ | 3. $1256.00 \mathrm{~cm}^{2}$ | 4. $452.16 \mathrm{~cm}^{2}$ | 5. $1962.50 \mathrm{~cm}^{2}$ | 6. $875 \mathrm{~mm}, 0.875 \mathrm{~m}$ | 7. $2.40 \mathrm{~m}^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8. $\$ 547.44$ | 9. 1.75 m radius, $9.62 \mathrm{~m}^{2}$ | 10. 2 m radius | $11.12 .56 \mathrm{~m}^{2}-9.62 \mathrm{~m}^{2}=2.94 \mathrm{~m}^{2}$ | $12 . \$ 447.55$ | $13.18 .09 \mathrm{~m}^{2}$ | |
| 14. $69.66 \mathrm{~cm}^{2}$ | $15.79 .96 \mathrm{~cm}^{2}$ | 16. $849.97 \mathrm{~mm}^{2}$ | 17. $216.00 \mathrm{~cm}^{2}$ | $18.4 .36 \mathrm{~cm}^{2}$ | | |

'If you can fill it, it has volume':
 Finding the volume of a cube or similar shape:
 More volume problems involving various prisms:

In Task 19, pupils are introduced to volume by way of counting the number of cubes in a pile. Volume can be described as the amount of space a 3D object takes up, or the amount of liquid a 3D object will hold. In the previous task, area of a square or rectangle is defined as ... $\mathbf{A}=\mathbf{b h}$. If a 2 D shape is extended in a third dimension, called depth, the volume of such a 3D object is defined as ... $\mathbf{V}=\mathbf{b h}$. In this task, pupils are to calculate the volume of an object, given the cross-sectional area of the end, and the depth. Pupils are to draw 3D shapes, given the volume as a number of cubes, on isometric paper.
In Task 20, pupils are to use the rule.. Volume $=$ base \times height \times depth, to calculate the volume of simple 3D objects - cubes and rectangular prisms. Practical problems involving volume are also included.

In Task 21, pupils are to find the volume of various prisms based on the area formula for the 2D shape, that is, the cross-section of each prism. The 3D prisms will have either a triangle, parallelogram or trapezium, as a cross-section. Practical problems involving volume are included.

Task 19

1. 14 cubes
2. 16 cubes
3. 20 cubes
4. 22 cubes
5. 6 squares
6. $27 \mathrm{~cm}^{3}$
7. $54 \mathrm{~m}^{3}$
8. $35 \mathrm{~cm}^{3}$
9. $30000 \mathrm{~mm}^{3}$
10. $1.35 \mathrm{~cm}^{3}$
11. $264 \mathrm{~cm}^{3}$
12. $900 \mathrm{~cm}^{3}$
13. $31.5 \mathrm{~m}^{3}$
14. $26 \mathrm{~cm}^{3}$
15. $15 \mathrm{~m}^{3}$

Task 20

1. $720 \mathrm{~cm}^{3}$
2. $9000 \mathrm{~mm}^{3}$
3. $25 \mathrm{~m}^{3}$
4. $17.85 \mathrm{~cm}^{3}$
5. $38 \mathrm{~m}^{3}$
6. $0.14 \mathrm{~m}^{3}$
7. $1.12 \mathrm{~m}^{3}$
8. $13.5 \mathrm{~m}^{3}$
9. $\$ 762.75$
10. $3150 \mathrm{~cm}^{3}$ 11. base $=75 \mathrm{~cm}$, height $=30 \mathrm{~cm}$, depth $=7 \mathrm{~cm}, V=15750 \mathrm{~cm}^{3}$
11. $143 \mathrm{~m}^{3}$
12. 0.5 m or 50 cm
13. 0.825 m or $82.5 \mathrm{~cm} \quad$ 15. 4 hrs 5 min

Task 21

1. $180 \mathrm{~cm}^{3}$
2. $1461.67 \mathrm{~mm}^{3}$
3. $368.9 \mathrm{~m}^{3}$
4. $967.73 \mathrm{~m}^{3}$
5. $28.08 \mathrm{~m}^{3}$
6. 1.87 min or 1 min 52.32 sec
7. $0.99 \mathrm{~m}^{3}$
8. $\$ 564.30$
9. $5400 \mathrm{~cm}^{3}$
10. 133.3 blocks
11. 6 cm
12. 6.5 cm
13. 1.3 cm
14. 12 cm
15. 4.9 m

Understanding and using scale diagrams:

Worksheet 20

In Task 22, pupils are to study scale diagrams. By measuring parts of the diagram and using the scale provided, the measured length can be converted to the actual length. Pupils are to create their own maps, with a scale, and exchange the maps with classmates so that he / she can work out distances between features on the map.

Task 22

Understanding time units / Analogue \& digital time: Converting between a.m / p.m. and 24hr time:
Changes over time / calculating rates:
In Task 23, pupils are to revise the basic time units and convert between different time units. The ability to tell the time is an important skill, and pupils are to read and display time in analogue and digital form. This task is completed by pupils adding and subtracting mixed time units.
In Task 24, pupils are to convert between a.m. / p.m. time and 24 hr time and attempt questions associated with time. A series of word problems are also included.
In Task 25, pupils are to interpret and use information about rates and changes over time as illustrated by everyday situations.

Task 23

| 1. 300 sec | 2. 375 min | 3. 114 hrs | 4. 77 days | 5.26 wks | 6.366 days | 7.7 .25 min | 8.405 sec |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9. 2.75 hrs | 10. 4.3 hrs | 11. 2.25 days | 12. 3.75 days | 13.6 .5 wks | 14.80 .5 wks | 15. | 16.20 past 10 |
| 17. 20 to 2 | 18. 5 to 3 | 19. 25 past 11 | 20. 10 to 1 | | | | |

21.

22.

24.

27. 285 sec
28. 35 sec

26. $10: 20,01: 40,02: 55,11: 25,12: 50,08: 15,04: 55,12: 10,12: 40,09: 20$
30. $2.75 \mathrm{~min} \quad 31.450 \mathrm{~min}$
32. 0.75 hrs
33. $8 \mathrm{hrs} \quad 34.315 \mathrm{~min}$
41. $8.5 \mathrm{wks} \quad 42.8 \mathrm{hrs}$
35. 63 hrs
36. 18 hrs
29. 7.5 min
38. 2.5 days 39. 4.5 wks
40. 38.5 days
46.5 min 47.69 hrs

Task 24

$\begin{array}{llllllllll}\text { 1. } 0523 & \text { 2. } 1648 & 3.0825 & \text { 4. } 2106 & 5.0456 & \text { 6. } 2013 & \text { 7. } 0906 & \text { 8. } 2217 & 9.0314 & 10.1941\end{array}$
$\begin{array}{lllllllllllll}11 . & 1032 & 12.0134 & 13.1424 & 14.1056 & 15 . & 2327 & 16.0045 & 17.1812 & 18.0749 & 19 . & 1208 & 20 . \\ 0637\end{array}$
21. 2:56 a.m. 22. $12: 36$ p.m. 23. $8: 59$ a.m. 24. $8: 06$ p.m. 25. $10: 49$ a.m. 26. 9:32 p.m. 27. 7:14 a.m.
28. 6:27 p.m. 29. 10:14 a.m.
30. 8:53 a.m.
31. $2: 52$ p.m.
32. 7:42 p.m. 33. 12:48 a.m.
34. 9:14 a.m.
35. $11: 58$ a.m. 36. 1:46 a.m.
37. 4:36 p.m. 38. 5:23 a.m.
39. $10: 43$ p.m. 40. $12: 09$ a.m. 41. $4: 57$ p.m.
42. 3 hr 55 min 43. 132 min or 2 hr 12 min 44. Prog $1=35 \mathrm{~min}, \operatorname{Prog} 2=65 \mathrm{~min}, \operatorname{Prog} 3=35 \mathrm{~min}, \operatorname{Prog} 4=50 \mathrm{~min}$
45. no 46. 0935-1010, 1115-1220, 1720-1755, 2315-0005 47. 37 min 48. $1607,1822,2027$
49.

Depart	Arrive
8:50 a.m.	9:27 a.m.
9:20 a.m.	9:57 a.m.
11:40 a.m.	$12: 17$ p.m.
3:30 p.m.	$4: 07$ p.m.
5:45 p.m.	$6: 22$ p.m.
$7: 50$ p.m.	8:27 p.m.

Task 25

Table of Contents for the Homework / Assessment Worksheet Masters for Measurement, Level 5

worksheet Number	Topic	Measurement Objective(s)
$\mathbf{1}$	Naming 2D geometric shapes / metric measurement units \& abbreviations	Revision
$\mathbf{2}$	Metric conversions / Word problems	Revision
$\mathbf{3}$	Perimeter of simple \& compound shapes / Word problems	M1 / M2
$\mathbf{4}$	Area of simple \& compound shapes / Word	
problems		

Homework / Assessment Worksheet

A: 10 Quick Questions

1. Find 10% of $\$ 53.60$
2. $61-7 \times 7=$
3. Find $\sqrt{81}=$
4. If the temperature was $8^{\circ} \mathrm{C}$, then drops $9^{\circ} \mathrm{C}$, what is the new temperature?
5. $\quad 9.4 \times 0.005=$
6. How many seconds in 9.5 minutes?
7. $\$ 7.60 \times 13=$
8. $108 \div 1.2=$
9. How many weeks in 4 years?
10. Find $\frac{1}{2}$ of $\$ 27.50$

E: Choose the right unit

Which unit for length, capacity or weight would you use to measure the following?

1. the distance between two countries
2. the volume of water in a swimming pool
3. a dose of cough medicine
4. a packet of MM's
5. the height of the classroom \qquad
6. the weight of a person
7. a bucket of water
8. the height of a tree
9. a packet of biscuits
10. the thickness of a match stick
11. the weight of a feather
12. the thickness of a tooth pick
13. a child's height

B: What does it mean?

1. What do the small lines on each side mean?
2. What do the arrows on each side mean?

: What Shape is it?
Name these shapes using the list below (Use one name twice)

3.
4.

7.

8.
10.

11.

14.
13.

...............................
9.
12.
15.
6. \qquad

trapezium rhombus hexagon rectangle kite quadrilateral square parallelogram octagon oval arrowhead triangle pentagon circle

D: Metric Measurement

In the metric system there are many abbreviations that are used.
Match the abbreviations listed with the words below.

Comments:

To be completed by:

A: 10 Quick Questions

1. $34-7 \times 4=$
2. Find the area of a rectangle with a base of 9 cm and a height of 7 cm .
3. $-17+-14=$
4. How many months in 3.5 years?
5. $0.45 \times 0.09=$
6. How many seconds in 3.75 minutes?
7. $\$ 9.45 \times 12=$
8. $9.6 \div 1.2=$ \qquad
9. Find 25% of $\$ 18.40$
10. $\frac{3}{4}$ of 320 km

C: Metric Conversions Convert the following.

2. $7000 \mathrm{~m}=$ km
3. $1.7 \mathrm{~kg}=$.9

5. $320 \mathrm{~mm}=\ldots \ldots \ldots c m$
6. $5900 \mathrm{~L}=$ kL
7. $0.73 \mathrm{~m}=$ cm
8. $620 \mathrm{~cm}=$ m
9. 5 tonne $=$ kg
10. $61 \mathrm{~mm}=$ m
11. $5.4 \mathrm{~m}=$ mm

13. 6.9 tonne kg
14. $385 \mathrm{~mL}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
15. $4.6 \mathrm{~L}=$ mL

18 0.86kg = 9
$1957.9 \mathrm{~cm}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{mm}$

23. $0.74 \mathrm{~kg}=$.......................... 9

25. $3170 \mathrm{~m}=$ km

B: The Metric System

Match the answers below with the questions for each equivalent metric measurement.
(Example: 1 metre $=100 \mathrm{~cm}$)

1. $1 \mathrm{~km}=$
2. $10 \mathrm{~mm}=$
3. $1000 \mathrm{~mL}=$
4. $1 \mathrm{~m}=$
5. 1 litre $=$
6. $\quad 1000 \mathrm{~g}=$
7. $1 \mathrm{~kL}=$
8. 1 tonns =
9. $1000 \mathrm{~m}=$
10. $1000 \mathrm{mg}=$

$$
\begin{array}{lllll}
\hline 1 \mathrm{~cm} & 1000 \mathrm{~mm} & 1000 \mathrm{~m} & 1 \mathrm{~L} & 1000 \mathrm{~kg}
\end{array}
$$ $1 \mathrm{~km} \quad 1 \mathrm{~kg} \quad 1 \mathrm{~g} \quad 1000 \mathrm{~mL} \quad 1000 \mathrm{~L}$

D: Add or Subtract these different Metric Units
 Answer in centimetres.

1. $1.8 \mathrm{~m}+53 \mathrm{~cm}=$
2. $5.1 \mathrm{~m}+67 \mathrm{~cm}+190 \mathrm{~mm}$
3. $9.1 \mathrm{~m}-860 \mathrm{~cm}=$
4. $\quad 870 \mathrm{~cm}-3.07 \mathrm{~m}=$
5. $3.2 \mathrm{~m}-570 \mathrm{~mm}+95 \mathrm{~cm}$

Answer in kilograms.
6. $1.9 \mathrm{~kg}+8700 \mathrm{~g}=$
7. $\quad 3067 \mathrm{~g}+4794 \mathrm{~g}=$
8. $\quad 349 g+647 g=$
9. $\quad 9060 \mathrm{~g}-3.7 \mathrm{~kg}=$
10. $3.75 \mathrm{~kg}-2345 \mathrm{~g}=$ \qquad

F: Where do they Go?

Place the numbers in the grid.
$65,415,543,3452,3921$
6254, 6315, 72114,
72954

E: Word Problems

1. If 1 kg of apples costs $\$ 1.35$, what does 8 kgs cos \dagger ?
2. If 1 L of milk costs $\$ 1.45$, what would 9 l cost?
3. A particular shape and size of wood costs $\$ 3.25$ per metre.

How much would 20 m cost?
4. If 10 kg of potatoes costs $\$ 6.30$, what would 1 kg cost?
5. If 5 kg of meat costs $\$ 69.75$, what would 1 kg cost?
6. If 12 m of timber costs $\$ 36.60$, what would 1 m cost?
7. If 1.5 kg of carrots costs $\$ 2.10$, what would 1 kg cost?
8. A 350 mL bottle of shampoo costs $\$ 6.30$. How much does it cost per mL?
9. Dried fruit is on sale for $\$ 11.75$ per kg or it is sold for $\$ 1.25$ per 100 g . Which is the cheapest way to buy the dried fruit?

A: 10 Quick Questions

1. $103-8 \times 12=$ \qquad Find the perimeter of each shape.
2. Divide $\$ 54$ in a ratio of 4:5
3. $9.3-4.953=$

4. How many metres in 8.105 km ?
5. Round off 24.9 to one significant figure \qquad

6.
7. \qquad

8.

8.
3.

9.

10.

D: Compound Shapes

This is a sketch of a park where a school cross-country race is to be held.
2. How many metres is it for one lap around the outside?
3. How many laps will they need to run if the race is 9 km long?
4. Mr. Walker is going to build a fence around his section. The section is rectangular with a width of
5. Calculate the length of ribbon that is needed to go around the parcel, then add 60 cm to allow for a bow to be tied.
6. For a meeting, 7 square tables, each with sides of 0.85 m , are placed as shown. What is the perimeter of this grouping?
48 m and a length of 72.5 m . How far is it around the section?

G: Word Problems

1. Rangi and Andrew have a race twice around a soccer field. If the length of the field was 110 m and the width was 70 m , how far was the race?

Find the perimeter of these shapes.

1. \qquad

2.

\qquad
\qquad

\qquad

Comments:
Please sign: Parent / Caregiver

Homework / Assessment Worksheet

To be completed by:

A: 10 Quick Questions

1. $4(7+6 \times 5)=$
2. Divide $\$ 81$ in a ratio of 5:4
3. $17.5-9.153=$
4. How many kilometres in 6250m?
5. Round off 47.36 to one decimal place
6. Find the perimeter of a square with sides of 13 cm
7. Calculate $\sqrt{196}=$
8. Solve $+37=19$ $\stackrel{\nabla}{ }=$
9. $18.4 \times 0.019=$ \qquad
10. $-19+15=$

B: Find the Areas?

Find the approximate areas of each shape by counting squares and part squares.

1.

3.

2.

4.

F: Magic Squares
Find the missing numbers.

C: "If you can paint it, it has Area"

Find the areas of these shapes.

3.

1. \qquad . 2. \qquad
\qquad
9m
 7.5 cm

2.

.
. .5
6. \qquad
\qquad

D: Compound shapes

Find the area of each compound shape.

1.

37 cm
... 2.
\qquad

Wendy is going to paint her bedroom door, but needs to first work out its area, so she can buy enough paint.

1. If the door is 2.00 m by 0.85 m , what is the area of one side of the door?

2. If the door is to have 2 coats of paint on both sides, what is the total area that has to be painted?
3. If a 500 mL tin of paint will paint $8 \mathrm{~m}^{2}$, what volume of paint is required to be able to paint the door?
4. If a 500 mL tin of paint costs $\$ 14.35$, how many tins will be needed and what will it cost? tins \$

A: 10 Quick Questions

1. Calculate the area of a triangle which has a base of 15 cm and a height of 18 cm
2. Convert 84 mm to cm
3. Write 61000 in standard form
4. How many minutes from 1.42 a.m. to 4.28 a.m. on the same day?
5. $20^{2}-\sqrt{225}$
6. How many degrees in a 4 sided figure?
7. $\$ 8.75 \times 11=$ \qquad
8. $71-42 \div 7=$
9. $19+-11--8=$
10. $(-9)^{2}=$

C: Circle Calculations

Use $C=2 \pi r$ or $C=\pi d$
and $\quad \mathbf{A}=\pi \boldsymbol{r}^{2}$ to find both the circumference and area of each circle (use $\pi=3.1$).
1.

$c=$
$A=$ \qquad
2.

$c=$ \qquad
$A=$ \qquad
1.

3.

Use the list below and the diagram to answer these questions.

1. The point at the middle of a circle is called the
2. A line from the middle to the outside of the circle is called the
3. A line passing through the middle of the circle, going from one side to the other is called the
4. The line around the outside of the circle is
 called the
5. The area shaded \square is called a \qquad
6. The area shaded $\#$ is called a \qquad
7. Part of the line around the outside is called an
8. The line in the diagram with the symbol pointing to it, is called a
circumference sector diameter centre segment arc radius chord

D: Word Problems

Calculate the area of these shapes. (use $\pi=3.1$)
2.

\qquad
\qquad
\qquad
4. A circle is drawn inside a square so that the sides of the circle just touch the sides of the square. Calculate the area of the shaded region (use $\pi=3.14$).

5. Calculate the shaded X-sectional area of this pipe if the inner circle has a radius of 12 cm , and the outer circle has a radius of 24 cm (use $\pi=3.14$).
6. Find out the diameter or radius of the world and calculate the circumference of the world at the equator (use $\pi=3.14$).
\qquad
\qquad

Comments:

B: What will it Cost?

This shed is to have a coat of paint (ends. sides and roof). Calculate the

1. area of one side.
2. area of both sides.
3. area of one end.
4. area of both ends.
5. area of one side of the roof.
6. area of all of the roof.
7. What is the total area that is to be painted? (both ends, both sides and all the roof)

The paint used will cover $15 \mathrm{~m}^{2}$ of the shed, with every litre used (15 m ${ }^{2}$ per litre).
8. Calculate the number of litres needed to paint the shed.
9. If one litre of paint costs $\$ 16.50$, how much is it going to cost to paint the shed?
10. Is $\$ 1000$ enough to pay for the paint?

1. Calculate the length of the sides labelled A, B and C.
$A=$ \qquad $B=$ \qquad $C=$
2. Calculate the perimeter of the paddock.
3. How many metres of wire are needed to build the fence? (4 wires in fence)
4. If wire comes in 50 m rolls, how many rolls of wire will be needed?
5. If each wire roll costs $\$ 65.00$, what will it cost for all the wire?
6. With posts every 5 metres, how many posts are needed for the fence to go around the paddock?
7. If posts cost $\$ 6.40$ each, what is the cost of the posts?
8. What is the total cost of the wire and posts?

Comments:

Comments:

Homework／Assessment Worksheet

To be completed by：

A： 10 Quick Questions

1．Convert 915 mm to cm

2．The perimeter of a square is 32 cm ，what is the area？

3． $72 \div-8=$
4．How many weeks in five years？
5．Convert 0.65 to a fraction

6．How many seconds in 5.25 minutes？
7． $18 \mathrm{~m}+548 \mathrm{~cm}=$ \qquad
8．How many minutes are there from 10.20 a．m．to 3.55 p．m．

9． $28-7 \times-4=$ \qquad
10． $0.08 \times 0.009=$ \qquad

B：Similar figures

Find the missing sides．$(ゃ \leftrightarrow \vee \wedge)$
1.

2.

3.

4.

5.

1.

This diagram is of a shed end． Using a scale of $1 \mathrm{~cm}: 100 \mathrm{~cm}$ make a scale drawing of the shed，in the box provided．

C：Scale Drawings

2．Plans for a house have been drawn with a scale of $1: 200$ ．If the house is to be 16 metres across the front，how long will this be on the plan diagram？

3．Edward＇s model helicoptor is 5 cm long．If it is a $1: 250$ scale model，what is the actual length of the helicopter？

D：Word Problems

The diagram shows part of an orienteering map．
Measure the distance from
1．A to B（in mm）
2．B to C（in mm$)$
3．C to D（in mm）
Use the scale in the diagram， convert these mm distances to
 metres．
4．A to B \qquad 5．B to C \qquad 6．C to D
\qquad
7．How far would they have to run，in a straight line，if the course started and finished at point A ？（ A to B to C to D to A ） \qquad

8．Andrew is looking at the top of a tree，trying to work out its height．If he is 2 m tall，and has a shadow length of 4 m ，how high is the tree，if it has a shadow of 32 m ？

9．Later in the day，the shadow of the tree had changed to be 48 m ．What would be the new length of Andrew＇s shadow？

10．A 40 m power pole has a shadow of 100 m ．How long would a shadow be for a 24 m high tree at the same time of the day？

[^2]
A: 10 Quick Questions

1. $862+\vee=518$

Find \vee
2. How many metres in 3.25 kilometres? \qquad
3. $11 \times-9=$
4. How millilitres in 3.06 litres?
5. $\quad 5.3 \times 0.9=$
6. How many seconds in 7.5 minutes?
7. $\$ 3.15 \times 9=$ \qquad
8. $0.96 \div 1.2=$ \qquad
9. Name this shape
10. A square has an area of $25 \mathrm{~m}^{2}$, what is the perimeter?

D: What is the time

 on these clocks?

1

3.

5.

7.
8.

B: What is the time ?

Write these a.m. and p.m. times as they would appear on

17:43

 a 24 hour digital clock.1. $\quad 5.02$ a.m.
2. 5.37 p.m.
3. $\quad 11.15 \mathrm{p} . \mathrm{m}$.
4. 6.29 a.m.
5. $\quad 10.43$ a.m.
6. 6.23 a.m.
7. $\quad 12.55$ p.m.
8. $\quad 9.12$ p.m.
9. $\quad 11.47$ a.m.
10. 6.52 p.m.

C: What time is it now?

Convert these 24 hour times to a.m. or p.m.

1. 0860
2. 1743
3. 2355
4. 0827
5. 0051
6. 1747
7. 2236
8. 0726
9. 2109
10. 0419

E: Word Problems

1. Mary and Jeff began a game of golf at 9.18 a.m. and it finished at 1.45 p.m. How long did the game take?

2. The dog next door kept Rangi awake one night because of its howling. It started at 8.41 p.m. and stopped at 1.55 a.m. For how long was it howling?
3. Jason went into the movies at 8:05 p.m. He left at the end of the movie at 10:27 p.m. If the movie was 1 hr 65 min long, at what time did it start?

This is a distance-time graph for a trip along a hilly running track.
4. How far did they run before the first stop?
5. For how long did they stop?
6. During the next 20 minutes, how far did they run?
7. For how long was the second stop?

8. How far did they run in the las $\dagger 20$ minutes?
9. What was the average running speed $(\mathrm{km} / \mathrm{hr})$ for the entire run?

Homework / Assessment Worksheet Answers

Worksheet 1

A:

1. $\$ 5.36$
2. 12
3. 9
4. $-1^{\circ} \mathrm{C}$
5. 0.0470
6. 570 seconds
7. $\$ 98.80$
8. 90
9. 208 weeks
10. $\$ 13.75$

B:

1. It means the lines are equal in length
2. The arrows mean that the arrowed lines are parallel to each other G:
3. triangle
4. octagon
5. trapezium
6. hexagon
7. quadrilateral
8. kite 7. square
9. rhombus
10. circle
11. arrowhead
12. oval
13. quadrilateral
14. rectangle
15. parallelogram
16. pentagon

D:

1. milligram
2. litre
3. kilogram
4. centimetre
5. millimetre
6. metre
7. millilitre
8. gram
9. kilolitre
10. kilometre

E:

1. kilometres
2. kilolitres or litres
3.

millilitres
4. grams 5. metres
6. kilograms 7. litres
8. metres
9. grams
10. millimetres
11. milligrams
12. millimetres
13. centimetres

Worksheet 2

A:

1. 6
2. $63 \mathrm{~cm}^{2}$
3. -31
4. 42 months
5. 0.0405
6. 225 seconds
7. $\$ 113.40$
8. 8
9. $\$ 4.60$
10. 240 km

B:

1. 1000 m
2. 1 L
3. 1000 mL
4. 1000 L
5. 1 km
6. 1 cm
7. 1000 mm
8. 1 kg
9. 1000 kg
10. 1 g
C:
11. $80 \mathrm{~mm} \quad$ 2. $7 \mathrm{~km} \quad$ 3. 1700 g 4. 500 cm 5. 32 cm 6. 5.9 kL 7. $73 \mathrm{~cm} \quad 8.6 .2 \mathrm{~m} \quad 9.5000 \mathrm{~kg}$
12. 0.061 m
13. $5400 \mathrm{~mm} \quad 12.0 .916 \mathrm{~g} \quad 13.6900 \mathrm{~kg}$
14. 0.385 L
15. 4600 mL 16. 1850 mg
16. 3.48 km
17. 860 g
18. 579 mm
19. 41 cm
20. 6790 mg
21. 0.904 L
22. 740 g
23. 877 mm
24. 3.17 km
$D:$
25. 233 cm
26. 596 cm
27. 50 cm
28. 563 cm
29. 358 cm
30. 10.6 kg
31. 7.861 kg
32. 0.996 kg
33. 5.36 kg
34. 1.405 kg

E:

1. $\$ 10.80$
2. $\$ 13.05$
3. $\$ 65.00$
4. 63 c
5. $\$ 13.95$
6. $\$ 3.05$
7. $\$ 1.40$
8. 1.8 c
9. $\$ 11.75 / \mathrm{kg}$ was the better buy

Worksheet 3

A:

1. 7
2. $\$ 24: \$ 30$
3. 4.347
4. 8105 m
5. 20
6. 8.5 minutes
7. $\$ 55.50$
8. 1300
9. kilogram
10.

B:

1. 36 cm
2. 48 cm
3. 23 cm
4. 40 mm
5. 32 m
6. 38 mm
7. 35.8 mm
8. 40 cm
9. 26.5 m
10. 40 m
C:
11. 720 m
12. 1800 m
13. 5 laps
14. 241 m
15. 240 cm
16. 13.6 m
D:
17. 70 mm
18. 76 cm
19. 58.1 m
20. 10.7 cm

Worksheet 4

A:

1. 148
2. $\$ 45: \$ 36$
3. 8.347
4. 6.25 km
5. 47.4
6. 52 cm
7. 14
8. -18
9. 0.3496
10. -34

B:

1. 23 squares
2. 12 squares
3. 26 squares
4. 18 squares

C:

1. $56.25 \mathrm{~cm}^{2}$
2. $76 \mathrm{~mm}^{2}$
3. $32.5 \mathrm{~cm}^{2}$
4. $58.5 \mathrm{~m}^{2}$
5. $157.5 \mathrm{~cm}^{2}$
6. $90 \mathrm{~m}^{2}$

D:

1. $507 \mathrm{~cm}^{2}$
2. $602 \mathrm{~cm}^{2}$

E:

1. $1.7 \mathrm{~m}^{2}$
2. $6.8 \mathrm{~m}^{2}$
3. 425 mL
4. 1 tin, $\$ 14.35$

F:

12	5	16				
15	11	7				
6	17	10		13	20	9
:---:	:---:	:---:				
10	14	18				
19	8	15				

Worksheet 5

A:

1. 6.69
2. 27
3. 5300 g
4. 180°
5. 0.0135
6. 69.15
7. $3 / 4$
8. 11
9. 117 weeks
10. 60 cm

B:

1. $150 \mathrm{~cm}^{2}$
2. $247 \mathrm{~m}^{2}$
3. $88.48 \mathrm{~mm}^{2}$
4. $140 \mathrm{~mm}^{2}$
C:
5. $684-169=515 \mathrm{~mm}^{2}$
6. $7.7-2.43=5.27 \mathrm{~cm}^{2}$
7. $105-40=65 \mathrm{~cm}^{2}$
D:
8. $42.5 \mathrm{~m}^{2}$
9. $9.4 \mathrm{~m}^{2}$
10. $742.5 \mathrm{~m}^{2}$
11. $99662.5 \mathrm{~m}^{2}$

Worksheet 6

A:

1. $135 \mathrm{~cm}^{2}$
2. 8.4 cm
3. 6.1×10^{4}
4. 166 minutes
5. 385
6. 360°
7. $\$ 96.25$
8. 65
9. 16
10. 81
B:
11. centre
12. radius
13. diameter
14. circumference
15. sector
16. segment
17. arc
18. chord
C:
19. $C=74.4 \mathrm{~cm}, A=446.4 \mathrm{~cm}^{2}$
20. $C=9.3 m, A=6.975 m^{2}$
21. $C=40.3 \mathrm{~cm}, A=130.975 \mathrm{~cm}^{2}$
22. $C=62 \mathrm{~cm}, A=310 \mathrm{~cm}^{2}$
D:
23. $968.75 \mathrm{~mm}^{2}$
24. $148.8 \mathrm{~cm}^{2}$
25. $2.718 \mathrm{~m}^{2}$
26. $900-706.5=193.5 \mathrm{~cm}^{2}$
27. $1808.64-452.16=1356.48 \mathrm{~cm}^{2}$
28. Earth has a diameter of 12756 km , a radius of $6378 \mathrm{~km}, \mathrm{C}=40053.84 \mathrm{~km}$

Worksheet 7

A:

1. -7
2. 90
3. $\$ 7.85$
4. $\$ 24: \$ 48$
5. 0.0558
6. 7350 g
7. 95 kg
8. 90%
9. 58
10. 0.06

B:

1. $140 \mathrm{~m}^{2}$
2. $280 \mathrm{~m}^{2}$
3. $105+30=135 \mathrm{~m}^{2}$
4. $270 \mathrm{~m}^{2}$
5. $120 \mathrm{~m}^{2}$
6. $240 \mathrm{~m}^{2}$
7. $790 \mathrm{~m}^{2}$
8. $52.7 \cdot \mathrm{~L}$
9. $\$ 869.55$
10. Yes
C:
11. $A=70 \mathrm{~m}, B=40 \mathrm{~m}, \mathrm{C}=160 \mathrm{~m}$
12. 760 m
13. 3040 m
14. 60.8 rolls of wire

D:	15	17	31

	37	21	5
	1	25	27

5. $\$ 3952$
6. 152 posts
7. $\$ 972.80$
8. $\$ 4924.80$
11.25 27

Worksheet 8

A:

1. $1.69 \mathrm{~cm}^{2}$
2. 3.750 kL
3. 405 mL
4. 345 minutes
5. -65
6. 94
7. 34.64
8. 12
9. \$74.66:\$21.33 10. 11

B:

1. sphere
2. cylinder
3. cube
4. pyramid
5. rectangular prism
6. triangular prism
7. cone

C:

1. $182 \mathrm{~m}^{3}$
2. $3.675 \mathrm{~m}^{3}$
3. $1260 \mathrm{~mm}^{3}$
4. $2.31 \mathrm{~cm}^{3}$

D:

1. $2.744 \mathrm{~m}^{3}$
2. $385 \mathrm{~cm}^{3}$
3. $6.859 \mathrm{~cm}^{3}$
4. $945 \mathrm{~cm}^{3}$
5. $1360 \mathrm{~mm}^{3}$
6. $1820 \mathrm{~m}^{3}$
7. $729 \mathrm{~cm}^{3}$
8. $373.248 \mathrm{~m}^{3}$
9. $1120 \mathrm{~cm}^{3}$
10. 12 m
11. 7 m
12. 6 m

Worksheet 9

A:

1. 91.5 cm
2. $64 \mathrm{~cm}^{2}$
3. -9
4. 260 weeks
5. ${ }^{65} / 100={ }^{13} / 20$
6. 315 seconds
7. 23.48 m or 2348 cm
8. 335 minutes
9. 56
10. 0.00072

B:

1. 10 cm
2. 9 mm
3. 33 m
4. 4 m
5. 22.5 m

C:

1. see diagram at right $2.8 \mathrm{~cm} \quad$ 3. 1250 cm or 12.5 m
$D=$
2. 40 mm
3. 55 mm
4. 30 mm
5. 4000 m
6. 5500 m
7. 3000 m
8. 14500 m or 14.5 km
9. 16 m
10. 6 m
11. 60 m

Worksheet 10

A:

1. 344
2. 3250 m
3. 99 4. 3060 mL
4. 4.77
5. 450 seconds
6. $\$ 28.35$
7. 0.8
8. (isosceles) trapezium
9. 20 m

B:

1. 0502
2. 1737
3. 2315
4. 0629
5. 1043
6. 0623
7. 1255
8. 2112
9. 1147
10. 1852

C:

1. $8: 50 \mathrm{a} . \mathrm{m}$.
2. 5:43 p.m.
3. $11: 55 \mathrm{p} . \mathrm{m}$.
4. 8:27 a.m.
5. $12: 51$ a.m.
6. 5:47 p.m.
7. $10: 36 \mathrm{p} . \mathrm{m}$.
8. 7:26 a.m.
9. 9:09 p.m.
10. 4:19 a.m.

D:

1. 5 to 4 or 0355 or 1555 2. 20 past 7 or 0720 or 1920 3. 25 to 4 or 0335 or 1535 4. 20 past 11 or 1120 or 2320 5. 5 past 7 or 0705 or 1905
2. 23 past 8 or 0823 or 2023
3. 19 to 3 or 0241 or 1441
4. 2 to 4 or 0358 or 1558

E:

1. 267 minutes or 4 hrs 27 mins
2. 314 minutes or 5 hrs 14 mins
3. $8: 22 \mathrm{p} . \mathrm{m}$.
4. 4 km
5. 20 minutes
6. 2 km
7. 30 minutes
8. 3 km
9. $4.5 \mathrm{~km} / \mathrm{hr}$

Tracking Sheet: 'In-class’ Activity Sheets

Tracking Sheet: Homework / Assessment Worksheets

[^0]: Acknowledgement:
 I would like to thank the staff and pupils of Mairehau Primary School, Christchurch for their assistance in making these resources possible.

[^1]: Note:
 The codes MP1, MP2, etc. have been created by numbering the Mathematical Processes Achievement Objectives in order as listed in the MATHEMATICS in the New Zealand Curriculum document. The numbering gaps occur as not all objectives are covered at Level 5. [REFER to PAGES 23-29 of the CURRICULUM DOCUMENT]

[^2]: Comments：

